[摘要]富血小板血漿可促進(jìn)慢性創(chuàng)面的愈合,但在臨床應(yīng)用過程中,傳統(tǒng)的給藥方式難以達(dá)到穩(wěn)定持續(xù)的有效治療濃度,治療效果并不確定。本文對同軸靜電紡絲聯(lián)合富血小板血漿的相關(guān)研究進(jìn)行綜述,對同軸靜電紡絲聯(lián)合富血小板血漿的新型生物敷料治療慢性創(chuàng)面的應(yīng)用前景進(jìn)行展望,以期為創(chuàng)面治療提供新的思路。
[關(guān)鍵詞]富血小板血漿;同軸靜電紡絲;生物敷料;傷口愈合;綜述
[中圖分類號]R318[文獻(xiàn)標(biāo)志碼]A[文章編號]2096-5532(2024)03-0467-03
doi:10.11712/jms.2096-5532.2024.60.108[開放科學(xué)(資源服務(wù))標(biāo)識碼(OSID)]
[網(wǎng)絡(luò)出版]https://link.cnki.net/urlid/37.1517.R.20240730.1613.007;2024-07-3111:42:55
Application prospect of coaxial electrospinning combined with platelet-rich plasma dressing in the treatment of chronic woundSHAO Zhaoyin, ZHOU Ziyi, LENG Xiangfeng(Department of Burn and Plastic Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, China)
[Abstract]Platelet-rich plasma can promote the healing of chronic wound, but in clinical application, the traditional administration method cannot achieve a stable and continuous effective treatment concentration, leading to an uncertain treatment outcome. This article reviews the research on coaxial electrospinning combined with platelet-rich plasma and explores the application prospect of the new biological dressing of coaxial electrospinning combined with platelet-rich plasma in the treatment of chronic wound, in order to provide new ideas for wound treatment.
[Key words]platelet-rich plasma; coaxial electrospinning; wound healing; biological dressings; review
創(chuàng)面愈合的過程包括止血、炎癥、增殖以及組織重塑[1-2],影響這一修復(fù)過程的因素眾多,包括:內(nèi)源性因素,如細(xì)胞、細(xì)胞因子、趨化因子、炎癥因子、生長因子等;外源性因素,如營養(yǎng)狀況、基礎(chǔ)疾病、感染等。這些因素的存在均可減緩傷口愈合過程,從而導(dǎo)致慢性甚或不愈合創(chuàng)面。富血小板血漿(PRP)可促進(jìn)慢性創(chuàng)面的愈合,但在臨床應(yīng)用過程中,傳統(tǒng)的給藥方式難以達(dá)到穩(wěn)定持續(xù)的有效治療濃度,治療效果并不確定。近年來,隨著靜電紡絲技術(shù)飛速發(fā)展,由靜電紡絲技術(shù)制備的納米纖維支架在軟組織工程和再生醫(yī)學(xué)領(lǐng)域受到廣泛關(guān)注。本文對同軸靜電紡絲聯(lián)合PRP在慢性創(chuàng)面治療方面應(yīng)用進(jìn)行綜述。
1PRP在慢性創(chuàng)面治療中的應(yīng)用
PRP是通過自體全血離心而得到的含高濃度血小板的血漿。目前研究已證實(shí),PRP中含有大量的血小板衍生生長因子(PDGF)、轉(zhuǎn)化生長因子β(TGF-β)、堿性成纖維細(xì)胞生長因子(bFGF)、胰島素樣生長因子1(IGF-1)、成纖維細(xì)胞生長因子(FGF)、結(jié)締組織生長因子(CTGF)、表皮生長因子(EGF)、血管內(nèi)皮生長因子(VEGF)等[3-6]。KARAYANNOPOULOU等[7]通過建立犬創(chuàng)面模型研究發(fā)現(xiàn),PRP可有效提升創(chuàng)面內(nèi)抗炎因子水平。JEEC等[8]對犬皮膚創(chuàng)傷模型研究發(fā)現(xiàn),PRP治療能有效加快血管和顆粒組織形成、膠原沉積及內(nèi)皮上皮化。LEEH等[9]通過建立兔皮膚創(chuàng)傷模型研究發(fā)現(xiàn),PRP能加速促進(jìn)血管生成和上皮形成。MOHAMADI等[10]研究顯示,接受了PRP療法的創(chuàng)面愈合更快,并且疼痛減輕,抗生素應(yīng)用減少。另外有臨床試驗(yàn)證實(shí),PRP對糖尿病足深部潰瘍的治療效果優(yōu)于傳統(tǒng)敷料,愈合率提高20%[11]。
《濃縮血小板制品在創(chuàng)面修復(fù)中應(yīng)用的全國專家共識(2020版)》明確指出,濃縮血小板制品用于創(chuàng)面修復(fù)的適應(yīng)指征包括急慢性創(chuàng)面、糖尿病性潰瘍、靜脈性潰瘍、壓瘡、神經(jīng)營養(yǎng)性潰瘍、放射性潰瘍等難愈性創(chuàng)面[12]。因此,PRP在慢性創(chuàng)面的治療中具有較好的應(yīng)用前景。
目前,PRP主要通過直接涂抹或局部注射的方式應(yīng)用于創(chuàng)面[13],但其臨床療效并沒有達(dá)到預(yù)期的效果。有研究發(fā)現(xiàn),PRP中的血小板被激活后快速釋放大量生長因子至創(chuàng)面,但生長因子局部維持時(shí)間和存留時(shí)間短暫,甚至部分生長因子在發(fā)揮作用之前即被組織清除[14],導(dǎo)致PRP釋放的生長因子難以在創(chuàng)面愈合過程中持續(xù)維持有效濃度。莫驍群等[15]將凝血酶與PRP混合后凝固成膠狀,濕敷于創(chuàng)面,使生長因子作用時(shí)間延長至4~5 d。YASSIN等[16]使用羧甲基纖維素鈉(Na-CMC)成功制備了新型凍干PRP晶片,該晶片為將PRP應(yīng)用于傷口區(qū)域提供了有效的藥物輸送系統(tǒng),可維持釋放10 d左右。但慢性創(chuàng)面的愈合時(shí)間較長,如何實(shí)現(xiàn)PRP在創(chuàng)面局部緩慢釋放有效濃度的生長因子成為一個亟待解決的臨床問題。
2納米纖維支架在慢性創(chuàng)面治療中的應(yīng)用
近年來,隨著靜電紡絲技術(shù)飛速發(fā)展,由靜電紡絲技術(shù)制備的納米纖維支架在軟組織工程和再生醫(yī)學(xué)領(lǐng)域受到廣泛關(guān)注,如傷口敷料、藥物載體等[17]。
作為傷口敷料,靜電紡絲納米纖維具有諸多優(yōu)勢。首先,靜電紡絲纖維具有類似于細(xì)胞外基質(zhì)(ECM)的結(jié)構(gòu),在傷口修復(fù)過程中可以起到細(xì)胞支架作用,對細(xì)胞產(chǎn)生物理支撐,有利于細(xì)胞黏附、增殖、遷移和分化。其次,靜電紡絲纖維具有較高的比表面積,有利于液體吸附和抗菌劑等藥物釋放,而且也為纖維表面進(jìn)行化學(xué)功能修飾提供了可能[18]。此外,納米纖維還具有較高的孔隙率,有利于細(xì)胞呼吸和氣體滲透,并且防止傷口干燥和脫水。理想的靜電紡絲纖維還具有相互貫穿的納米級的孔徑,可以阻擋外界微生物的入侵[19]。因此,靜電紡絲納米纖維支架在醫(yī)用傷口敷料領(lǐng)域得到了廣泛研究。
3同軸靜電紡絲聯(lián)合PRP的應(yīng)用
作為緩釋領(lǐng)域中最顯著的突破之一[20-21],同軸靜電紡絲采用同軸噴頭,其由大小兩個噴頭同軸地套在一起而形成,內(nèi)徑小的噴頭輸送核層溶液,內(nèi)徑大的噴頭輸送殼層溶液。通過兩個注射泵分別推動殼層溶液和核層溶液,它們同時(shí)經(jīng)同軸噴頭噴出,在高壓靜電場的作用下形成具有特殊的“核-殼”結(jié)構(gòu)的纖維,能將藥物、蛋白甚至細(xì)胞作為內(nèi)“核”包裹于外“殼”層纖維內(nèi)部,并通過殼層纖維上的孔隙及材料的降解實(shí)現(xiàn)核層物質(zhì)的緩釋[22-23]。同軸靜電紡絲技術(shù)廣泛用于制造核心納米纖維,通過在納米纖維的核心層中裝載敏感的生物分子,可以在體外研究和體內(nèi)植入期間保持和保護(hù)生物分子不與溶劑直接接觸,并且不受微環(huán)境變化的影響[24-25]。
HUANG等[26]利用同軸靜電紡絲技術(shù)制備了搭載超活性血小板裂解物的核殼納米纖維支架,研究其對組織修復(fù)的影響。結(jié)果顯示,超活性血小板裂解物可以從納米纖維中連續(xù)釋放長達(dá)40 d,從而加速組織的修復(fù)。RASTEGAR等[27]的研究通過同軸靜電紡絲方法制備了含富血小板纖維蛋白(PRF)的聚己內(nèi)酯/殼聚糖核殼納米纖維支架,在第10天PRF釋放速率為24.50%,表明PRF可從同軸納米纖維中緩慢和持續(xù)釋放。CHENG等[28]制備了搭載PRP的同軸靜電紡絲納米纖維支架,研究顯示其可促進(jìn)間充質(zhì)干細(xì)胞的增殖和遷移,并具有良好的緩釋效果。
同軸靜電紡絲技術(shù)與PRP結(jié)合,得到具有高度仿生特性的納米纖維支架。其具備細(xì)胞支持及PRP中的生物活性因子,為組織再生創(chuàng)造了理想的微環(huán)境。ZHANG等[29]通過制備大鼠創(chuàng)面模型研究證實(shí),負(fù)載PRP的納米纖維水凝膠在創(chuàng)面修復(fù)中有協(xié)同作用,效果更好,其生物相容性好,緩釋性能佳,臨床應(yīng)用價(jià)值廣闊。祁鳳英等[30]通過研究證實(shí),自組裝多肽水凝膠可有效延長PRP中VEGF和EGF的釋放時(shí)間,緩解了PRP水凝膠生長因子的爆發(fā)釋放,明顯提高了其在創(chuàng)面部位的持續(xù)時(shí)間。
綜上所述,采用同軸靜電紡絲技術(shù)可將PRP作為核層材料負(fù)載至由PCL和殼聚糖等構(gòu)成的殼層納米纖維中,血小板裂解釋放的生長因子透過殼層纖維縫隙及伴隨殼層材料的降解緩慢釋放至創(chuàng)面,從而實(shí)現(xiàn)生長因子的緩釋。同時(shí),殼層材料選擇使用同軸靜電紡絲制備的納米纖維膜,其具有抗菌和透氣等特性,從而達(dá)到促進(jìn)創(chuàng)面修復(fù)的目的。因此,同軸靜電紡絲聯(lián)合PRP作為一種新型生物敷料在臨床促進(jìn)創(chuàng)面愈合方面具有廣闊的應(yīng)用前景,為創(chuàng)面的修復(fù)提供了新的思路。
[參考文獻(xiàn)]
[1]CHEN Q C, WU J, LIU Y, et al. Electrospun chitosan/PVA/bioglass Nanofibrous membrane with spatially designed structure for accelerating chronic wound healing[J]. Materials Science amp; Engineering C, Materials for Biological Applications, 2019,105:110083.
[2]PERUMAL G, PAPPURU S, CHAKRABORTY D, et al. Synthesis and characterization of curcumin loaded PLA-Hyperbranched polyglycerol electrospun blend for wound dressing applications[J]. Materials Science amp; Engineering C, Materials for Biological Applications, 2017,76:1196-1204.
[3]MIL′EK T, NAGRABA L′, MITEK T, et al. Autologous platelet-rich plasma reduces healing time of chronic venous leg ulcers: a prospective observational study[J]. Advances in Experimental Medicine and Biology, 2019,1176:109-117.
[4]TIAN J, CHENGL H, CUI X, et al. Application of standar-dized platelet-rich plasma in elderly patients with complex wounds[J]. Wound Repair and Regeneration, 2019,27(3):268-276.
[5]ANITUA E, MUOZ V, ASPE L, et al.In vitro and in vivo effect of platelet-rich plasma-based autologous topical serum on cutaneous wound healing[J]. Skin Pharmacologyand Phy-siology, 2022,35(1):51-64.
[6]CAKINM C, OZDEMIR B, KAYA-DAGISTANLI F, et al. Evaluation of the in vivo wound healing potential of the lipid fraction from activated platelet-rich plasma[J]. Platelets, 2020,31(4):513-520.
[7]KARAYANNOPOULOU M, PSALLA D, KAZAKOS G, et al. Effect of locally injected autologous platelet-rich plasma on second intention wound healing of acute full-thickness skin defects in dogs[J]. Veterinary and Comparative Orthopaedics and Traumatology: VCOT, 2015,28(3):172-178.
[8]JEEC H, EOMN Y, JANGH M, et al. Effect of autologous platelet-rich plasma application on cutaneous wound healing in dogs[J]. Journalof Veterinary Science, 2016,17(1):79-87.
[9]LEEH W, REDDYM S, GEURS N, et al. Efficacy of platelet-rich plasma on wound healing in rabbits[J]. Journal of Perio-dontology, 2008,79(4):691-696.
[10]MOHAMADI S, NOROOZNEZHAD A H, MOSTAFAEI S, et al. A randomized controlled trial of effectiveness of platelet-rich plasma gel and regular dressing on wound healing time in"pilonidal sinus surgery: Role of different affecting factors[J]. Biomedical Journal, 2019,42(6):403-410.
[11]TSAI H C, LEHMAN C W, CHEN C M. Use of platelet-rich plasma and platelet-derived patches to treat chronic wounds[J]. Journal of Wound Care, 2019, 28(1):15-21.
[12]中國老年醫(yī)學(xué)學(xué)會燒創(chuàng)傷分會.濃縮血小板制品在創(chuàng)面修復(fù)中應(yīng)用的全國專家共識(2020版)[J].中華燒傷雜志, 2020,36(11):993-1002.
[13]HESSELER M J, SHYAM N. Platelet-rich plasma and its utility in medical dermatology: a systematic review[J]. JournaloftheAmerican Academy of Dermatology, 2019,81(3):834-846.
[14]LU H H, VO J M, CHIN H S, et al. Controlled delivery of platelet-rich plasma-derived growth factors for bone formation[J]. JournalofBiomedicalMaterials Research Part A, 2008,86(4):1128-1136.
[15]莫驍群,龐夢茹,孫宇,等.自體單采富血小板血漿凝膠治療慢性難治性創(chuàng)面的臨床研究[J].中國美容整形外科雜志, 2022,33(4):222-225.
[16]YASSIN G E, DAWOUD M H S, WASFI R, et al. Comparative lyophilized platelet-rich plasma wafer and powder for wound-healing enhancement: formulation, in vitro and in vivo studies[J]. Drug Development and Industrial Pharmacy, 2019,45(8):1379-1387.
[17]QI Y, ZHAI H Y, SUN Y N, et al. Electrospun hybrid nanofibrous meshes with adjustable performance for potential use in soft tissue engineering[J]. Textile Research Journal, 2022,92(9-10):1537-1549.
[18]ZHANGY Z, LIM C T, RAMAKRISHNA S, et al. Recent development of polymer nanofibers for biomedical and biotechnological applications[J]. JournalofMaterials Science Materials in Medicine, 2005,16(10):933-946.
[19]ABRIGO M, MCARTHUR S L, KINGSHOTT P. Electrospun nanofibers as dressings for chronic wound care: advances, challenges, and future prospects[J]. Macromolecular Bioscience, 2014,14(6):772-792.
[20]LI J Y, LIU Y N, ABDELHAKIM H E. Drug delivery applications of coaxial electrospun nanofibres in cancer therapy[J]. Molecules, 2022, 27(6):1803.
[21]LIU Y B, CHEN X H, YU D G, et al. Electrospun PVP-core/PHBV-shell fibers to eliminate tailing off for an improved sustained release of curcumin[J]. Molecular Pharmaceutics, 2021,18(11):4170-4178.
[22]BEACHLEY V, WEN X J. Polymer nanofibrous structures: Fabrication, biofunctionalization, and cell interactions[J]. ProgressinPolymer Science, 2010,35(7):868-892.
[23]YOON J, YANG H S, LEE B S, et al. Recent progress in coaxial electrospinning: new parameters, various structures, and wide applications[J]. AdvancedMaterials, 2018,30(42):e1704765.
[24]RATHORE P, SCHIFFMAN J D. Beyond the single-nozzle: coaxial electrospinning enables innovative nanofiber chemistries, geometries, and applications[J]. ACS Applied Materials amp; Interfaces, 2021,13(1):48-66.
[25]ABDULLAH M F, NUGE T, ANDRIYANA A, et al. Core-shell fibers: design, roles, and controllable release strategies in tissue engineering and drug delivery[J]. Polymers, 2019,11(12):2008.
[26]HUANG Z P, WANG W T, WANG Q L, et al. Coaxial nanofiber scaffold with super-active platelet lysate to accelerate the repair of bone defects[J]. RSC Advances, 2020,10(59):35776-35786.
[27]RASTEGAR A, MAHMOODI M, MIRJALILI M, et al. Platelet-rich fibrin-loaded PCL/chitosan core-shell fibers scaffold for enhanced osteogenic differentiation of mesenchymal stem cells[J]. Carbohydrate Polymers, 2021,269:118351.
[28]CHENG G, MA X, LI J M, et al. Incorporating platelet-rich plasma into coaxial electrospun nanofibers for bone tissue engineering[J]. International Journal of Pharmaceutics, 2018,547(1-2):656-666.
[29]ZHANG P, ZHOU L, WEU L, et al. A novel nanofiber hydrogel loaded with platelet-rich plasma promotes wound hea-ling through enhancing the survival of fibroblasts[J]. Med Sci Monit, 2019,25:8712-8721.
[30]祁鳳英,王蕾,李東東,等. 可緩釋富血小板血漿生長因子的新型自組裝多肽水凝膠制備及性能表征[J]. 中國組織工程研究, 2024,28(15):2364-2370.
(本文編輯黃建鄉(xiāng))