羅沈暉 曹海龍 王邦茂
天津醫(yī)科大學(xué)總醫(yī)院消化科
高脂肪飲食是結(jié)直腸癌發(fā)病的高危因素,它可以增加腸腔內(nèi)次級膽酸,特別是脫氧膽酸(DCA)的含量。DCA在結(jié)直腸癌的演進(jìn)中扮演著重要的角色。大量研究表明其具有致癌與促癌作用[1],但相關(guān)致病機制并不明確,現(xiàn)就DCA在結(jié)直腸癌發(fā)生中研究進(jìn)展作一綜述。
DCA為次級膽汁酸之一。肝細(xì)胞以膽固醇為原料合成初級膽汁酸,起促進(jìn)腸道中脂類物質(zhì)消化吸收的作用。初級膽汁酸在末端回腸及結(jié)腸中厭氧菌的作用下轉(zhuǎn)變?yōu)榇渭壞懼?。其中初級膽汁酸包括膽酸和鵝脫氧膽酸,次級膽汁酸包括DCA及石膽酸。部分次級膽汁酸可通過腸肝循環(huán)被腸道有效的重吸收,其余隨糞便排出體外。
流行病學(xué)資料顯示,正常人糞便中的DCA含量低于結(jié)直腸癌或腺瘤病人,糞便DCA的升高能明顯促進(jìn)結(jié)直腸腫瘤增大,左半結(jié)腸表現(xiàn)尤為明顯[2]。有研究者發(fā)現(xiàn),結(jié)直腸腺瘤病人血清中的DCA含量增高,與腸腺窩基底層細(xì)胞程序性凋亡相關(guān)[3]。一項Meta分析[4]結(jié)果顯示,膽囊切除后腸道內(nèi)次級膽汁酸濃度升高,結(jié)直腸癌發(fā)病風(fēng)險也會隨之增加,亞組分析顯示女性和右半結(jié)腸的發(fā)病風(fēng)險更顯著。因此,有研究者提出膽囊切除術(shù)是大腸癌發(fā)病的危險因素之一。至于膽囊切除術(shù)能否增加結(jié)直腸腺瘤的發(fā)病率仍存在爭議[5,6]。腸道中次級膽酸含量能隨著脂肪攝入的增加而升高,研究表明高脂飲食也可促進(jìn)結(jié)直腸癌的發(fā)生發(fā)展[7]。
3.1.1 脫氧膽酸與氧族氮族應(yīng)激 DCA可誘導(dǎo)活性氧簇(ROS)和活性氮簇(RNS)的產(chǎn)生,腸上皮暴露于高濃度DCA可造成DNA的損傷,基因組穩(wěn)定性受到破壞,修復(fù)酶功能受影響,使基因突變率增加,促進(jìn)了結(jié)直腸癌的發(fā)生[8,9]?;蚪M不穩(wěn)定主要表現(xiàn)為異倍體的出現(xiàn)、染色體內(nèi)不穩(wěn)定和基因點突變[10]。有人用DCA處理BCS-TC2細(xì)胞系,發(fā)現(xiàn)細(xì)胞分離、細(xì)胞膜失對稱、染色質(zhì)濃縮、DNA降解,2h內(nèi)即出現(xiàn)細(xì)胞凋亡[11]。Kong等[12]發(fā)現(xiàn)DCA可造成miRNAs作用失調(diào),發(fā)揮促腫瘤形成作用,結(jié)直腸腫瘤細(xì)胞生長、遷移和侵襲作用受高表達(dá)的miR-199a-5p抑制,細(xì)胞周期相關(guān)的蛋白CAC1受到miR-199a-5p調(diào)節(jié)。DCA通過抑制miR-199a-5p作用和(或)促進(jìn)CAC1表達(dá)增高,達(dá)到促腫瘤形成的作用。
多個學(xué)者研究發(fā)現(xiàn),脫氧膽酸通過NAD(P)H氧化酶(使蛋白激酶B、絲裂原活化蛋白激酶和p38及下游的轉(zhuǎn)錄因子核內(nèi)激活蛋白AP活化)和PLA2誘導(dǎo)的氧族氮族應(yīng)激除了造成基因損傷改變DNA修復(fù)相關(guān)蛋白結(jié)構(gòu),還能激活NF-κB,調(diào)控抗凋亡基因,造成線粒體損傷影響細(xì)胞自噬能力。連續(xù)性的作用使得正常結(jié)腸細(xì)胞基因穩(wěn)定性發(fā)生改變,突變的細(xì)胞發(fā)生選擇性增殖,通過非整倍體化、基因突變與增殖的連鎖反應(yīng)作用使細(xì)胞發(fā)生癌變[13,14]。Schlottman等學(xué)者研究發(fā)現(xiàn)DCA以濃度和時間依賴性的方式作用于多種結(jié)腸癌細(xì)胞系,短時間內(nèi)作用能誘導(dǎo)細(xì)胞凋亡,但長時間引起細(xì)胞增殖失控、凋亡抑制,打破了增殖和凋亡的平衡,最終引起穩(wěn)態(tài)破壞進(jìn)而發(fā)生惡變[15]。另外,Rial等[16]通過用DCA處理HCT116、HT29細(xì)胞系發(fā)現(xiàn)CXCL8 表達(dá)增高,CXCL8與AP-1、NF-κB相結(jié)合使細(xì)胞侵襲性增強。
3.1.2 脫氧膽酸與細(xì)胞信號轉(zhuǎn)導(dǎo)通路
(1)脫氧膽酸與法尼酯X受體:法尼酯X受體(FXR)首次于1995年由Forman在大鼠肝cDNA文庫中分離 ,F(xiàn)XR信號通路擁有自身調(diào)節(jié)環(huán),初級及次級膽汁酸能激活不同構(gòu)象的FXR,且具有不同的作用[17]。作為一種膽汁酸受體,F(xiàn)XR在膽汁酸合成、轉(zhuǎn)運和排泄中發(fā)揮了重要作用。Maran[18]對FXR基因敲除小鼠的研究顯示,在FXR基因敲除小鼠的結(jié)腸中β-catenin、c-Myc和cyclinD1蛋白含量提高,增強了結(jié)腸細(xì)胞增殖能力。Lax等[19]研究發(fā)現(xiàn)結(jié)腸癌腸黏膜中FXR受體表達(dá)明顯低于未發(fā)生不典型增生的黏膜,這可能反映了對潛在致癌的膽汁酸的防御機制的缺陷。體外細(xì)胞系的研究發(fā)現(xiàn)人結(jié)腸癌細(xì)胞系Caco-2和HT-29均出現(xiàn)FXR表達(dá)下調(diào),而且分化程度越低的細(xì)胞系,其表達(dá)程度也越低,而在未分化細(xì)胞系SW480和轉(zhuǎn)移來源的SW620細(xì)胞系中未發(fā)現(xiàn)FXR表達(dá)[20]。FXR基因的缺失和啟動子甲基化的靜默作用,均能導(dǎo)致FXR mRNA的低表達(dá)。另外,Silva等[21]研究得出低濃度的DCA(10 Amol/L)可通過FXR 促進(jìn)乳腺癌細(xì)胞MDA-MB-231 的生長和轉(zhuǎn)移。DCA能否通過影響FXR途徑促進(jìn)結(jié)直腸癌演進(jìn)及其相關(guān)機制需大量研究進(jìn)行證實。
(2)脫氧膽酸與Wnt通路:Wnt/β-Catenin信號轉(zhuǎn)導(dǎo)通路在生物發(fā)育、細(xì)胞轉(zhuǎn)運及細(xì)胞凋亡等生命過程中發(fā)揮重要作用,其異常活化在多種人類腫瘤的發(fā)生、發(fā)展中發(fā)揮了重要作用。Wnt為細(xì)胞間的一種分泌蛋白,能傳遞細(xì)胞信號至糖原合成酶激酶3(GSK-3β)。GSK-3β是能使β連環(huán)蛋白(β-catenin)發(fā)生磷酸化的絲氨酸蘇氨酸激酶。正常狀態(tài)下,GSK-3β、β-catenin與APC、軸蛋白形成蛋白復(fù)合體。這一多蛋白復(fù)合物中任何一個成分的改變,均可導(dǎo)致β-catenin降解障礙,從而激活Wnt途徑。未磷酸化β-catenin可調(diào)控下游基因的過度表達(dá),如環(huán)氧化酶-2(COX-2)、細(xì)胞周期蛋白(CyclinD1)等。β-catenin、尿激酶型纖溶酶原激活劑及其受體(uPA/uPAR)和CyclinD1在結(jié)腸癌中過度表達(dá),同時β-catenin和E-鈣黏附分子(E-cadherin)分離使細(xì)胞間黏附性降低,都與腫瘤的生長、侵潤及轉(zhuǎn)移密切相關(guān)。Pai等[22]發(fā)現(xiàn),低濃度DCA(5 and 50 microM)能顯著促進(jìn)SW480細(xì)胞β-catenin相關(guān)途徑的產(chǎn)生,從而增強細(xì)胞增殖與侵襲能力。有學(xué)者發(fā)現(xiàn)DCA誘導(dǎo)產(chǎn)生的β-catenin還能通過調(diào)節(jié)孤核受體Nur77,以增強HCT116細(xì)胞的增殖和遷移能力[23]。
(3)脫氧膽酸與EGFR通路:經(jīng)典的EGFR通路主要有兩個:絲裂原激活蛋白酶途徑(Ras/Raf/MEK/ERK/MAPK通路)與磷脂酰基醇3激酶(PI3K)途徑。DCA產(chǎn)生抑制凋亡的效應(yīng)依賴于EGFR的活化,主要是通過干擾細(xì)胞膜的結(jié)構(gòu)而激活受體,產(chǎn)生下級級聯(lián)反應(yīng)[24]。研究發(fā)現(xiàn)DCA能夠誘導(dǎo)酪氨酸磷酸化且以配體依賴的方式激活酪氨酸激酶的EGFR信號通路,激活Ras/Raf/MEK/ERK/MAPK通路,活化AP-1以介導(dǎo)細(xì)胞增殖與分化[25];還可以活化PI3K/Akt/I-κB/NF-κB途徑,調(diào)節(jié)下游靶分子如Caspase家族和NF-κB轉(zhuǎn)錄因子,進(jìn)而調(diào)控細(xì)胞增殖和凋亡[13]。Lee等[14]研究發(fā)現(xiàn),DCA能夠通過激活EGFR/PKC/Ras/Raf-1/MEK1/ERK/CREB,PI3/Akt/IkappaB/NF-κB和p38/MSK1/CREB多重通路,上調(diào)HM3結(jié)腸癌細(xì)胞的MUC2黏蛋白的轉(zhuǎn)錄,而JNK/c-Jun/AP-1通路抑制這一作用,這些研究結(jié)果為膽汁酸調(diào)節(jié)黏蛋白基因提供了新的分子機制,可能有助于進(jìn)一步說明DCA的致癌作用。另外,Zhu等[26]發(fā)現(xiàn)DCA能通過PKC途徑誘導(dǎo)激活COX-2,基質(zhì)中尤以癌相關(guān)成纖維細(xì)胞為主的COX-2的激活能明顯增加結(jié)直腸癌細(xì)胞的增殖能力及侵襲性。
3.2.1 正常鼠模型 Bernstein等[27]用0.2%的DCA食物喂養(yǎng)誘導(dǎo)野生B6.129PF2/J小鼠發(fā)生結(jié)腸炎,給藥2個月時小鼠開始出現(xiàn)輕度炎癥反應(yīng),8個月后小鼠生長明顯受限,結(jié)腸組織中硝基酪氨酸表達(dá)顯著,誘發(fā)小鼠結(jié)腸癌。Payne等[1,28]用含0.2%DCA食物喂養(yǎng)野生C57BL/J.129*小鼠歷時10個月誘導(dǎo)產(chǎn)生無蒂腺瘤,其中5/6發(fā)生近端結(jié)腸無蒂腺瘤;而后用相似方法喂養(yǎng)野生B6.129PF2/J小鼠,94%發(fā)生腫瘤,其中56%為腺癌。
3.2.2 基因異常小鼠模型 抑癌基因Apc發(fā)生突變能導(dǎo)致腸道自發(fā)形成腫瘤,Apcmin/+小鼠品系是在小鼠同源APC基因第850位點發(fā)生無義突變,造成其腸道多發(fā)腺瘤,是一種良好的家族性腺瘤性息肉病小鼠模型。Baltgalvis等[29]對Apcmin/+小鼠模型分別喂養(yǎng)高脂和正常飲食,6周后結(jié)果顯示高脂飲食組小腸腺瘤數(shù)目相對于對照組增加75%,免疫組化β-catenin陽性率增高2倍,炎癥反應(yīng)更加嚴(yán)重,間接證明了次級膽汁酸的致癌作用。另外,Maran等[18]對FXR基因缺失小鼠的研究顯示,若將Apcmin/+小鼠的FXR基因敲除,小腸腺癌體積會明顯增大;AOM誘導(dǎo)FXR基因敲除的C57BL/6小鼠,結(jié)直腸腺癌增多增大。Modica等[30]研究指出FXR基因敲除小鼠的早期死亡率增加和腸道腫瘤進(jìn)展,雖然FXR缺失致癌的確切機制不完全明確,但資料提示這與TNFα活性增加及活化的中性粒細(xì)胞、巨嗜細(xì)胞浸潤進(jìn)而激活Wnt信號通路有關(guān),DCA致癌作用是否通過FXR作用,仍需進(jìn)一步研究。
3.2.3 結(jié)腸癌鼠模型 Onose等[31]對F344雄性大鼠先用DMH和DSS處理,0.3%DCA喂養(yǎng)20周發(fā)現(xiàn)結(jié)腸腫瘤的種類明顯增多,體積顯著增大。用抗氧化偶氮甲烷(AOM)誘導(dǎo)的大鼠腫瘤模型發(fā)現(xiàn)DCA可以增加結(jié)腸腫瘤的發(fā)生率,并誘發(fā)K-ras突變。AKR/J小鼠能抗AOM誘導(dǎo)結(jié)直腸腫瘤的形成,腫瘤發(fā)生率低,F(xiàn)lynn等[32]用含0.25%DCA的食物喂養(yǎng)AOM-AKR/J小鼠,加重了耐藥的AKR/J小鼠結(jié)腸上皮發(fā)生的高度不典型增生,同時發(fā)現(xiàn)β-catenin核易位在這一過程中發(fā)揮了重要作用。
DCA在結(jié)直腸癌演進(jìn)中發(fā)揮著重要作用,相關(guān)機制十分復(fù)雜。盡管DCA的促結(jié)直腸癌作用在流行病學(xué)、細(xì)胞及動物水平等研究中得以證實,但DCA作為致癌因子的相關(guān)機制尚有許多未明之處:DCA與癌基因、抑癌基因有無關(guān)聯(lián),DCA如何打破細(xì)胞凋亡增殖平衡,腫瘤形成中FXR發(fā)生何種改變,DCA是如何影響腫瘤的生物學(xué)行為?這一系列問題都需進(jìn)行廣泛、深入的研究來解答。
[1]Bernstein C,Holubec H,Bhattacharyya AK,et al.Carcinogenicity of deoxycholate,a secondary bile acid[J].Arch Toxicol,2011,85(5):863-871.
[2]Kawano A,Ishikawa H,Kamano T,et al.Significance of fecal deoxycholic acid concentration for colorectal tumor enlargement[J].Asian Pac J Cancer Prev,2010,11(6):1541-1546.
[3]Fracchia M,Galatola G,Sarotto I,et al.Serum bile acids,programmed cell death and cell proliferation in the mucosa of patients with colorectal adenomas[J].Dig Liver Dis,2005,37(7):509-514.
[4]Xu YK,Zhang FL,Feng T,et al.Meta-analysis on the correlation of cholecystectomy or cholecystolithiasis to risk of colorectal cancer in Chinese population[J].Ai Zheng,2009,28(7):749-755.
[5]Zhao C,Ge Z,Wang Y,et al.Meta-analysis of observational studies on cholecystectomy and the risk of colorectal adenoma[J].Eur J Gastroenterol Hepatol,2012,24(4):375-381.
[6]Siddiqui AA,Kedika R,Mahgoub A,et al.A previous cholecystectomy increases the risk of developing advanced adenomas of the colon[J].South Med J,2009,102(11):1111-1115.
[7]Butler LM,Wang R,Koh WP,et al.Marine n-3 and saturated fatty acids in relation to risk of colorectal cancer in Singapore Chinese:a prospective study[J].Int J Cancer,2009,124(3):678-686.
[8]Payne CM,Crowley-Skillicorn C,Bernstein C,et al.Hydrophobic bile acid-induced micronuclei formation,mitotic perturbations,and decreases in spindle checkpoint proteins:relevance to genomic instability in colon carcinogenesis[J].Nutr Cancer,2010,62(6):825-840.
[9]Longpre JM,Loo G.Protection of human colon epithelial cells against deoxycholate by rottlerin[J].Apoptosis, 2008,13(9):1162-1171.
[10]Payne CM,Bernstein C,Dvorak K,et al.Hydrophobic bile acids,genomic instability,Darwinian selection,and colon carcinogenesis[J].Clin Exp Gastroenterol,2008,1:19-47.
[11]Ignacio Barrasa J,Olmo N,Pérez-Ramos P,et al.Deoxycholic and chenodeoxycholic bile acids induce apoptosis via oxidative stress in human colon adenocarcinoma cells[J].Apoptos is,2011,16(10):1054-1067.
[12]Kong Y,Bai PS,Sun H,et al.The deoxycholic acid targets miRNA-dependent CAC1 gene expression in multidrug resistance of human colorectal cancer[J].Int J Biochem Cell Biol,2012,44(12):2321-2332.
[13]Payne CM,Crowley-Skillicorn C,Bernstein C,et al.Hydrophobic bile acid-induced mitotic perturbations and micronuclei formation:relevance to genomic instability in colon carcinogenesis[J].Nutr Cancer,2010,62(6):825-840.
[14]Lee HY,Crawley S,Hokari R,et al.Bile acid regulates MUC2 transcription in colon cancer cells via positive EGFR/PKC/Ras/ERK/CREB,PI3K/Akt/IkappaB/NF-kappaB and p38/MSK1/CREB pathways and negative JNK/c-Jun/AP-1 pathway[J].Int J Oncol,2010,36(4):941-953.
[15]Schlottman K,Wachs FP,Krieg RC,et al.Characterization of bile salt-induced apoptosis in colon cancer cell lines[J].Cancer Res,2000,60(15):4270-4276.
[16]Rial NS,Lazennec G,Prasad AR,et al.Regulation of deoxycholate induction of CXCL8 by the adenomatous polyposis coli gene in colorectal cancer[J].Int J Cancer,2009,124(10):2270-80.
[17]Lew JL,Zhao A,Yu J,et al.The farnesoid X receptor controls gene expression in a ligand-and promoter-selective fashion[J].J Biol Chem,2004,279(10):8856-8861.
[18]Maran R.M,Ann Thomas,Megan Roth,et al.Farnesoid X receptor deficiency in mice leads to increased intestinal epithelial cell proliferation and tumor development[J].Pharm Exper Therap,2009,328(2):469-477.
[19]Lax S,Schauer G,Prein K,et al.Expression of the nuclear bile acid receptor/farnesoid X receptor is reduced in human colon carcinoma compared to nonneoplastic mucosa independent from site and may be associated with adverse prognosis[J].Int J Cancer,2012,130(10):2232-2239.
[20]De Gottardi A,Touri F,Maurer CA,et al.The bile acid nuclear receptor FXR and the bile acid binding protein IBABP are differently expressed in colon cancer[J].Dig Dis Sci,2004,49(6):982-989.
[21]Silva J,Dasgupta S,Wang G,et al.Lipids isolated from bone induce the migration of human breast cancer cells[J].J Lipid Res,2006,47(4):724-733.
[22]Pai R,Tarnawski AS,Tran T.Deoxycholic acid activates beta-catenin signaling pathway and increases colon cell cancer growth and invasiveness[J].Mol Biol Cell,2004,15(5):2156-2163.
[23]Wu H,Lin Y,Li W,et al.Regulation of Nur77 expression by β-catenin and its mitogenic effect in colon cancer cells[J].FASEB J,2011,25(1):192-205.
[24]Jean-Louis S,Akare S,Ali MA,et al.Deoxycholic acid induces intracellular signaling through membrane perturbations[J].J Biol Chem,2006,281(21):14948-14960.
[25]Im E,Martinez JD.Ursodeoxycholic acid (UDCA) can inhibit deoxycholic acid (DCA)-induced apoptosis via modulation of EGFR/Raf-1/ERK signaling in human colon cancer cells[J].J Nutr,2004,134(2):483-486.
[26]Zhu Y,Zhu M,Lance P.Stromal COX-2 signaling activated by deoxycholic acid mediates proliferation and invasiveness of colorectal epithelial cancer cells.Biochem[J].Biophys Res Commun,2012,425(3):607-612.
[27]Bernstein H,Holubec H,Bernstein C,et al.Unique dietary-related mouse model of colitis[J].Inflamm Bowel Dis,2006,12(4):278-293.
[28]Payne CM,Holubec H,Bhattacharyya AK,et al.Exposure of mouse colon to dietary bile acid supplement induces sessile adenomas[J].Inflamm Bowel Dis,2010,16(5):729-730.
[29]Baltgalvis KA,Berger FG,Pe a MM,et al.The interaction of a high-fat diet and regular moderate intensity exercise on intestinal polyp development in Apc Min/+ mice[J].Cancer Prev Res(phila),2009,2(7):641-649.
[30]Modica S,Murzilli S,Salvator L,et al.Nuclear bile acid receptor FXR protects against intestinal tumorigenesis[J].Cancer Res,2008,68(23):9589-9594.
[31]Onose J,Imai T,Hasumura M,et al.A new medium-term rat colon bioassay applying neoplastic lesions as endpoints for detection of carcinogenesis modifiers-validation with known modifiers[J].Cancer Lett,2006,232(2):272-278.
[32]Flynn C,Montrose DC,Swank DL,et al.Deoxycholic acid promotes the growth of colonic aberrant crypt foci[J].Mol Carcinog,2007,46(1):60-70.