国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

腸道微生物與糖尿病視網(wǎng)膜病變的發(fā)生和發(fā)展

2020-10-30 02:03張璋鄒海東
上海醫(yī)藥 2020年20期
關(guān)鍵詞:飲食干預(yù)糖尿病視網(wǎng)膜病變

張璋 鄒海東

摘 要 糖尿病視網(wǎng)膜病變是嚴(yán)重的致盲性眼病,機(jī)體內(nèi)異常增高的氧化應(yīng)激水平、持續(xù)低度炎癥狀態(tài)、“代謝記憶”效應(yīng)等被認(rèn)為是其主要發(fā)生機(jī)制。目前認(rèn)為,飲食、腸道微生物與宿主代謝是高度關(guān)聯(lián)和相互依存的。腸道微生物的代謝產(chǎn)物,如短鏈脂肪酸、次級(jí)膽汁酸等具有減緩糖尿病視網(wǎng)膜病變發(fā)生發(fā)展的潛能。這為通過干預(yù)定向改變腸道微生物的組成,以防控糖尿病視網(wǎng)膜病變提供了新視角。

關(guān)鍵詞 糖尿病視網(wǎng)膜病變;腸道微生物;飲食干預(yù);短鏈脂肪酸;次級(jí)膽汁酸

中圖分類號(hào):R587.2 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1006-1533(2020)20-0013-03

Gut microbiota and the occurrence and development of diabetic retinopathy

ZHANG Zhang1, ZOU Haidong1,2

(1. Department of Ophthalmology of Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 20080, China; 2. Shanghai Eye Disease Prevention and Treatment Center/Shanghai Eye Hospital, Shanghai, 200040, China)

ABSTRACT Diabetic retinopathy(DR) is a severe blinding disease. Abnormal increase of oxidative stress level, continuous low-grade inflammation and “metabolic memory” are considered as the main pathogenesis of DR. Nowadays, it is recognized that diet, gut microbiota, and host metabolism are highly correlated and interdependent. Metabolic products of gut microbiota, such as short-chain fatty acids and secondary bile acids, have the potential to decrease the incidence of DR. It provides a new perspective for controlling DR by changing the composition of gut microbiota through dietary intervention.

KEY WORDS diabetic retinopathy; gut microbiota; dietary intervention; short chain fatty acids; secondary bile acids

糖尿?。╠iabetes mellitus,DM)是一種常見的受遺傳和環(huán)境影響的代謝異常性疾病。至2017年,全球確診的成年DM患者已達(dá)到4.51億人[1]。機(jī)體長期高血糖及胰島素抵抗?fàn)顟B(tài)會(huì)導(dǎo)致全身微血管、大動(dòng)脈及神經(jīng)元細(xì)胞損傷,進(jìn)而引起多組織多器官并發(fā)癥,嚴(yán)重危害患者健康[2]。其中,糖尿病視網(wǎng)膜病變(diabetic retinopathy,DR)是最常見的并發(fā)癥之一。早期DR可不損傷中心視力,患者常無自覺癥狀。此時(shí)若沒有得到及時(shí)干預(yù),DR可能會(huì)進(jìn)一步發(fā)展,最終導(dǎo)致不可逆性視力損傷甚至致盲。因DR致盲的人數(shù)約占全球總失明人數(shù)的2.6%[3],已成為嚴(yán)重的公共衛(wèi)生負(fù)擔(dān)。

1 DR的發(fā)病機(jī)制

根據(jù)眼底表現(xiàn),臨床上將DR分為非增殖期DR(non-proliferative DR,NPDR)和增殖期DR(proliferative DR,PDR)。視網(wǎng)膜毛細(xì)血管內(nèi)皮細(xì)胞和周細(xì)胞構(gòu)成了血-視網(wǎng)膜內(nèi)屏障(inner blood-retinal barrier,iBRB)。DR的主要病理特征是高血糖引起的iBRB破壞,內(nèi)皮細(xì)胞之間緊密連接喪失后大分子蛋白從血管內(nèi)滲出。隨后周細(xì)胞大量丟失導(dǎo)致管壁出現(xiàn)缺損,內(nèi)皮細(xì)胞增殖修復(fù),最終形成視網(wǎng)膜新生血管。新生毛細(xì)血管極易出血,當(dāng)其延伸至玻璃體腔時(shí),會(huì)引起玻璃體出血,當(dāng)形成的新生血管膜牽拉視網(wǎng)膜時(shí),可造成視網(wǎng)膜脫離,嚴(yán)重影響患者的視功能[2]。

目前,高血糖所引起的氧化應(yīng)激水平異常增高和持續(xù)低度炎癥被認(rèn)為是DR發(fā)生的主要因素。糖酵解途徑相關(guān)旁路異?;钴S,晚期糖基化終產(chǎn)物前體增多、多元醇途徑增強(qiáng)導(dǎo)致還原型谷胱甘肽合成減少,蛋白激酶C通路激活影響多種基因異常表達(dá)等均加重了細(xì)胞內(nèi)氧化應(yīng)激水平[2]。異常升高的線粒體活性氧又可作為這些通路的上游引發(fā)因子,導(dǎo)致iBRB損傷持續(xù)加重的惡性循環(huán)[2]。同時(shí),高血糖會(huì)導(dǎo)致機(jī)體處于慢性低度炎癥狀態(tài),包括細(xì)胞核因子κB(NF-κB)、白細(xì)胞介素-1β(IL-1β)、腫瘤壞死因子a(TNF-α)、誘導(dǎo)型一氧化氮合酶(iNOS)、細(xì)胞間黏附分子-1(ICAM-1)、血管細(xì)胞黏附分子-1(VCAM-1)、單核細(xì)胞趨化蛋白-1(MCP-1)、環(huán)氧合酶-2(COX-2)、半胱氨酸蛋白酶-1(Capase-1)和血管內(nèi)皮生長因子(VEGF)在內(nèi)的多種因子表達(dá)上調(diào),白細(xì)胞增多和血管通透性增加,是促使DR發(fā)生、發(fā)展的另一重要機(jī)制[2]。與表觀遺傳學(xué)相關(guān)的“代謝記憶”現(xiàn)象,被證實(shí)可以通過DNA甲基化、組蛋白修飾、microRNA調(diào)控等多種方式誘導(dǎo)DR的發(fā)生[2]。此外,高血壓和血脂異常也是獨(dú)立于血糖因素存在的DR發(fā)生危險(xiǎn)因素,能加速DR的發(fā)生[4]。這些復(fù)雜的發(fā)病機(jī)制導(dǎo)致在DR早期預(yù)防和干預(yù)上存在許多困難。

2 腸道微生物通過代謝產(chǎn)物對(duì)宿主健康和疾病發(fā)揮作用

健康個(gè)體的腸腔具有完整黏膜,其內(nèi)寄生有大量的微生物群,即腸道微生物群(gut microbiota,GM)。在生理情況下,GM呈現(xiàn)出以擬桿菌和厚壁桿菌為主要組成成分的穩(wěn)定狀態(tài)。宿主改變飲食習(xí)慣后能夠在非常短的時(shí)間內(nèi)改變自身GM組成,而GM反過來又影響宿主攝入營養(yǎng)素的吸收、代謝和儲(chǔ)存,通過其具有生物活性的多種代謝產(chǎn)物對(duì)宿主生命活動(dòng)發(fā)揮作用,與宿主的健康和疾病密切相關(guān)[5]。飲食、微生物群、宿主代謝是高度關(guān)聯(lián)和相互依存的。有關(guān)GM與宿主疾病之間關(guān)系的研究受到廣泛關(guān)注,已證實(shí)GM具有治療肥胖、糖尿病、中樞神經(jīng)系統(tǒng)性疾病等疾病的潛能[6-8]。在眼科領(lǐng)域,GM與年齡相關(guān)性黃斑變性之間的相關(guān)性正受到較多關(guān)注[9-10]。有學(xué)者提出了腸-視網(wǎng)膜軸(gut-retina axis)的概念[10],認(rèn)為GM可以通過其代謝產(chǎn)物影響多種視網(wǎng)膜細(xì)胞功能。目前關(guān)于GM與DR之間關(guān)系的研究并不多,GM與DR之間的關(guān)系值得更進(jìn)一步探究。

3 GM通過代謝產(chǎn)物影響DR的發(fā)生過程

3.1 短鏈脂肪酸與DR

在GM的代謝產(chǎn)物中,短鏈脂肪酸(short chain fatty acids,SCFAs)對(duì)于人體的作用受到了廣泛關(guān)注[11]。食物中的膳食纖維成分經(jīng)GM發(fā)酵后產(chǎn)生乙酸、丙酸、丁酸等短鏈脂肪酸,一部分經(jīng)門靜脈進(jìn)入全身血液循環(huán),另一部分作為結(jié)腸黏膜上皮細(xì)胞的能量來源,為宿主提供熱量[11]。SCFAs不僅是線粒體能量代謝的關(guān)鍵介質(zhì),還具有調(diào)控人體葡萄糖和脂肪代謝、介導(dǎo)免疫反應(yīng)和調(diào)節(jié)炎癥水平等作用[12]。SCFAs的作用途徑主要有兩條,一是作為配體結(jié)合游離脂肪酸受體(FFAR2/FFAR3)發(fā)揮生物學(xué)功能[13],二是作為組蛋白去乙?;福℉DACs)抑制劑調(diào)控基因的表達(dá)[11]。目前,有關(guān)SCFAs對(duì)宿主功能影響的研究結(jié)果并不一致,這或許是由于SCFAs生物學(xué)功能非常復(fù)雜,尤其是與宿主體內(nèi)信號(hào)通路相互作用時(shí)。同一種SCFAs可以在不同情況下發(fā)揮出截然相反的作用。在糖代謝方面,Gao等[14]發(fā)現(xiàn)食用富含丁酸鹽的高脂食物會(huì)促進(jìn)小鼠產(chǎn)熱和能量消耗。Yamashita等[15]發(fā)現(xiàn)注入大鼠體內(nèi)的乙酸鹽提高了大鼠的糖耐量能力。研究證實(shí),進(jìn)入全身血液循環(huán)的SCFAs經(jīng)單羧酸轉(zhuǎn)運(yùn)體(MCT-1)運(yùn)輸可通過血-腦屏障,在中樞神經(jīng)系統(tǒng)中發(fā)揮作用[6]。基于視網(wǎng)膜iBRB中也存在MCT-1[16],SCFAs或許可通過這種方式進(jìn)入視網(wǎng)膜內(nèi),發(fā)揮調(diào)節(jié)作用。譬如類似其對(duì)人臍靜脈內(nèi)皮細(xì)胞作用那樣,下調(diào)視網(wǎng)膜血管內(nèi)皮細(xì)胞炎癥[17],或者類似在腎炎模型大鼠中發(fā)現(xiàn)的,丁酸鹽下調(diào)NF-κB活性進(jìn)而降低炎癥及氧化損傷水平[18]。此外,鑒于與表觀遺傳學(xué)相關(guān)的組蛋白在DR疾病發(fā)展中存在多種方式和途徑的修飾[19],作為HDACs抑制劑的SCFAs也可能通過表觀遺傳學(xué)途徑對(duì)DR的疾病發(fā)展起到調(diào)控作用。

3.2 次級(jí)膽汁酸與DR

初級(jí)膽汁酸由膽固醇合成后,在肝臟中與?;撬峄蚋拾彼峤Y(jié)合,存儲(chǔ)于膽囊中,在進(jìn)食時(shí)分泌至十二指腸,以促進(jìn)食物中脂質(zhì)的乳化[20]。其中大部分初級(jí)膽汁酸在腸內(nèi)被重吸收。5%~10%的初級(jí)膽汁酸則被人體腸道內(nèi)的擬桿菌、真細(xì)菌和梭狀芽孢桿菌等厭氧菌降解,生成疏水性更強(qiáng)的次級(jí)膽汁酸(secondary bile acids,SBAs),包括牛熊去氧膽酸(TUDCA)和熊去氧膽酸(UDCA),作為膽固醇和膽汁的主要形式,從糞便中排泄,少部分進(jìn)入血液循環(huán)。SBAs是一種活躍的具有生物調(diào)控活性的代謝物質(zhì),在人體內(nèi)起到信號(hào)分子的作用,如通過與核受體FXR和G偶聯(lián)膜蛋白5(TGR5)受體結(jié)合,參與宿主新陳代謝調(diào)控[20]。Beli等[21]采用間斷禁食法飼養(yǎng)db/db糖尿病小鼠,發(fā)現(xiàn)小鼠腸道內(nèi)產(chǎn)TUDCA菌群增殖,代謝產(chǎn)生的TUDCA入血后通過激活TGR5途徑對(duì)小鼠視網(wǎng)膜起到持續(xù)的保護(hù)作用,因此,作者認(rèn)為SBAs起到了減少DR發(fā)生的作用。Wang等[22]則發(fā)現(xiàn)TUDCA可以通過降低NO含量并下調(diào)ICAM-1、NOS、NF-κB和VEGF等蛋白質(zhì)表達(dá),減緩DR發(fā)展。Ouyang等[23]發(fā)現(xiàn)在STZ誘導(dǎo)的糖尿病小鼠模型中,UDCA可以降低視網(wǎng)膜炎癥水平。Chung等[24]發(fā)現(xiàn)UDCA可以通過抑制游離鈣結(jié)合分子1(Iba-1)的表達(dá),減輕小鼠內(nèi)質(zhì)網(wǎng)應(yīng)激相關(guān)的視網(wǎng)膜周細(xì)胞損失。Zhu等[25]研究發(fā)現(xiàn)膽汁酸信號(hào)通路的減弱會(huì)加重DR病理過程,而上調(diào)或激活的TGR5可以通過抑制RhoA/ROCK信號(hào)傳導(dǎo)延緩DR進(jìn)展。

3.3 其他代謝產(chǎn)物與DR

GM能夠產(chǎn)生多種氨基酸及其中間產(chǎn)物,包括合成谷胱甘肽所需的氨基酸[26],而谷胱甘肽的生成減少是視網(wǎng)膜iBRB氧化應(yīng)激水平增高的原因之一。

GM可通過調(diào)控血清素前體——色氨酸的代謝[27],間接影響血清素生成。鑒于PDR患者體內(nèi)血清素含量明顯低于健康人群[28],而服用血清素再攝取劑的糖尿病患者DR發(fā)生率較對(duì)照組更低[29],GM有可能通過調(diào)控色氨酸和血清素的生成影響DR的發(fā)生。

GM還可以合成多種具有信號(hào)傳導(dǎo)作用的小分子物質(zhì)如硫化氫,影響DR的發(fā)生。Ran等[30]發(fā)現(xiàn)PDR患者玻璃體和血漿中硫化氫的濃度明顯高于對(duì)照組。Si等[31]用外源性硫化氫處理STZ誘導(dǎo)的DR大鼠,證實(shí)硫化氫可能通過降低大鼠體內(nèi)氧化應(yīng)激水平對(duì)視網(wǎng)膜起到保護(hù)作用。

4 總結(jié)和展望

腸道微生物與人體健康和疾病關(guān)系的研究目前十分活躍。本文重點(diǎn)回顧了GM通過其代謝產(chǎn)物影響DR發(fā)生的研究結(jié)果,探討了可能機(jī)制。食物成分和飲食節(jié)律以及口服益生菌及益生元等干預(yù)方式可改變GM的組成,與DR相關(guān)的GM研究具有很大的潛能和應(yīng)用價(jià)值。但是,由于GM與環(huán)境及遺傳背景均有密切關(guān)系,對(duì)GM進(jìn)行干預(yù)并不容易。一方面,種族、年齡、性別不同,人群GM組成差異較大;另一方面,模型動(dòng)物腸道內(nèi)的微生物并不能完全代表人體GM的組成。我們相信,隨著蛋白質(zhì)組學(xué)、代謝組學(xué)、大數(shù)據(jù)分析、人工智能等相關(guān)領(lǐng)域的發(fā)展,有關(guān)GM對(duì)DR發(fā)生和發(fā)展的影響研究將更加深入,有望早日實(shí)現(xiàn)以個(gè)體化精準(zhǔn)干預(yù)來緩減DR發(fā)生發(fā)展的愿景。

參考文獻(xiàn)

[1] Cho NH, Shaw JE, Karuranga S, et al. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045[J]. Diabetes Res Clin Pract, 2018, 138: 271-281.

[2] Forbes JM, Cooper ME. Mechanisms of diabetic complications[J]. Physiol Rev, 2013, 93(1): 137-188.

[3] Bourne RR, Stevens GA, White RA, et al. Causes of vision loss worldwide, 1990-2010: a systematic analysis[J]. Lancet. Glob Health, 2013, 1(6): e339-349.

[4] Jin P, Peng J, Zou H, et al. The 5-year onset and regression of diabetic retinopathy in Chinese type 2 diabetes patients[J]. PLoS One, 2014, 9(11): e113359.

[5] García-Bayona L, Comstock LE. Bacterial antagonism in host-associated microbial communities[J]. Science, 2018, 361(6408). pii: eaat2456.

[6] Dalile B, Van Oudenhove L, Vervliet B, et al. The role of short-chain fatty acids in microbiota–gut–brain communication[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(8): 461-478.

[7] Clarke SF, Murphy EF, Nilaweera K, et al. The gut microbiota and its relationship to diet and obesity: New insights[J]. Gut Microbes, 2012, 3(3): 186-202.

[8] Xu Y, Zhou H, Zhu Q. The impact of microbiota-gut-brain axis on diabetic cognition impairment[J]. Front Aging Neurosci, 2017, 9: 106.

[9] Rowan S, Taylor A. Gut microbiota modify risk for dietary glycemia-induced age-related macular degeneration[J]. Gut Microbes, 2018, 9(5): 452-457.

[10] Rowan S, Jiang S, Korem T, et al. Involvement of a gut–retina axis in protection against dietary glycemia-induced agerelated macular degeneration[J]. Proc Natl Acad Sci USA, 2017, 114(22): E4472-E4481.

[11] Koh A, De Vadder F, Kovatcheva-Datchary P, et al. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites[J]. Cell, 2016, 165(6): 1332-1345.

[12] Kamada N, Seo S-U, Chen GY, et al. Role of the gut microbiota in immunity and inflammatory disease[J]. Nat Rev Immunol, 2013, 13(5): 321-335.

[13] Bindels LB, Dewulf EM, Delzenne NM. GPR43/FFA2: physiopathological relevance and therapeutic prospects[J]. Trends Pharmacol Sci, 2013, 34(4): 226-232.

[14] Gao Z, Yin J, Zhang J, et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice[J]. Diabetes, 2009, 58(7): 1509-1517.

[15] Yamashita H, Fujisawa K, Ito E, et al. Improvement of obesity and glucose tolerance by acetate in Type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats[J]. Biosci Biotechnol Biochem, 2007, 71(5): 1236-1243.

[16] Gyawali A, Kang YS. Blood-to-retina transport of imperatorin involves the carrier-mediated transporter system at the inner blood-retinal barrier[J]. J Pharm Sci, 2019, 108(4): 1619-1626.

[17] Li M, van Esch BCAM, Henricks PAJ, et al. The Antiinflammatory effects of short chain fatty acids on lipopolysaccharide or tumor necrosis factor α-stimulated endothelial cells via activation of GPR41/43 and inhibition of HDACs[J]. Front Pharmacol, 2018, 9: 533.

[18] Machado RA, Constantino Lde S, Tomasi CD, et al. Sodium butyrate decreases the activation of NF-κB reducing inflammation and oxidative damage in the kidney of rats subjected to contrast-induced nephropathy[J]. Nephrol Dial Transplant, 2012, 27(8): 3136-3140.

[19] Kadiyala CS, Zheng L, Du Y, et al. Acetylation of retinal histones in diabetes increases inflammatory proteins: effects of minocycline and manipulation of histone acetyltransferase(HAT) and histone deacetylase (HDAC)[J]. J Biol Chem, 2012, 287(31): 25869-25880.

[20] Schoeler M, Caesar R. Dietary lipids, gut microbiota and lipid metabolism[J]. Rev Endoc Metab Disord, 2019, 20(4): 461-472.

[21] Beli E, Yan Y, Moldovan L, et al. Restructuring of the Gut Microbiome by Intermittent Fasting Prevents Retinopathy and Prolongs Survival in db/db Mice[J]. Diabetes, 2018, 67(9): 1867-1879.

[22] Wang CF, Yuan JR, Qin D, et al. Protection of tauroursodeoxycholic acid on high glucose-induced human retinal microvascular endothelial cells dysfunction and streptozotocin-induced diabetic retinopathy rats[J]. J Ethnopharmacol, 2016, 185: 162-170.

[23] Ouyang H, Mei X, Zhang T, et al. Ursodeoxycholic acid ameliorates diabetic retinopathy via reducing retinal inflammation and reversing the breakdown of blood-retinal barrier[J]. Eur J Pharmacol, 2018, 840: 20-27.

[24] Chung YR, Choi JA, Koh JY, et al. Ursodeoxycholic acid attenuates endoplasmic reticulum stress-related retinal pericyte loss in streptozotocin-induced diabetic mice[J]. J Diabetes Res, 2017, 2017: 1763292.

[25] Zhu L, Wang W, Xie T, et al. TGR5 receptor activation attenuates diabetic retinopathy through suppression of RhoA/ ROCK signaling[J]. FASEB J, 2020, 34(3): 4189-4203

[26] Mardinoglu A, Shoaie S, Bergentall M, et al. The gut microbiota modulates host amino acid and glutathione metabolism in mice[J]. Mol Sys Biol, 2015, 11(10): 834.

[27] Yano JM, Yu K, Donaldson GP, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis[J]. Cell, 2015, 161(2): 264-276.

[28] Mukha AI, Korzenkova LV, Fedorova NV, et al. Significance of serotonin in the pathogenesis of diabetic retinopathy and central chorioretinal dystrophy[J]. Vestn Oftalmol, 2002, 118(4): 31-33.

[29] Yekta Z, Xie D, Bogner HR, et al. The association of antidepressant medications and diabetic retinopathy among people with diabetes[J]. J Diabetes Complications, 2015, 29(8): 1077-1084.

[30] Ran R, Du L, Zhang X, et al. Elevated hydrogen sulfide levels in vitreous body and plasma in patients with proliferative diabetic retinopathy[J]. Retina, 2014, 34(10): 2003-2009.

[31] Si YF, Wang J, Guan J, et al. Treatment with hydrogen sulfide alleviates streptozotocin-induced diabetic retinopathy in rats: Hydrogen sulfide and diabetic retinopathy[J]. Br J Pharmacol, 2013, 169(3): 619-631.

猜你喜歡
飲食干預(yù)糖尿病視網(wǎng)膜病變
嚴(yán)格飲食干預(yù)對(duì)糖尿病患者血脂和超敏C反應(yīng)蛋白的影響
飲食干預(yù)降低老年糖尿病患者低血糖事件發(fā)生率的效果分析
eNOS對(duì)糖尿病視網(wǎng)膜病變的研究進(jìn)展
飲食干預(yù)結(jié)合硫酸鎂靜脈給藥治療妊娠
糖尿病視網(wǎng)膜病變行玻璃體切除術(shù)的圍術(shù)期護(hù)理體會(huì)
糖尿病視網(wǎng)膜病變玻璃體切除術(shù)后眼壓變化的規(guī)律性臨床研究
飲食干預(yù)及心理輔導(dǎo)在老年糖尿病合并高血壓64例中的應(yīng)用
糖尿病視網(wǎng)膜增殖膜應(yīng)用抗VEGF因子后組織病理學(xué)研究
飲食干預(yù)結(jié)合驅(qū)鉛藥物治療鉛中毒兒童