蓋文彬 畢明霞 姜宏
[摘要] 目的 鑒定膽固醇酯化酶甾醇O-?;D(zhuǎn)移酶1(SOAT1)的去泛素化酶(DUB),探討維持SOAT1蛋白穩(wěn)定性的分子機(jī)制。
方法 采用Western blot方法檢測(cè)多種肝癌細(xì)胞系中SOAT1的表達(dá),在SOAT1表達(dá)較低的肝癌細(xì)胞系HCCLM3中加入蛋白酶體抑制劑MG132后檢測(cè)SOAT1蛋白水平的變化,篩選人源卵巢腫瘤相關(guān)蛋白酶(OTU)家族中與SOAT1相互作用的DUB分子,通過泛素化實(shí)驗(yàn)檢測(cè)其對(duì)SOAT1的去泛素化效應(yīng)。
結(jié)果
SOAT1蛋白穩(wěn)定性受到泛素-蛋白酶體系統(tǒng)的調(diào)控,對(duì)人源OTU家族進(jìn)行無偏性篩選,顯示OTUD3可以與SOAT1特異性結(jié)合,通過去除SOAT1的多聚泛素化,維持SOAT1的蛋白穩(wěn)定性。
結(jié)論 在肝癌細(xì)胞中OTUD3是SOAT1的一個(gè)DUB,參與調(diào)控SOAT1蛋白穩(wěn)定性。
[關(guān)鍵詞] 去泛素酶類;甾醇O-酰基轉(zhuǎn)移酶;蛋白質(zhì)穩(wěn)定性;細(xì)胞系,腫瘤
[中圖分類號(hào)] R345
[文獻(xiàn)標(biāo)志碼] A
[文章編號(hào)] 2096-5532(2021)05-0637-05
doi:10.11712/jms.2096-5532.2021.57.132
[開放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID)]
[網(wǎng)絡(luò)出版] https://kns.cnki.net/kcms/detail/37.1517.R.20210628.1659.014.html;2021-06-29 11:01:49
MECHANISM OF DEUBIQUITYLASE OTUD3 IN REGULATING THE PROTEIN STABILITY OF STEROL O-ACYLTRANSFERASE-1
GAI Wenbin, BI Mingxia, JIANG Hong
(Stake Key Disciplines: Physioloy (in Incubtion), Department of Phy-
siology, Qingdao University, Qingdao 266071, China)
[ABSTRACT] Objective To identify the deubiquitinase (DUB) for sterol O-acyltransferase-1 (SOAT1), and to investigate the molecular mechanism for maintaining the protein stability of SOAT1.
Methods Western blot was used to measure the expression of SOAT1 in various hepatoma cell lines, and after the hepatoma cell line HCCLM3 with low expression of SOAT1 was added with the proteasome inhibitor MG132, the change in the protein expression level of SOAT1. Human ovarian tumor-related proteases (OTU) were screened to identify the DUB molecules interacting with SOAT1, and then ubiquitination assay was conducted to confirm their ubiquitination effect on SOAT1.
Results The protein stability of SOAT1 was regulated by the ubiquitin-proteasome system, and unbiased screening of the OUT family showed that OTUD3 could specifically bind to SOAT1 and promote the protein stability of SOAT1 by removing the poly-ubiquitination of SOAT1.
Conclusion OTUD3 is a DUB for SOAT1 and is involved in maintaining its protein stability in hepatoma cells.
[KEY WORDS] deubiquitinating enzymes; sterol O-acyltransferase; protein stability; cell line, tumor
膽固醇酯化酶甾醇O-?;D(zhuǎn)移酶1(SOAT1)是膽固醇酯生物合成的關(guān)鍵酶[1],對(duì)維持細(xì)胞內(nèi)脂代謝的穩(wěn)態(tài)至關(guān)重要。SOAT1在多種腫瘤中異常高表達(dá),與原發(fā)性肝癌、胰腺癌、腎癌和前列腺癌等的預(yù)后不良密切相關(guān),提示SOAT1或可作為多種腫瘤的預(yù)后生物標(biāo)志物和治療靶點(diǎn)。在肝癌細(xì)胞中SOAT1通過促進(jìn)膽固醇的合成,進(jìn)而影響癌細(xì)胞的生長(zhǎng)和遷移,促進(jìn)腫瘤的發(fā)生發(fā)展[2-5]。因此,研究肝癌細(xì)胞中SOAT1蛋白穩(wěn)定性的調(diào)控機(jī)制,可以為深入了解肝癌的發(fā)病機(jī)制及尋找新型藥物治療提供新的思路。
在腫瘤中SOAT1轉(zhuǎn)錄水平并沒有明顯變化,而蛋白表達(dá)上調(diào)卻十分顯著,提示腫瘤中異常高表達(dá)的SOAT1主要受到蛋白水平的調(diào)控[3]。泛素-蛋白酶體系統(tǒng)是生物體內(nèi)維持蛋白質(zhì)穩(wěn)態(tài)的重要途徑,蛋白發(fā)生泛素化修飾后會(huì)被蛋白酶體降解。泛素化修飾是一種依賴ATP的級(jí)聯(lián)反應(yīng),需要泛素激活酶E1、泛素結(jié)合酶E2和泛素連接酶E3的參與[6-8]。泛素化修飾是一種可逆的動(dòng)態(tài)過程,除了上述酶分子,去泛素化酶(DUB)也參與其中,它與泛素連接酶E3共同維持蛋白質(zhì)的穩(wěn)態(tài)[9]。已有研究證實(shí),SOAT1的表達(dá)受到泛素-蛋白酶體系統(tǒng)的調(diào)
控[10],但維持其蛋白穩(wěn)定性的DUB卻未見報(bào)道。
本研究旨在鑒定SOAT1的DUB,揭示在肝癌細(xì)胞中SOAT1蛋白異常高表達(dá)的分子機(jī)制,為研發(fā)靶向SOAT1的腫瘤治療藥物提供理論依據(jù)。
1 材料與方法
1.1 實(shí)驗(yàn)材料
Protein A/G-agarose beads、GAPDH、SOAT1抗體、Normal IgG、相關(guān)二抗購自Santa Cruz公司;Flag抗體、蛋白酶體抑制劑MG132購自Sigma公司;HA-Ubiquitin抗體購自MBL公司;Lipofec-
tamine2000購自Invitrogen公司;OTUD3抗體購自abcam公司;RPMI-1640(1∶1)培養(yǎng)液、胎牛血清(FBS)、MEM和DMEM購自Gibco公司;SuperSignal west pico chemiluminescence substract購自Thermo公司;PBS粉末、抗原修復(fù)液購自北京中杉金橋公司。
1.2 細(xì)胞培養(yǎng)
人腎上皮細(xì)胞系HEK293T、人高轉(zhuǎn)移性肝癌細(xì)胞HCCLM3、人肝星形細(xì)胞LX2、人肝癌細(xì)胞SK-HEP-1、人高轉(zhuǎn)移性肝癌細(xì)胞97H培養(yǎng)于含有體積分?jǐn)?shù)0.10 FBS、100 mg/L青鏈霉素混合液的DMEM細(xì)胞培養(yǎng)液中;正常人肝上皮細(xì)胞HL-7702、人肝癌細(xì)胞系SSMC7721、人肝癌細(xì)胞BEL-7402培養(yǎng)于含有體積分?jǐn)?shù)0.10 FBS、100 mg/L青鏈霉素混合液的RPMI-1640細(xì)胞培養(yǎng)液中;肝癌亞力山大細(xì)胞PLC/PRF/5培養(yǎng)于含有體積分?jǐn)?shù)0.10 FBS、100 mg/L青鏈霉素混合液的MEM細(xì)胞培養(yǎng)液中。上述細(xì)胞均應(yīng)用細(xì)胞培養(yǎng)皿,置于37 ℃、體積分?jǐn)?shù)0.05 CO2的細(xì)胞培養(yǎng)箱中進(jìn)行培養(yǎng)。傳代時(shí)用與細(xì)胞等滲的PBS洗去血清,加入2.5 g/L胰蛋白酶進(jìn)行消化,并根據(jù)實(shí)驗(yàn)需要將細(xì)胞鋪于不同規(guī)格的細(xì)胞培養(yǎng)板或培養(yǎng)皿中。
1.3 質(zhì)粒及引物構(gòu)建
人源DUB文庫(載體pCMV6-entry)購自O(shè)riGene公司。OTUD3及 OTUD3的酶活突變體C76A購自生物工程(上海)公司。引物序列見表1。
1.4 細(xì)胞轉(zhuǎn)染
脂質(zhì)體轉(zhuǎn)染采用Lipofectamine2000轉(zhuǎn)染試劑。在無血清的細(xì)胞培養(yǎng)液中分別加入需要轉(zhuǎn)入細(xì)胞的質(zhì)粒DNA和所需量的脂質(zhì)體,單獨(dú)混合室溫放置,5 min后將含有質(zhì)粒DNA和所需量脂質(zhì)體的無血清培養(yǎng)液混合孵育,30 min后加入細(xì)胞培養(yǎng)液中,37 ℃培養(yǎng)4 h后棄去含DNA-脂質(zhì)體復(fù)合物的培養(yǎng)液,換成含血清和抗生素的培養(yǎng)液繼續(xù)培養(yǎng)24 h。
1.5 免疫共沉淀實(shí)驗(yàn)
用25 cm2的培養(yǎng)瓶培養(yǎng)細(xì)胞到70%融合,轉(zhuǎn)染質(zhì)粒48 h后收集細(xì)胞;用預(yù)冷的PBS洗滌3次,4 ℃下以3 000 r/min離心5 min;用HEPES裂解液裂解細(xì)胞,超聲處理2 min;4 ℃下以12 000 r/min離心10 min,取上清,除少量作為lysate蛋白樣品外,其余上清中加入相應(yīng)抗體1 μg,4 ℃下在旋轉(zhuǎn)混合器上混勻3 h;加入protein A/G-agarose,4 ℃混勻8 h以上;4 ℃下以3 000 r/min離心5 min,用裂解液洗滌3次,加入2×Sample buffer,100 ℃變性15 min,樣品進(jìn)行免疫印跡檢測(cè)。
1.6 體內(nèi)泛素化修飾實(shí)驗(yàn)
應(yīng)用Lipofectamine2000轉(zhuǎn)入各種目的質(zhì)粒;收獲細(xì)胞前8 h加入20 μmol/L MG132處理;36~48 h后用RIPA裂解液裂解細(xì)胞,并超聲破碎;收集部分裂解液檢測(cè)各種質(zhì)粒的表達(dá);加入相應(yīng)抗體進(jìn)行免疫沉淀,4 ℃混勻8 h以上;用RIPA裂解液洗滌,加入2×Sample buffer,100 ℃變性15 min,樣品進(jìn)行免疫印跡檢測(cè)。
1.7 免疫印跡檢測(cè)
收集細(xì)胞后,加入實(shí)驗(yàn)所需的細(xì)胞裂解液及等量的2×Sample buffer混合,100 ℃沸水煮15 min后進(jìn)行SDS-PAGE電泳;分離實(shí)驗(yàn)所需目的條帶的SDS變性膠,將蛋白轉(zhuǎn)移到硝酸纖維素膜上,置含50 g/L脫脂牛奶的TBST緩沖液中封閉90 min;然后加一抗室溫孵育3 h或4 ℃過夜,用TBST緩沖液洗膜3次,每次10 min;加耦聯(lián)HRP的二抗孵育1 h,用TBST洗膜3次后,加入底物化學(xué)發(fā)光劑,于暗室中進(jìn)行X線片曝光顯影。
2 結(jié)? 果
2.1 泛素-蛋白酶體系統(tǒng)對(duì)SOAT1蛋白表達(dá)影響
免疫印跡檢測(cè)結(jié)果顯示,SOAT1在不同肝癌細(xì)胞系中的表達(dá)水平不同(圖1A),選擇SOAT1表達(dá)較低的HCCLM3細(xì)胞系,加入蛋白酶體抑制劑MG132后,SOAT1的蛋白表達(dá)水平回升(圖1B)。此外,SOAT1可以在肝癌細(xì)胞HCCLM3中發(fā)生多聚泛素化修飾(圖1C)。該結(jié)果表明,泛素-蛋白酶體系統(tǒng)參與調(diào)控SOAT1的蛋白穩(wěn)定性。
2.2 OTUD3與SOAT1的相互作用
選用人腎上皮細(xì)胞系HEK293T進(jìn)行實(shí)驗(yàn),在人源去泛素化酶OTU家族成員中進(jìn)行無偏性相互作用篩選,結(jié)果顯示,OTUD3可以特異地與內(nèi)源SOAT1發(fā)生相互作用(圖2)。
2.3 OTUD3對(duì)SOAT1多聚泛素化的影響
選用人腎上皮細(xì)胞系HEK293T進(jìn)行泛素化實(shí)驗(yàn),結(jié)果顯示,過表達(dá)OTUD3能有效去除SOAT1蛋白的多聚泛素化(圖3A)。并且,只有野生型的OTUD3可以去泛素化修飾SOAT1,而酶活突變體OTUD3-C76A無法去除SOAT1蛋白的多聚泛素化(圖3B),說明OTUD3的去泛素化酶活性對(duì)穩(wěn)定SOAT1至關(guān)重要。
2.4 OTUD3對(duì)SOAT1蛋白穩(wěn)定性的影響
在HEK293T細(xì)胞中梯度過表達(dá)OTUD3,可特異性上調(diào)SOAT1的蛋白表達(dá)水平(圖4),表明OTUD3通過去除SOAT1的多聚泛素化修飾維持SOAT1的蛋白穩(wěn)定性。
3 討? 論
本研究鑒定出了調(diào)控SOAT1蛋白表達(dá)的DUB分子OTUD3,OTUD3依賴其去泛素化酶活性,通過特異性去除SOAT1的多聚泛素化修飾,維持SOAT1的蛋白穩(wěn)定性。
SOAT1是一種定位于內(nèi)質(zhì)網(wǎng)的5次跨膜蛋白[1]。內(nèi)質(zhì)網(wǎng)是蛋白質(zhì)合成和折疊的重要場(chǎng)所,內(nèi)質(zhì)網(wǎng)中的蛋白穩(wěn)態(tài)由一套精細(xì)的質(zhì)量控制系統(tǒng)調(diào)控。當(dāng)新合成的蛋白質(zhì)發(fā)生錯(cuò)誤折疊時(shí),它最終會(huì)從內(nèi)質(zhì)網(wǎng)中被逆向轉(zhuǎn)運(yùn)到細(xì)胞質(zhì),隨后被泛素化降解,這一途徑被稱為內(nèi)質(zhì)網(wǎng)相關(guān)蛋白降解,簡(jiǎn)稱為ERAD[7,11]。近年來的研究結(jié)果表明,ERAD減輕了蛋白質(zhì)錯(cuò)誤折疊引起的細(xì)胞毒性,其對(duì)突變蛋白的降解在多種疾病中發(fā)揮作用[12-14]。在ERAD過程中,已經(jīng)鑒定出的泛素連接酶E3數(shù)量并不多[11],并且在底物的特異性識(shí)別過程中DUB承擔(dān)關(guān)鍵的作用[15]。因此,鑒定出SOAT1的DUB對(duì)于闡明維持SOAT1蛋白穩(wěn)態(tài)的分子機(jī)制尤為重要。
膽固醇是生物體內(nèi)一種重要的分子,它既是細(xì)胞膜的重要組成部分,也是很多固醇類激素的前體[1,16]。但是,細(xì)胞內(nèi)的游離膽固醇過多是有害的,其會(huì)在內(nèi)質(zhì)網(wǎng)被?;?,以疏水的膽固醇酯的形式儲(chǔ)存起來,這一過程由SOAT1催化[1,12,17-19]。有研究表明,癌細(xì)胞中高表達(dá)的SOAT1通過影響膽固醇酯的合成,促進(jìn)癌癥的發(fā)生與轉(zhuǎn)移[3],敲除或者抑制SOAT1后,肝癌細(xì)胞的增殖和遷移能力降低[3]。SOAT1高表達(dá)與肝癌、甲狀腺癌、頭頸癌、胃癌、腎癌、前列腺癌、胰腺癌等不良預(yù)后均有關(guān),有望被用作多種腫瘤的預(yù)后生物標(biāo)志物和治療靶點(diǎn)[17,20-22]。近年來,腫瘤免疫治療備受關(guān)注,已有研究結(jié)果顯示,聯(lián)合應(yīng)用SOAT1抑制劑Avasimibe和抗程序性死亡受體1抗體對(duì)小鼠黑色素瘤進(jìn)展的控制效果優(yōu)于單用Avasimibe[23]。因此,研究維持SOAT1蛋白穩(wěn)定性的分子機(jī)制對(duì)于疾病的治療及預(yù)后評(píng)估具有重要意義。
SOAT1的蛋白穩(wěn)定性受到泛素-蛋白酶體系統(tǒng)的調(diào)控[10],泛素化與去泛素化作為一種重要的蛋白質(zhì)翻譯后修飾,在控制底物降解中起著至關(guān)重要的作用,參與了調(diào)控細(xì)胞內(nèi)蛋白穩(wěn)態(tài)和各項(xiàng)生命活動(dòng)[2]。目前,調(diào)控SOAT1的泛素連接酶E3未見文獻(xiàn)報(bào)道,本研究鑒定出的SOAT1的去泛素化酶OTUD3,可特異性去除SOAT1的多聚泛素化修飾,從而維持其蛋白穩(wěn)定性。OTUD3是OTU家族的去泛素化酶。本實(shí)驗(yàn)室前期研究顯示,在乳癌、結(jié)腸癌、肝癌和宮頸癌中,OTUD3通過穩(wěn)定人第10號(hào)染色體缺失的磷酸酶以及張力蛋白同源物基因(PTEN)發(fā)揮抑癌作用[24];而在肺癌中,OTUD3通過穩(wěn)定促癌蛋白GRP78發(fā)揮促癌作用[25]。
綜上所述,本研究首次揭示OTUD3是SOAT1的去泛素化酶,該結(jié)果對(duì)于明確SOAT1蛋白穩(wěn)定性的調(diào)控機(jī)制以及靶向SOAT1的腫瘤治療具有重要意義。
[參考文獻(xiàn)]
[1]VOLKMAR N, THEZENAS M L, LOUIE S M, et al. The ER membrane protein complex promotes biogenesis of sterol-related enzymes maintaining cholesterol homeostasis[J].? Journal of Cell Science, 2019,132(2):jcs223453.
[2]ONI T E, BIFFI G, BAKER L A, et al. SOAT1 promotes mevalonate pathway dependency in pancreatic cancer[J].? The Journal of Experimental Medicine, 2020,217(9):e20192389.
[3]JIANG Y, SUN A H, ZHAO Y, et al. Proteomics identifies new therapeutic targets of early-stage hepatocellular carcinoma[J].? Nature, 2019,567(7747):257-261.
[4]KHATIB S A, WANG X W. Proteomic heterogeneity reveals SOAT1 as a potential biomarker for hepatocellular carcinoma[J].? Translational Gastroenterology and Hepatology, 2019,4:37.
[5]SHIBUYA Y, CHANG C C, CHANG T Y. ACAT1/SOAT1 as a therapeutic target for Alzheimers disease[J].? Future Medicinal Chemistry, 2015,7(18):2451-2467.
[6]PARK J, CHO J, SONG E J. Ubiquitin-proteasome system (UPS) as a target for anticancer treatment[J].? Archives of Pharmacal Research, 2020,43(11):1144-1161.
[7]BERNER N, REUTTER K R, WOLF D H. Protein quality control of the endoplasmic Reticulum and ubiquitin-proteasome-triggered degradation of aberrant proteins: yeast pioneers the path[J].? Annual Review of Biochemistry, 2018,87:751-782.
[8]ZHANG X N, LINDER S, BAZZARO M. Drug development targeting the ubiquitin-proteasome system (UPS) for the treatment of human cancers[J].? Cancers, 2020,12(4):E902.
[9]KOMANDER D, CLAGUE M J, URB S. Breaking the chains: structure and function of the deubiquitinases[J].? Nature Reviews Molecular Cell Biology, 2009,10(8):550-563.
[10]DING L, BISWAS S, MORTON R E, et al. Akt3 deficiency in macrophages promotes foam cell formation and atherosclerosis in mice[J].? Cell Metabolism, 2012,15(6):861-872.
[11]LERNER M, CORCORAN M, CEPEDA D, et al. The RBCC gene RFP2 (Leu5) encodes a novel transmembrane E3 ubiqui-
tin ligase involved in ERAD[J].? Molecular Biology of the Cell, 2007,18(5):1670-1682.
[12]JENSEN T J, LOO M A, PIND S, et al. Multiple proteolytic systems, including the proteasome, contribute to CFTR processing[J].? Cell, 1995,83(1):129-135.
[13]VEIT G, AVRAMESCU R G, CHIANG A N, et al. From CFTR biology toward combinatorial pharmacotherapy: expanded classification of cystic fibrosis mutations[J].? Molecular Biology of the Cell, 2016,27(3):424-433.
[14]GUERRIERO C J, BRODSKY J L. The delicate balance between secreted protein folding and endoplasmic reticulum-associated degradation in human physiology[J].? Physiological Reviews, 2012,92(2):537-576.
[15]BRODSKY J L. Just a trim, please: refining ER degradation through deubiquitination[J].? Cell, 2013,154(3):479-481.
[16]CHEN X, LIANG H L, SONG Q B, et al. Insulin promotes progression of colon cancer by upregulation of ACAT1[J].? Lipids in Health and Disease, 2018,17(1):122.
[17]XU H J, ZHOU S, TANG Q L, et al. Cholesterol metabolism: New functions and therapeutic approaches in cancer[J].? Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 2020,1874(1):188394.
[18]CRONIN K A, LAKE A J, SCOTT S, et al. Annual Report to the Nation on the Status of Cancer, part Ⅰ: National can-
cer statistics[J].? Cancer, 2018,124(13):2785-2800.
[19]NEGOITA S, FEUER E J, MARIOTTO A, et al. Annual Report to the Nation on the Status of Cancer, part Ⅱ: Recent changes in prostate cancer trends and disease characteristics[J].? Cancer, 2018,124(13):2801-2814.
[20]GENG F, CHENG X, WU X N, et al. Inhibition of SOAT1 suppresses glioblastoma growth via blocking SREBP-1-mediated lipogenesis[J].? Clinical Cancer Research: an Official Journal of the American Association for Cancer Research, 2016,22(21):5337-5348.
[21]LIU Y, WANG Y Q, HAO S D, et al. Knockdown of sterol O-acyltransferase 1 (SOAT1) suppresses SCD1-mediated lipogenesis and cancer procession in prostate cancer[J].? Prostaglandins & Other Lipid Mediators, 2021,153:106537.
[22]WEIGAND I, ALTIERI B, LACOMBE A M F, et al. Expression of SOAT1 in adrenocortical carcinoma and response to mitotane monotherapy: an ENSAT multicenter study[J].? The Journal of Clinical Endocrinology & Metabolism, 2020,105(8):2642-2653.
[23]YANG W, BAI Y B, XIONG Y, et al. Potentiating the antitumour response of CD8(+) T cells by modulating cholesterol metabolism[J].? Nature, 2016,531(7596):651-655.
[24]YUAN L, LV Y, LI H C, et al. Deubiquitylase OTUD3 regulates PTEN stability and suppresses tumorigenesis[J].? Nature Cell Biology, 2015,17(9):1169-1181.
[25]DU T D, LI H C, FAN Y S, et al. The deubiquitylase OTUD3 stabilizes GRP78 and promotes lung tumorigenesis[J].? Nature Communications, 2019,10:2914.
(本文編輯 馬偉平)
青島大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)2021年5期