朱 慧,薛成斌,徐 茜,,顧曉松,顧劍輝
(1南通大學(xué)附屬醫(yī)院;2南通大學(xué)江蘇省神經(jīng)再生重點(diǎn)實(shí)驗(yàn)室,江蘇226001)
·再生醫(yī)學(xué)·
應(yīng)用旋轉(zhuǎn)灌注式生物反應(yīng)系統(tǒng)體外構(gòu)建組織工程神經(jīng)的研究*
朱 慧1,2**,薛成斌2,徐 茜1,2,顧曉松2,顧劍輝1
(1南通大學(xué)附屬醫(yī)院;2南通大學(xué)江蘇省神經(jīng)再生重點(diǎn)實(shí)驗(yàn)室,江蘇226001)
目的:模擬微重力建立體外構(gòu)建組織工程神經(jīng)的方法,評(píng)價(jià)微重力環(huán)境對(duì)支持細(xì)胞生長(zhǎng)的影響。方法:將皮膚前體細(xì)胞誘導(dǎo)分化的施萬(wàn)細(xì)胞作為支持細(xì)胞,聯(lián)合殼聚糖神經(jīng)導(dǎo)管、聚乳酸乙醇酸共聚物纖維支架,利用旋轉(zhuǎn)灌注式生物反應(yīng)系統(tǒng)體外培養(yǎng),對(duì)照組為傳統(tǒng)的靜止培養(yǎng)。培養(yǎng)不同時(shí)間點(diǎn)取樣,利用結(jié)晶紫染色,免疫熒光細(xì)胞化學(xué)染色,CCK-8細(xì)胞活力檢測(cè),掃描電子顯微鏡等方法觀察支持細(xì)胞的生長(zhǎng)狀況。結(jié)果:體外培養(yǎng)7天后CCK-8細(xì)胞活力檢測(cè)提示貼附在導(dǎo)管和纖維支架表面的細(xì)胞數(shù)量最多、活力最好,應(yīng)用旋轉(zhuǎn)灌注式生物反應(yīng)系統(tǒng)體外培養(yǎng)較對(duì)照組高出約2倍,隨后在14天、21天時(shí)略有下降;結(jié)晶紫染色及掃描電子顯微鏡觀察顯示7天時(shí),與對(duì)照組相比,實(shí)驗(yàn)組支持細(xì)胞呈立體生長(zhǎng),分泌大量細(xì)胞外基質(zhì),生長(zhǎng)狀態(tài)更好;S100熒光免疫細(xì)胞化學(xué)染色顯示微重力環(huán)境下施萬(wàn)細(xì)胞的標(biāo)志物未發(fā)生改變。結(jié)論:模擬微重力環(huán)境較傳統(tǒng)靜止培養(yǎng)能更高效、優(yōu)質(zhì)地在體外構(gòu)建組織工程神經(jīng)。
周圍神經(jīng);組織工程;體外構(gòu)建;生物反應(yīng)器;皮膚源性前體細(xì)胞
1.1 材料 新生SD大鼠,SPF級(jí)(南通大學(xué)實(shí)驗(yàn)動(dòng)物中心)。DMEM低糖培養(yǎng)基,F(xiàn)-12,F(xiàn)ungizone,B27,N2(Invitrogen公司),bFGF,EGF,層粘連蛋白,多聚賴氨酸(Collaborative公司),胎牛血清(Hyclone公司),XI型膠原酶,胰蛋白酶,F(xiàn)orskolin,兔S100多克隆抗體(Sigma公司),Heregulin-1β(R&D Systems公司),CCK-8試劑盒(Donjindo公司),Alexa Fluor488標(biāo)記的羊抗兔IgG(Life Technology公司),余試劑均為分析級(jí)。旋轉(zhuǎn)灌注式細(xì)胞培養(yǎng)系統(tǒng)(RCMW)(Synthecon公司)。支架材料由殼聚糖神經(jīng)導(dǎo)管(南通大學(xué)神經(jīng)再生重點(diǎn)實(shí)驗(yàn)室)和聚乳酸乙醇酸(PLGA)纖維(南通華利康醫(yī)療器械有限公司)。
1.2 方法
1.2.1 體外構(gòu)建:分離培養(yǎng)新生SD大鼠SKPs,定向誘導(dǎo)為分化SKP-SCs并進(jìn)行體外擴(kuò)增[9]。將SKPSCs細(xì)胞懸液與支架材料放入注滿完全培養(yǎng)基的旋轉(zhuǎn)培養(yǎng)容器,細(xì)胞最終密度為106/mL,置37℃5% CO2培養(yǎng)箱中培養(yǎng),轉(zhuǎn)速為10r/min,使細(xì)胞與支架材料充分接觸,貼附24小時(shí)后調(diào)整微重力生物反應(yīng)器旋轉(zhuǎn)速度,使支架材料懸浮于培養(yǎng)液中;對(duì)照組支架材料中注入密度為106/mL的細(xì)胞懸液,培養(yǎng)24h后將支架材料移入新鮮培養(yǎng)基中繼續(xù)培養(yǎng)。
1.2.2 效果評(píng)價(jià):培養(yǎng)第1、2、3、4、7、14、21天后分別取樣觀察組織工程神經(jīng)內(nèi)細(xì)胞的生長(zhǎng)狀態(tài)。部分樣本移至24孔板內(nèi),每孔加2mL含N2,Heregulin-1β和Forskolin的DMEM/F12(3∶1)和200μL CCK-8,37℃繼續(xù)培養(yǎng)2 h,酶標(biāo)儀450 nm下測(cè)定其光密度值。每個(gè)組設(shè)3個(gè)復(fù)孔,實(shí)驗(yàn)重復(fù)3次。將培養(yǎng)7天各組的組織工程神經(jīng)用0.01mol/L PBS浸洗3次,4%多聚甲醛固定30min,0.01 mol/L PBS浸洗3次,部分樣本加入結(jié)晶紫染10min,自來(lái)水浸洗,直至導(dǎo)管支架無(wú)色,細(xì)胞呈藍(lán)紫色;部分樣本封閉液37℃孵育30min,一抗兔S100多克隆抗體(1∶400),4℃孵育過夜,0.01 mol/L PBS浸洗3次,Alexa FluorR488標(biāo)記的羊抗兔IgG(1∶400),37℃孵育1h,0.01 mol/L PBS浸洗3次,倒置顯微鏡(OLYMPUS IX 51)下觀察并采集圖像;部分樣本浸入預(yù)冷的4%戊二醛溶液前固定,1%鋨酸后固定,梯度乙醇脫水,叔丁醇置換,冷凍干燥,鍍膜,掃描電鏡(JEM-T300,JEOL Inc.,Japan)觀察移植物內(nèi)支持細(xì)胞的生長(zhǎng)狀態(tài)。
1.3 統(tǒng)計(jì)學(xué)處理 應(yīng)用IBM SPSS 22.0統(tǒng)計(jì)軟件將數(shù)據(jù)進(jìn)行單因素方差分析,所得結(jié)果以均數(shù)±標(biāo)準(zhǔn)差表示,P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2.1 CCK-8法檢測(cè)細(xì)胞活力 SKP-SCs與支架材料在RCMW系統(tǒng)中培養(yǎng)和傳統(tǒng)靜止培養(yǎng)7天內(nèi)細(xì)胞活力均逐漸提高,7天后略有下降。在RCMW系統(tǒng)中培養(yǎng)3天后細(xì)胞活力顯著優(yōu)于傳統(tǒng)靜止培養(yǎng)(圖1)。
圖1 CCK-8法檢測(cè)細(xì)胞在RCMW系統(tǒng)中培養(yǎng)及傳統(tǒng)靜止培養(yǎng)過程中細(xì)胞活力及增殖狀況
2.2 結(jié)晶紫染色觀察 SKP-SCs與支架材料在RCMW系統(tǒng)中培養(yǎng)7天后可見殼聚糖導(dǎo)管內(nèi)面貼附大量雙極或三極細(xì)胞,且成團(tuán)聚集生長(zhǎng),數(shù)量明顯多于傳統(tǒng)靜止培養(yǎng)(圖2)。
圖2 體外培養(yǎng)7天的組織工程化神經(jīng)結(jié)晶紫染色后的組織學(xué)觀察結(jié)果
2.3 免疫細(xì)胞化學(xué)染色觀察 在RCMW系統(tǒng)中培養(yǎng)7天后的神經(jīng)導(dǎo)管內(nèi)壁和PLGA纖維支架表面均勻貼附大量S100陽(yáng)性的細(xì)胞,細(xì)胞數(shù)量?jī)?yōu)于對(duì)照組,提示在RCMW系統(tǒng)中培養(yǎng)支持細(xì)胞性質(zhì)保持穩(wěn)定(圖3)。
圖3 培養(yǎng)7天的組織工程化神經(jīng)抗S100抗體免疫熒光化學(xué)染色的觀察結(jié)果
2.4 掃描電鏡觀察 在RCMW系統(tǒng)中培養(yǎng)7天后,與傳統(tǒng)靜止培養(yǎng)相比,神經(jīng)導(dǎo)管內(nèi)壁和PLGA纖維支架表面均勻貼附大量細(xì)胞,細(xì)胞形態(tài)更立體,細(xì)胞分泌大量細(xì)胞外基質(zhì)(圖4)。
圖4 培養(yǎng)7天的組織工程化神經(jīng)掃描電鏡的觀察結(jié)果
構(gòu)建細(xì)胞型組織工程化神經(jīng)通常采用體外靜置培養(yǎng)或先橋接神經(jīng)移植物后注射支持細(xì)胞懸液的方法,存在著細(xì)胞流失,細(xì)胞狀態(tài)未知、歸屬難于把握等諸多不可控因素。旋轉(zhuǎn)式細(xì)胞培養(yǎng)系統(tǒng)(RCCS)近年來(lái)在組織工程基礎(chǔ)研究領(lǐng)域得到了廣泛的應(yīng)用[9-10],在此基礎(chǔ)上旋轉(zhuǎn)灌注式細(xì)胞培養(yǎng)系統(tǒng)(RCMW)持續(xù)繞水平軸旋轉(zhuǎn),使細(xì)胞和載體處于懸浮狀態(tài)并能夠持續(xù)不斷的更換支持細(xì)胞生長(zhǎng)所需的培養(yǎng)基和氣體,創(chuàng)造更加利于細(xì)胞存活的三維立體環(huán)境,有利于支持細(xì)胞維持空間分布,促進(jìn)體外增殖和細(xì)胞間的物質(zhì)交換。本研究利用RCMW系統(tǒng)能夠在短時(shí)間內(nèi)構(gòu)建含大量支持細(xì)胞的組織工程化神經(jīng),較傳統(tǒng)的靜止培養(yǎng),既縮短了培養(yǎng)時(shí)間又達(dá)到了較好的細(xì)胞貼附效果和生長(zhǎng)狀態(tài)。本研究通過對(duì)RCMW系統(tǒng)各種培養(yǎng)條件的進(jìn)一步摸索,如細(xì)胞懸液的最佳密度,最適宜的轉(zhuǎn)速以及最佳換液時(shí)間等確定了統(tǒng)一的培養(yǎng)體系,通過規(guī)范各操作步驟,獲得了一種標(biāo)準(zhǔn)化制備組織工程化神經(jīng)的方法,為應(yīng)用該系統(tǒng)實(shí)現(xiàn)多種細(xì)胞多層貼附培養(yǎng)[11]提供了實(shí)驗(yàn)依據(jù)。
[1]Gu X,Ding F,Williams DF.Neural tissue engineering options for peripheral nerve regeneration[J].Biomaterials, 2014,35(24):6143-6156.
[2]Gu X,Ding F,Yang Y,et al.Construction of tissue engineered nerve grafts and their application in peripheral nerve regeneration[J].Prog Neurobiol,2011,93(2):204-230.
[3]Toma JG,Akhavan M,Fernandes KJ,et al.Isolation of multipotent adult stem cells from the dermis of mammalian skin[J].Nat Cell Biol,2001,3(9):778-784.
[4]Fernandes KJ,Kobayashi NR,Gallagher CJ,et al.Analysis of the neurogenic potential of multipotent skin-derived precursors[J].Exp Neurol,2006,201(1):32-48.
[5]Guo W,Miao C,Liu S,et al.Efficient differentiation of insulin-producing cells from skin-derived stem cells[J].Cell Prolif,2009,42(1):49-62.[6]Lavoie JF,Biernaskie JA,Chen Y,et al.Skin-derived precursors differentiate into skeletogenic cell types and contribute to bone repair[J].Stem Cells Dev,2009,18(6):893-906.
[7]Kang HK,Min SK,Jung SY,et al.The potential of mouse skin-derived precursors to differentiate into mesenchymal and neural lineages and their application to osteogenic induction in vivo[J].Int J Mol Med,2011,28(6):1001-1011.
[8]Steinbach SK,El-Mounayri O,Dacosta RS,et al.Directed differentiation of skin-derived precursors into functional vascular smooth muscle cells[J].Arterioscler Thromb Vasc Biol,2011,31(12):2938-2948.
[9]Li S,Ma Z,Niu Z,et al.NASA-approved rotary bioreactor enhances proliferation and osteogenesis of human periodontal ligament stem cells[J].Stem Cells Dev,2009,18(9):1273-1282.
[10]Marsano A,Wendt D,Raiteri R,et al.Use of hydrodynamic forces to engineer cartilaginous tissues resembling the nonuniform structure and function of meniscus[J].Biomaterials, 2006,27(35):5927-5934.
[11]Tang X,Xue C,Wang Y,et al.Bridging peripheral nerve defects with a tissue engineered nerve graft composed of an in vitro cultured nerve equivalent and a silk fibroin-based scaffold[J].Biomaterials,2012,33(15):3860-3867.
Study on the construction of tissue engineering nerves in vitro by perfusion rotary cell culture system(RCCS)
ZHU Hui1,2,XUE Chengbin2,XU Xi1,2,GU Xiaosong2,GU Jianhui1
(1The Affiliated Hospital of Nantong University;2Jiangsu Key Laboratory of Neuroregeneration,Nantong University,Jiangsu 226001)
Objective:To establish a method for construction of tissue engineered nerve in vitro mimicking microgravity.Methods:As seed cells,Schwann cells(SCs)differentiated from skin derived precursors(SKPs)were cultured with chitosan nerve conduit and polylactic glycolic acid (PLGA)copolymer fiber scaffold by using a perfusion rotary bioreactor systems in vitro.Traditional static culture was the control group.The crystal violet staining,immunofluorescence staining, CCK-8 cell viability testing and scanning electron microscopy were applied for evaluating the growth of seed cells at different time points.Results:7 days after culture,the number and viability of seed cells approached the peak in both groups, while they were approximately twice as much in the perfusion RCCS as in the control group.Then they decreased slightly at 14 days and 21 days after culture in both groups.Crystal violet staining and scanning electron microscopy showed that the experimental group showed a three-dimensional growth of the seed cells at 7 days after culture,which secreted considerable extracellular matrix,compared with the control group.The immunofluorescence staining showed that it did not change the Schwann cell’s marker S100 cultured under a microgravity environment.Conclusions:The construction of tissue engineering nerves in vitro was more efficient with higher quality in the RCMW than the traditional static culture.
peripheral nerve;tissue engineering;construction in vitro;bioreactor;skin derived precursor
Q819
A
國(guó)家863主題資助項(xiàng)目(2012AA020502);國(guó)家973計(jì)劃子課題資助項(xiàng)目(2014CB542202);國(guó)家自然科學(xué)基金資助項(xiàng)目(81130080,81402447)。
2014-07-28
1006-2440(2014)04-0307-04
**[作者簡(jiǎn)介]朱慧,女,漢族,江蘇江陰人,生于1985年1月,在讀博士,助理研究員,研究方向:周圍神經(jīng)損傷的分子機(jī)制。 通信作者:顧劍輝,13809081785@163.com
近年來(lái),由于車禍、銳器等外傷而造成周圍神經(jīng)擠壓、牽拉、挫裂損傷的病例逐年增多[1]。對(duì)于長(zhǎng)距離的周圍神經(jīng)缺損,臨床以自體神經(jīng)修復(fù)為主要治療手段,但是由于自體神經(jīng)來(lái)源有限,且造成供區(qū)局部神經(jīng)功能障礙等缺點(diǎn),研究人員試圖尋找替代自體神經(jīng)修復(fù)的方法。目前,運(yùn)用含支持細(xì)胞的組織工程化神經(jīng)修復(fù)長(zhǎng)距離周圍神經(jīng)缺損已經(jīng)成為研究熱點(diǎn)。因此本研究利用旋轉(zhuǎn)灌注式細(xì)胞培養(yǎng)體系(RCMW)系統(tǒng)進(jìn)行組織工程化神經(jīng)的體外構(gòu)建??紤]到施萬(wàn)細(xì)胞的來(lái)源有限,可以通過對(duì)多能細(xì)胞進(jìn)
行誘導(dǎo)分化獲得大量的施萬(wàn)細(xì)胞。因此,在眾多備選干細(xì)胞中,易分離、易培養(yǎng)、易分化成為挑選支持細(xì)胞的重要條件[2]。2001年,研究人員在人及大、小鼠皮膚真皮層成功獲得的一種多潛能細(xì)胞,即皮膚源性前體細(xì)胞(SKPs)[3]。SKPs來(lái)源于神經(jīng)嵴,能夠向外周神經(jīng)元、施萬(wàn)細(xì)胞、脂肪細(xì)胞、胰島素細(xì)胞、軟骨細(xì)胞等分化[4-8]。由于皮膚組織容易獲得,本研究選用大鼠SKPs誘導(dǎo)分化的施萬(wàn)細(xì)胞(SKP-SCs)作為構(gòu)建組織工程化神經(jīng)的支持細(xì)胞,以殼聚糖導(dǎo)管聯(lián)合PLGA纖維作為支架材料,應(yīng)用RCMW系統(tǒng)體外構(gòu)建組織工程化神經(jīng)。此系統(tǒng)在神經(jīng)組織工程基礎(chǔ)研究領(lǐng)域的應(yīng)用未見報(bào)道。本研究旨在尋找合適的支持細(xì)胞和體外構(gòu)建方法,同時(shí)為最終制備快速化、標(biāo)準(zhǔn)化、產(chǎn)業(yè)化組織工程神經(jīng),實(shí)現(xiàn)臨床神經(jīng)缺損治療提供理論基礎(chǔ)。