国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

FAC對小鼠嗅球小膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞的影響

2024-08-22 00:00:00李暉王娟王友翠謝俊霞
關(guān)鍵詞:嗅球

[摘要]目的探究經(jīng)鼻給予枸櫞酸鐵銨(FAC)對小鼠嗅覺及嗅球(OB)中小膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞的影響。方法取健康雄性8周齡C57BL/6小鼠20只,隨機(jī)分成對照組和FAC組,每組10只。FAC組小鼠按照200 mg/kg體質(zhì)量雙側(cè)鼻孔交替滴入FAC溶液,對照組給予等體積生理鹽水,兩組均隔天滴1次,共2周。2周后測試小鼠嗅覺功能,采用免疫熒光染色方法觀察經(jīng)鼻給鐵對OB中小膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞的影響。結(jié)果與對照組相比,F(xiàn)AC組小鼠出現(xiàn)明顯的嗅覺障礙,差異有統(tǒng)計學(xué)意義(t=9.57,P<0.05);FAC組小鼠OB的質(zhì)量明顯降低,差異有統(tǒng)計學(xué)意義(t=10.50,P<0.05);FAC組小鼠OB中激活的小膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞明顯增多,差異有統(tǒng)計學(xué)意義(t=5.07、4.83,P<0.05)。結(jié)論經(jīng)鼻給FAC能夠引起嗅覺障礙,造成OB損傷以及小膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞激活。

[關(guān)鍵詞]鐵;嗅球;嗅覺障礙;小膠質(zhì)細(xì)胞;星形膠質(zhì)細(xì)胞

[中圖分類號]R591.1;R338.3[文獻(xiàn)標(biāo)志碼]A[文章編號]2096-5532(2024)03-0333-04

doi:10.11712/jms.2096-5532.2024.60.043[開放科學(xué)(資源服務(wù))標(biāo)識碼(OSID)]

[網(wǎng)絡(luò)出版]https://link.cnki.net/urlid/37.1517.R.20240419.1405.002;2024-04-2313:08:21

Effects of FAC on microglia and astrocytes in the olfactory bulb of miceLI Hui, WANG Juan, WANG Youcui, XIE Junxia(Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University Medical College, Qingdao 266071, China)

[Abstract]ObjectiveTo investigate the effects of intranasal administration of ferric ammonium citrate (FAC) on the olfactory function and microglia and astrocytes in the olfactory bulb (OB) of mice. MethodsTwenty healthy 8-week-old male C57BL/6 mice were randomly divided into control group and FAC group, with tenmice in each group. The FAC group was treated with FAC solution through the nostrils alternately at a dose of 200 mg/kg, while the control group was given an equal volume of normal saline, once every other day for two weeks. Then, the olfactory function of the mice was tested, and the effects of intranasal administration of iron on microglia and astrocytes in the OB were examined with immunofluorescence staining. ResultsCompared with the control group, the FAC group showed significant reductionsin olfactory function (t=9.57,Plt;0.05) and OB weight(t=10.50,Plt;0.05) and significant increases in activated microglia (t=5.07,Plt;0.05) and astrocytes (t=4.83,Plt;0.05) in the OB. ConclusionIntranasal administration of FAC can cause olfactory dysfunction, impair the OB, and promote the activation of microglia and astrocytes in the OB.

[Key words]iron; olfactory bulb; olfaction disorders; microglia; astrocytes

流行病學(xué)研究表明,至2030年全球患帕金森病(PD)病人將超過870萬[1]。除了典型的運動癥狀,早期PD病人會出現(xiàn)非運動癥狀,其中75%~90%的PD病人在運動癥狀出現(xiàn)之前的5~10年出現(xiàn)嗅覺障礙[2-3]。因此,嗅覺障礙被認(rèn)為是PD的前驅(qū)病理癥狀[4]。有研究表明,鐵與PD的發(fā)病密切相關(guān),鐵沉積會造成神經(jīng)元死亡,誘導(dǎo)神經(jīng)膠質(zhì)細(xì)胞激活,導(dǎo)致神經(jīng)炎癥發(fā)生[5-8],而參與嗅覺處理的大腦區(qū)域是PD早期病變部位[9-11],如嗅球(OB)。由于OB不受血-腦脊液屏障保護(hù),環(huán)境毒素可直接由鼻腔上皮進(jìn)入其中,誘發(fā)炎癥進(jìn)而造成OB損傷,引起嗅覺障礙[12-13]。有研究結(jié)果表明,經(jīng)鼻給鐵可以損傷小鼠的嗅覺功能,導(dǎo)致OB中多巴胺能神經(jīng)元數(shù)目減少[14]。目前尚未有研究報道經(jīng)鼻給鐵對OB中小膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞激活的影響。本研究采用枸櫞酸鐵銨(FAC)經(jīng)鼻滴入,觀察FAC對小鼠嗅覺以及OB中小膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞激活的影響?,F(xiàn)將結(jié)果報告如下。

1材料與方法

1.1實驗動物及試劑

選擇7周齡SPF級雄性C57BL/6小鼠,購自江蘇集萃藥康生物公司,單籠飼養(yǎng)在室溫25 ℃、濕度(50±5)%、晝夜循環(huán)光照的潔凈動物房內(nèi),給予足夠食物和水,適應(yīng)環(huán)境1周后開始實驗。FAC購自美國Sigma公司;神經(jīng)膠質(zhì)酸性蛋白(GFAP)抗體、離子鈣結(jié)合銜接分子-1(IBA-1)抗體均購于美國Cell Signaling Technology公司,驢抗兔熒光二抗以及山羊抗兔熒光二抗均購于美國Thermo Fisher Scientific公司;驢血清購于美國Jackson Immuno Research公司;中性樹膠購于中國Biosharp公司;其他試劑均從當(dāng)?shù)卦噭┕举徺I。以生理鹽水溶解FAC,最終濃度為1 kg/L。

1.2動物分組及處理

將20只小鼠隨機(jī)分為對照組和FAC組,每組10只。FAC組給予1 kg/L的FAC溶液,隔天給藥,雙側(cè)鼻孔交替滴入等量藥液(200 mg/kg);對照組給予相同體積生理鹽水溶液。給藥時用異氟烷輔助麻醉,給藥2周后立刻進(jìn)行嗅覺行為測試。

1.3檢測指標(biāo)及方法

1.3.1食物掩埋實驗采用埋藏食物顆粒的方式對小鼠氣味檢測能力進(jìn)行評價。小鼠在實驗前和實驗中24 h不進(jìn)食,但可自由飲水。在實驗前,將小鼠置于清潔的籠中10 min,使其適應(yīng)環(huán)境。然后取出小鼠,將2 g食物顆粒埋在3.0 cm厚的墊料層表面下約0.5 cm處。再次將小鼠放入籠中,并給予其300 s的時間尋找隨機(jī)埋藏的食物顆粒。尋找食物顆粒的時長定義為小鼠被放置在籠子里即刻直到它用前爪或鼻子接觸食物顆粒之間的時間間隔。小鼠找到食物顆粒后可以進(jìn)食,然后被送回原來的籠子,給予足夠食物以維持正常生存[15]。

1.3.2OB小膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞激活狀態(tài)檢測參照文獻(xiàn)的方法[16-17],通過IBA-1和GFAP免疫熒光染色分別檢查相應(yīng)腦區(qū)內(nèi)小膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞的激活狀態(tài)。小鼠麻醉后,用生理鹽水和40 g/L的多聚甲醛溶液(PFA,pH值 7.4)對小鼠進(jìn)行心臟灌注,然后收集鼠腦,取OB并測定其質(zhì)量。OB用40 g/L的PFA在4 ℃環(huán)境下固定12 h,換至300 g/L蔗糖溶液中。用冷凍切片機(jī)對鼠腦進(jìn)行冠狀面切片,腦片厚度為20 μm,并在室溫下用含有體積分?jǐn)?shù)0.05的驢血清和體積分?jǐn)?shù)為0.002的Triton X-100配制成的封閉液封閉1 h。將腦片與IBA-1抗體(1∶200)、GFAP抗體(1∶300)在4 ℃下孵育過夜,然后與合適的二抗孵育2 h后,與4,6-二氨基-2-苯基吲哚(DAPI)在室溫下孵育10 min,PBS漂洗3次,每次10 min。最后將腦片展平,鋪于潔凈載玻片上,干燥后用體積分?jǐn)?shù)0.70甘油封片。用倒置熒光顯微鏡觀察OB中小膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞的激活數(shù)量,在10倍物鏡下取5個OB相同位置的視野拍照,用Image J圖像處理軟件計算平均熒光強(qiáng)度。

1.4統(tǒng)計學(xué)處理

應(yīng)用Prism 9統(tǒng)計學(xué)軟件進(jìn)行數(shù)據(jù)處理。以±s表示計量資料數(shù)據(jù),兩組間均數(shù)比較采用t檢驗。以P<0.05表示差異有統(tǒng)計學(xué)意義。

2結(jié)果

2.1經(jīng)鼻給FAC對嗅覺功能的影響

實驗2周后,對照組小鼠(n=10)在墊料中尋找食物顆粒平均時間為(68.10±15.19)s,F(xiàn)AC組小鼠(n=10)為(237.90±54.03)s,F(xiàn)AC組小鼠在墊料中尋找食物顆粒平均時間明顯長于對照組,差異有統(tǒng)計學(xué)意義(t=9.57,P<0.05)。提示經(jīng)鼻給予的FAC損傷了小鼠的嗅覺功能。

2.2經(jīng)鼻給FAC對OB質(zhì)量的影響

實驗2周后,對照組小鼠(n=10)OB質(zhì)量為(12.47±0.84)mg,F(xiàn)AC組小鼠(n=10)為(7.82±1.12)mg,F(xiàn)AC組小鼠OB質(zhì)量明顯低于對照組,差異有統(tǒng)計學(xué)意義(t=10.50,P<0.05)。提示經(jīng)鼻給予的FAC損傷了小鼠的OB。

2.3FAC對OB小膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞激活影響

實驗2周后,OB中小膠質(zhì)細(xì)胞IBA-1免疫熒光染色結(jié)果顯示,對照組小鼠(n=5)OB中IBA-1平均熒光強(qiáng)度為33.35±2.07,F(xiàn)AC組小鼠(n=5)為43.69±4.32,F(xiàn)AC組小鼠OB中IBA-1染色熒光強(qiáng)度顯著強(qiáng)于對照組,差異有統(tǒng)計學(xué)意義(t=4.83,P<0.05)。OB中星形膠質(zhì)細(xì)胞GFAP免疫熒光染色結(jié)果顯示,對照組小鼠(n=5)OB中GFAP平均熒光強(qiáng)度為28.87±2.86,F(xiàn)AC組小鼠(n=5)為44.54±6.30,F(xiàn)AC組小鼠OB中GFAP染色熒光強(qiáng)度顯著強(qiáng)于對照組,差異有統(tǒng)計學(xué)意義(t=5.07,P<0.05)。提示經(jīng)鼻給予的FAC導(dǎo)致小膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞的激活。

3討論

嗅覺敏感度下降與嗅覺缺失所構(gòu)成的嗅覺障礙被認(rèn)為是PD的前驅(qū)病理癥狀[18]。臨床研究表明,在PD病人中初級嗅覺結(jié)構(gòu)和次級嗅覺結(jié)構(gòu)的完整性、連續(xù)性均受到不同程度的破壞[19]。此外,PD病人在氣味檢測、氣味辨別和氣味識別方面存在不同程度的缺陷,包括相關(guān)氣味檢測的大腦區(qū)域受損、氣味檢測閾值受損,并且嚴(yán)重影響嗅覺形成的整個過程[20-21]。PD病人OB體積減小不僅可以在健康人群中作為區(qū)別指征,同時也可以作為非典型PD病人和典型者的重要區(qū)分點[22-24]。已有文獻(xiàn)報道,PD病人OB中鐵含量增加,提示鐵元素可能參與PD的嗅覺障礙發(fā)病過程[25]。在本實驗中,我們觀察到經(jīng)鼻給鐵2周后,過量鐵沉積在OB,并導(dǎo)致小鼠OB嚴(yán)重萎縮、嗅覺功能障礙。推測這種嗅覺功能障礙可能是由于在高含量FAC溶液刺激下,OB萎縮,OB內(nèi)神經(jīng)元大量丟失,OB中神經(jīng)元活動的改變所致。已有研究表明,經(jīng)鼻給予FAC后OB中多巴胺能神經(jīng)元損傷嚴(yán)重,F(xiàn)AC組小鼠出現(xiàn)嗅覺障礙[14]。多巴胺能神經(jīng)元在嗅覺形成過程中起著重要作用,尤其是在嗅覺感知、嗅覺辨別和嗅覺記憶方面,因此,OB中的多巴胺能神經(jīng)元對嗅覺系統(tǒng)有很高的可塑性[26-27]。有研究顯示,C57BL/6小鼠鼻內(nèi)滴注脂多糖6周后發(fā)生明顯的嗅覺障礙及PD樣行為學(xué)變化,OB先萎縮后恢復(fù)[28-29]。本實驗中經(jīng)鼻給FAC后,也出現(xiàn)明顯的OB萎縮和嗅覺障礙,但萎縮的OB能否恢復(fù),還需要進(jìn)一步探究。

在整個中樞神經(jīng)系統(tǒng)中,由于OB的特殊生理結(jié)構(gòu),尤其容易受到環(huán)境毒素如金屬離子等的攻擊,發(fā)展成神經(jīng)炎癥[30-31]。目前大量文獻(xiàn)報道,PD的發(fā)生和發(fā)展極有可能是始發(fā)于OB進(jìn)而傳播到其他大腦區(qū)域[32]。本文結(jié)果還表明,經(jīng)鼻給予FAC后OB中星形膠質(zhì)細(xì)胞和小膠質(zhì)細(xì)胞被激活。有研究報道,鐵沉積會激活小膠質(zhì)細(xì)胞,產(chǎn)生過氧化氫和羥基自由基,進(jìn)而釋放大量促炎因子,導(dǎo)致α-突觸核蛋白聚集及多巴胺能神經(jīng)元變性死亡[33-34]。在生理和病理條件下,鐵在神經(jīng)元、小膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞之間維持動態(tài)平衡[35]。PD的發(fā)病機(jī)制可能是由于病毒感染或環(huán)境毒素啟動中樞神經(jīng)系統(tǒng)或外周組織的炎癥過程,然后炎癥因子誘導(dǎo)中樞神經(jīng)系統(tǒng)的微環(huán)境發(fā)生變化,最終導(dǎo)致PD[36-38]。本實驗結(jié)果表明,經(jīng)鼻給予FAC后OB內(nèi)小膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞明顯激活,與對照組比較差異有統(tǒng)計學(xué)意義。我們推測經(jīng)鼻給FAC后OB鐵沉積,導(dǎo)致小鼠OB小膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞激活發(fā)生炎癥反應(yīng),這可能與嗅覺功能障礙密切相關(guān)。

綜上所述,本文研究結(jié)果表明,經(jīng)鼻給FAC后,小鼠OB明顯萎縮,嗅覺功能出現(xiàn)障礙,OB內(nèi)小膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞明顯激活。在本研究基礎(chǔ)上,我們將繼續(xù)探討鐵與炎癥之間的關(guān)系,檢測經(jīng)鼻給FAC后鐵轉(zhuǎn)運及不同腦區(qū)鐵沉積的變化。本實驗結(jié)果為研究經(jīng)鼻給鐵對嗅覺功能及OB內(nèi)小膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞影響提供了新的實驗依據(jù)及理論基礎(chǔ)。

[參考文獻(xiàn)]

[1]DORSEY E R, CONSTANTINESCU R, THOMPSON J P, et al. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030[J]." Neurology, 2007,68(5):384-386.

[2]KALIA L, LANG A. Parkinson’s disease[J]." The Lancet, 2015,386:896-912.

[3]DOTY R L. Olfactory dysfunction in Parkinson disease[J]." Nature Reviews Neurology, 2012,8:329-339.

[4]LI S S, LI W Y, WU X W, et al. Olfactory deficit is associa-ted with mitral cell dysfunction in the olfactory bulb of P301S tau transgenic mice[J]." Brain Research Bulletin, 2019,148:34-45.

[5]SUN J Y, LAI Z Y, MA J H, et al. Quantitative evaluation of iron content in idiopathic rapid eye movement sleep behavior disorder[J]." Movement Disorders: Official Journal of the Movement Disorder Society, 2020,35(3):478-485.

[6]YANG L, CHENG Y, SUN Y Y, et al. Combined application of quantitative susceptibility mapping and diffusion kurtosis imaging techniques to investigate the effect of iron deposition on microstructural changes in the brain in Parkinson’s disease[J]." Frontiers in Aging Neuroscience, 2022,14:792778.

[7]OAKLEY A E, COLLINGWOOD J F, DOBSON J, et al. Individual dopaminergic neurons show raised iron levels in Parkinson disease[J]." Neurology, 2007,68(21):1820-1825.

[8]ANDERSEN H H, JOHNSEN K B, MOOS T. Iron deposits in the chronically inflamed central nervous system and contri-butes to neurodegeneration[J]." Cellular and Molecular Life Sciences, 2014,71(9):1607-1622.

[9]XYDAKIS M S, BELLUSCIO L. Detection of neurodegenerative disease using olfaction[J]." The Lancet Neurology, 2017,16(6):415-416.

[10]LONG J M, HOLTZMAN D M. Alzheimer disease: an update on pathobiology and treatment strategies[J]." Cell, 2019,179(2):312-339.

[11]XYDAKIS M S, ALBERS M W, HOLBROOK E H, et al. Post-viral effects of COVID-19 in the olfactory system and their implications[J]." The Lancet Neurology, 2021,20(9):753-761.

[12]BLOCK M L, CALDERN-GARCIDUEAS L. Air pollution: mechanisms of neuroinflammation and CNS disease[J]." Trends in Neurosciences, 2009,32(9):506-516.

[13]DZIEWULSKA D, DOI H, FASANO A, et al. Olfactory im-

336青島大學(xué)學(xué)報(醫(yī)學(xué)版)60卷

pairment and pathology in neurodegenerative disorders with brain iron accumulation[J]." Acta Neuropathologica, 2013,126(1):151-153.

[14]王冬霞,謝俊霞,宋寧. 經(jīng)鼻給枸櫞酸鐵銨對小鼠嗅覺、嗅球鐵含量及TH蛋白表達(dá)影響[J]. 青島大學(xué)學(xué)報(醫(yī)學(xué)版),2019,55(1):13-16.

[15]CHEN F J, LIU W, LIU P L, et al. α-Synuclein aggregation in the olfactory bulb induces olfactory deficits by perturbing granule cells and granular-mitral synaptic transmission[J]." NPJ Parkinson’s Disease, 2021,7:114.

[16]PARK T, CHEN H Z, KEVALA K, et al. N-docosahexaenoylethanolamine ameliorates LPS-induced neuroinflammation via cAMP/PKA-dependent signaling[J]." Journal of Neuroinflammation, 2016,13(1):284.

[17]WANG Z Q, ZHOU L, AN D, et al. TRPV4-induced inflammatory response is involved in neuronal death in pilocarpine model of temporal lobe epilepsy in mice[J]." Cell Death amp; Di-sease, 2019,10(6):386.

[18]BATHINI P, BRAI E, AUBER L A. Olfactory dysfunction in the pathophysiological continuum of dementia[J]." Ageing Research Reviews, 2019,55:100956.

[19]IANNILLI E, STEPHAN L, HUMMEL T, et al. Olfactory impairment in Parkinson’s disease is a consequence of central nervous system decline[J]." Journal of Neurology, 2017, 264(6):1236-1246.

[20]HUDRY J, THOBOIS S, BROUSSOLLE E, et al. Evidence for deficiencies in perceptual and semantic olfactory processes in Parkinson’s disease[J]." Chemical senses, 2003,28(6):537-543.

[21]ZHOU Y, HE R, ZHAO Y, et al. Olfactory dysfunction and its relationship with clinical features of Parkinson’s disease[J]." Frontiers in neurology, 2020,11:526615.

[22]LU R, AZIZ N A, REUTER M, et al. Evaluation of the neuroanatomical basis of olfactory dysfunction in the general po-pulation[J]." JAMA Otolaryngology-Head amp; Neck Surgery, 2021,147(10):855-863.

[23]SENGOKU R, MATSUSHIMA S, BONO K, et al. Olfactory function combined with morphology distinguishes Parkinson’s disease[J]." Parkinsonism amp; Related Disorders, 2015,21(7):771-777.

[24]TREMBLAY C, MEI J, FRASNELLI J. Olfactory bulb surroundings can help to distinguish Parkinson’s disease from non-parkinsonian olfactory dysfunction[J]." NeuroImage: Cli-nical, 2020,28:102457.

[25]GARDNER B, DIERIKS B V, CAMERON S, et al. Metal concentrations and distributions in the human olfactory bulb in Parkinson’s disease[J]." Scientific Reports, 2017,7(1):10454.

[26]MARIN C, LAXE S, LANGDON C, et al. Olfactory function in an excitotoxic model for secondary neuronal degeneration: role of dopaminergic interneurons[J]." Neuroscience, 2017,364:28-44.

[27]HGLINGER G U, RIZK P, MURIEL M P, et al. Dopamine depletion impairs precursor cell proliferation in Parkinson di-sease[J]." Nature Neuroscience, 2004,7(7):726-735.

[28]HASEGAWA-ISHII S, SHIMADA A, IMAMURA F. Neuroplastic changes in the olfactory bulb associated with nasal inflammation in mice[J]." The Journal of Allergy and Clinical Immunology, 2019,143(3):978-989.e3.

[29]NIU H C, WANG Q, ZHAO W G, et al. IL-1β/IL-1R1 signaling induced by intranasal lipopolysaccharide infusion regulates alpha-Synuclein pathology in the olfactory bulb, substantia nigra and striatum[J]." Brain Pathology, 2020,30(6):1102-1118.

[30]CONNOR E E, ZHOU Y, LIU G E. The essence of appetite: does olfactory receptor variation play a role?[J]." Journal of Animal Science, 2018,96(4):1551-1558.

[31]HERBERT R P, HARRIS J, CHONG K P, et al. Cytokines and olfactory bulb microglia in response to bacterial challenge in the compromised primary olfactory pathway[J]. Journal of neuroinflammation, 2012,9:109.

[32]FULLARD M E, MORLEY J F, DUDA J E. Olfactory dysfunction as an early biomarker in Parkinson’s disease[J]." Neuroscience Bulletin, 2017,33(5):515-525.

[33]EL-AGNAF O M A, IRVINE G B. Aggregation and neurotoxicity of alpha-synuclein and related peptides[J]." Biochemical Society Transactions, 2002,30(4):559-565.

[34]TURNBULL S, TABNER B J, EL-AGNAF O M, et al. Alpha-Synuclein implicated in Parkinson’s disease catalyses the formation of hydrogen peroxide in vitro[J]." Free Radical Bio-logy amp; Medicine, 2001,30(10):1163-1170.

[35]WARD R J, ZUCCA F A, DUYN J H, et al. The role of iron in brain ageing and neurodegenerative disorders[J]." The Lancet Neurology, 2014,13(10):1045-1060.

[36]JOHNSON M E, STECHER B, LABRIE V, et al. Triggers, facilitators, and aggravators: redefining Parkinson’s disease pathogenesis[J]." Trends in Neurosciences, 2019,42(1):4-13.

[37]GELDERS G, BAEKELANDT V, VAN DER PERREN A. Linking neuroinflammation and neurodegeneration in Parkinson’s disease[J]." Journal of Immunology Research, 2018, 2018:4784268.

[38]POEHLER A M, XIANG W, SPITZER P, et al. Autophagy modulates SNCA/α-synuclein release, thereby generating a hostile microenvironment[J]." Autophagy, 2014,10(12):2171-2192.

(本文編輯于國藝)

猜你喜歡
嗅球
3.0 T MRI測定海馬體積、嗅球容積、嗅溝深度與早期阿爾茨海默病的相關(guān)性
不可思議的嗅覺
大自然探索(2020年7期)2020-08-06 15:25:32
鋅指結(jié)構(gòu)轉(zhuǎn)錄調(diào)控因子Sp8 廣泛分布于嗅球并在中間神經(jīng)元表達(dá)
艾煙對SAMP8小鼠嗅球形態(tài)和嗅球內(nèi)谷氨酸、γ-氨基丁酸和乙酰膽堿酯酶的影響
MRI 3D序列對嗅球、嗅束的成像研究
嗅球容積測定對早期帕金森病的診斷價值
優(yōu)化不同MR掃描序列對腦內(nèi)嗅球的成像方法
嗅覺事件相關(guān)電位及磁共振成像對嗅覺功能的評估*
電休克干預(yù)對嗅球切除抑郁模型大鼠海馬Glu濃度和Tau蛋白過度磷酸化的影響
基于微電極陣列的嗅球細(xì)胞網(wǎng)絡(luò)傳感器的研究
开江县| 遵义县| 克什克腾旗| 峨眉山市| 罗江县| 蒙城县| 财经| 襄樊市| 武功县| 休宁县| 夹江县| 高邑县| 邵武市| 浠水县| 泸州市| 新民市| 绵竹市| 惠来县| 百色市| 双桥区| 吴旗县| 遂宁市| 五莲县| 佳木斯市| 来安县| 和顺县| 江孜县| 大渡口区| 上犹县| 兴国县| 灵武市| 衡阳县| 彰化市| 赣州市| 元阳县| 龙游县| 荔浦县| 巴中市| 祁阳县| 无锡市| 二连浩特市|