丁文武
摘 要 極限在高等數(shù)學和數(shù)學分析中占據(jù)了極為重要的位置。求極限的方法除了等價無窮小量代換定理、洛必達法則、夾逼定理、單調(diào)有界準則等常規(guī)方法外,對一些特殊函數(shù),還有許多重要的非常規(guī)方法,如利用級數(shù)的和、冪級數(shù)的展開式,級數(shù)收斂的必要條件,微分中值定理,積分中值定理,這些方法的使用為極限的求解帶來較大的方便。
關(guān)鍵詞 極限 級數(shù) 微分中值定理 積分中值定理
中圖分類號:O151 文獻標識碼:A DOI:10.16400/j.cnki.kjdks.2018.08.017
Abstract Limits occupy an extremely important position in advanced mathematics and mathematical analysis. In addition to the equivalent methods such as the equivalent infinitesimal substitution theorem, the Lbida rule, the pinch-forcing theorem, and the monotone bounded criterion, there are many important unconventional methods for some special functions, such as the use of series. The expansion of the sum, the power series, the necessary conditions for the convergence of the series, the differential mean value theorem, and the integral median theorem. The use of these methods brings greater convenience to the solution of the limit.
Keywords limit; series; differential mean value theorem; integral median theorem
參考文獻
[1] 霍玉珍.求極限的方法與技巧[J].牡丹江教育學院學報,2003(3).
[2] 高玉芬.求極限的方法與技巧[J].青海師專學報,2000(3).
[3] 周根立.求極限的方法[J].山西煤炭管理干部學院學報,2000(3).
[4] 曲亞男.求解函數(shù)極限的若干方法[J].中國科技信息,2005(19).
[5] 樓海平.例說不定積分教學與求解技巧[J].成都教育學院學報,2003(11).