楊迪 高正玉 王強(qiáng) 張祎辰 安貝貝 潘曉娜
[摘要]遺傳性痙攣性截癱(HSP)是一組以緩慢進(jìn)行性加重的雙下肢肌張力增高、無力為主要特點(diǎn)的神經(jīng)系統(tǒng)單基因遺傳病,具有高度的臨床和遺傳異質(zhì)性。HSP一般不會(huì)影響病人的生存,但其進(jìn)行性加重的特點(diǎn)會(huì)嚴(yán)重影響病人的勞動(dòng)能力和生活自理能力,并且目前尚無有效的方法預(yù)防、終止或逆轉(zhuǎn)該疾病,只能通過藥物、物理或手術(shù)治療來緩解病人的癥狀。隨著醫(yī)學(xué)的發(fā)展和對HSP研究的進(jìn)一步深入,人們對該病的臨床特征、遺傳形式和診斷都有了進(jìn)一步的了解,并且報(bào)道了一些新的治療方法。本文主要就HSP的病理機(jī)制、臨床表現(xiàn)、遺傳學(xué)特點(diǎn)、診斷依據(jù)及治療方法等作一綜述。
[關(guān)鍵詞]痙攣性截癱,遺傳性;診斷;治療;綜述
[中圖分類號] R741[文獻(xiàn)標(biāo)志碼] A[文章編號] 2096-5532(2020)04-0500-05
doi:10.11712/jms.2096-5532.2020.56.045
[網(wǎng)絡(luò)出版] http://kns.cnki.net/kcms/detail/37.1517.R.20200320.1520.008.html;2020-03-23 13:44:14
COMPREHENSIVE UNDERSTANDING AND TREATMENT OF HEREDITARY SPASTIC PARAPLEGIA
YANG Di, GAO Zhengyu, WANG Qiang, ZHANG Yichen, AN Beibei, PAN Xiaona
(Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China)
[ABSTRACT]Hereditary spastic paraplegia (HSP) is a group of monogenic hereditary disorders of the nervous system cha-racterized by progressive increase of muscle tension and weakness of both lower limbs, with high clinical and genetic heterogeneity. HSP generally does not affect the life span of patients, but progressive aggravation of HSP may seriously affect patients working and self-care abilities. At present, there are no effective measures to prevent, terminate or reverse the course of HSP, and only pharmacotherapy, physical therapy, and surgery can be performed to alleviate patients symptoms. With the development of medical sciences and the in-depth research on HSP, people have had a better understanding of its clinical features, mode of inheritance, and diagnosis, and some new treatment methods have been reported. This article reviews the pathological mechanism, clinical ma-nifestation, genetic features, diagnostic basis, and treatment of HSP.
[KEY WORDS] spastic paraplegia, hereditary; diagnosis; therapy; review
遺傳性痙攣性截癱(HSP)由SEELIGMULLER于1876年首先報(bào)道,而后STRMPELL和LORRAIN作了詳細(xì)論述,故HSP又稱為STRMPELL-LORRAIN病[1]。HSP是一組以緩慢進(jìn)行性加重的雙下肢肌張力增高、無力為主要特點(diǎn)的神經(jīng)系統(tǒng)單基因遺傳病,具有高度的臨床和遺傳異質(zhì)性。HSP的流行病學(xué)研究較少,目前發(fā)現(xiàn)其患病率受地域和診斷水平等影響,平均患病率為(1.27~12.10)/10萬[2]。由于HSP患病率低,臨床病例少見,故對該疾病治療的相關(guān)研究較少。HSP雖一般不會(huì)影響病人的生存,但其進(jìn)行性加重的特點(diǎn)會(huì)嚴(yán)重影響病人的勞動(dòng)能力和生活自理能力,并且目前尚無治愈方法。近幾年,隨著醫(yī)學(xué)的發(fā)展和對HSP研究的進(jìn)一步深入,人們對其臨床特征、遺傳形式和診斷都有了進(jìn)一步的了解,并且報(bào)道了一些新的治療方法。本文將從HSP的病理機(jī)制、臨床表現(xiàn)、遺傳學(xué)特點(diǎn)、診斷依據(jù)及治療方法等方面作一綜述。
1 HSP病理機(jī)制
HSP主要病理改變?yōu)殡p側(cè)皮質(zhì)脊髓束的軸索變性和脫髓鞘,以胸髓為重,其次為脊髓小腦束、薄束,脊髓前角、基底核、小腦、腦干、視神經(jīng)也可受累[3-5]。盡管HSP具有廣泛的遺傳和表型異質(zhì)性,但在HSP發(fā)病中已經(jīng)明確了幾個(gè)普遍認(rèn)可的主要原因:①膜轉(zhuǎn)運(yùn)功能或內(nèi)質(zhì)網(wǎng)形態(tài)異常;②軸漿運(yùn)輸異常;③髓鞘形成異常;④線粒體蛋白質(zhì)異常;⑤脂質(zhì)代謝紊亂[4]。微管動(dòng)力學(xué)、軸突轉(zhuǎn)運(yùn)和線粒體功能的改變被認(rèn)為是導(dǎo)致HSP遠(yuǎn)端神經(jīng)退行性變的機(jī)制[6-7]。雖然HSP被認(rèn)為是一種上運(yùn)動(dòng)神經(jīng)元病變,但有研究表明,HSP病人運(yùn)動(dòng)和感覺神經(jīng)束在中樞和周圍神經(jīng)系統(tǒng)中的病變更為廣泛[8]。電生理異常的分布模式與不同的HSP基因型相關(guān),可以反映不同的潛在病理機(jī)制[8]。
2 HSP臨床表現(xiàn)
HSP是一類具有顯著臨床異質(zhì)性的神經(jīng)退行性疾病,主要臨床表現(xiàn)為緩慢進(jìn)展的雙下肢肌無力和痙攣所致的步態(tài)異?;虿叫姓系K[4,9],通常伴有肢體肌張力增高、神經(jīng)反射亢進(jìn)、病理征陽性等錐體束受累的體征。根據(jù)是否伴有其他特殊臨床癥狀,HSP可分為單純型和復(fù)雜型。單純型除上述典型臨床表現(xiàn)外,部分病人可合并膀胱括約肌功能障礙(尿頻、尿急)、深感覺異常(踝關(guān)節(jié)位置覺和振動(dòng)覺減退或消失)、弓形足等[10]。復(fù)雜型除此之外還可以出現(xiàn)智力下降、共濟(jì)失調(diào)、周圍神經(jīng)病變、耳聾、白內(nèi)障或肌肉萎縮等癥狀[5,11]?;诏d攣癥狀出現(xiàn)的時(shí)間,可將HSP分為Ⅰ型(痙攣出現(xiàn)時(shí)間較早,一般在35歲之前)和Ⅱ型(痙攣出現(xiàn)在35歲之后)[4]。HSP癥狀出現(xiàn)的年齡、進(jìn)展速度和殘疾程度在不同基因型病人之間以及有相同突變的家族中的所有病人之間通常都是不同的[12]。從剛出生的嬰兒到老年都有發(fā)病的可能,有研究表明男性病人多于女性病人[13]。早發(fā)病的HSP病人通常病情相對穩(wěn)定,數(shù)年甚至數(shù)十年病情都不會(huì)發(fā)生顯著惡化,這部分病人通常與腦癱導(dǎo)致的雙下肢痙攣性癱瘓相似[14];而發(fā)病較晚的病人通常在幾年較短的時(shí)間內(nèi)病情緩慢加重。HSP病人區(qū)別于其他病因痙攣性截癱的臨床特點(diǎn)是痙攣造成步態(tài)異常而不是簡單的截癱,并且痙攣程度和肌肉無力之間存在顯著的不一致[15]。有研究發(fā)現(xiàn),在天氣寒冷、勞累和夜間時(shí),HSP病人的下肢痙攣會(huì)加重[16]。
3 HSP遺傳學(xué)特點(diǎn)
按照遺傳方式HSP可分為常染色體顯性遺傳、常染色體隱性遺傳、X連鎖隱性遺傳和線粒體母系遺傳,其中常染色體隱性遺傳模式是HSP病人最常見的遺傳方式[6,17-18]。常染色體顯性遺傳形式較常染色體隱性遺傳形式少,但單純型HSP在常染色體顯性遺傳家庭中占絕大部分。文獻(xiàn)中只描述了5種X連鎖隱性遺傳基因表型[19]。線粒體母系遺傳是極為罕見的,并且?guī)缀跛写祟惒∪说呐R床表現(xiàn)都屬于HSP復(fù)雜型,有多種跡象都提示此類病人存在潛在的線粒體譜紊亂[17,19]。在HSP病人中,大部分都有陽性家族史,也有一部分為散發(fā)病例。迄今,HSP已發(fā)現(xiàn)有79個(gè)致病基因位點(diǎn)[20]。在已發(fā)現(xiàn)的HSP致病基因中,最常見的突變基因是SPG4的致病基因SPAST,其次是SPG3A的致病基因ATL1,再次是SPG31的致病基因REEP1。
SPG4的致病基因SPAST是最常見的常染色體顯性遺傳HSP的致病基因,可跨動(dòng)物物種存在,其功能與其調(diào)節(jié)微管動(dòng)力學(xué)和內(nèi)質(zhì)網(wǎng)應(yīng)激反應(yīng)網(wǎng)絡(luò)有關(guān)[21-22]。SPAST編碼蛋白SPASTIN,是一種參與細(xì)胞膜運(yùn)輸、細(xì)胞內(nèi)運(yùn)動(dòng)、細(xì)胞器生成、蛋白質(zhì)水解、蛋白質(zhì)折疊和內(nèi)質(zhì)管裂變的ATP酶微管切斷蛋白[23-24]。有研究發(fā)現(xiàn),在果蠅和斑馬魚模型中降低SPASTIN蛋白的表達(dá)會(huì)導(dǎo)致軸突發(fā)育紊亂和神經(jīng)突觸功能異常[25]。大多數(shù)SPG4 HSP病人起病時(shí)間差異較大,表現(xiàn)為成年或幼年性單純痙攣性截癱,伴有尿路括約肌障礙、弓形足和輕度痙攣性構(gòu)音障礙。此類病人可伴有非典型的復(fù)雜表現(xiàn),包括眼球和頭部震顫,晚期開始出現(xiàn)認(rèn)知功能下降伴有執(zhí)行功能障礙以及智力發(fā)育遲滯、抑郁、精神病和行為異常等。SPG4 HSP病人幾乎不伴有周圍神經(jīng)病變,因此可與SPG31、SPG3A、SPG10等病人鑒別。有部分SPG4病人神經(jīng)影像學(xué)檢查可見全皮質(zhì)萎縮、胼胝體變薄、輕微白質(zhì)改變和輕度脊髓萎縮等表現(xiàn)[23-24]。
SPG3A HSP是一種常染色體顯性遺傳單純型HSP,由ATL1基因雜合子突變引起。ATL1基因編碼ATLASIN,一種參與管狀內(nèi)質(zhì)網(wǎng)形成和軸突延長的與動(dòng)力相關(guān)的G蛋白偶聯(lián)型激動(dòng)蛋白。SPG3A HSP病人典型臨床表現(xiàn)為10歲之前早期出現(xiàn)的痙攣性截癱伴弓形足和括約肌紊亂,可伴有脊柱側(cè)凸、輕度智力發(fā)育遲滯和視神經(jīng)萎縮。神經(jīng)影像學(xué)檢查一般無明顯異常,但也有胼胝體變薄的報(bào)道[11]。并且SPG3A HSP存在遲發(fā)病例,發(fā)病在60歲之后[26]。SPG3A可能是由于內(nèi)質(zhì)網(wǎng)失去其復(fù)雜的結(jié)構(gòu)形態(tài),引起上運(yùn)動(dòng)神經(jīng)元出現(xiàn)內(nèi)質(zhì)網(wǎng)功能的異常,從而導(dǎo)致其無法支持皮質(zhì)脊髓束中的軸突生長與修復(fù)所致[3]。
SPG31是由REEP1基因的雜合子突變引起的一種常染色體顯性遺傳單純型HSP。REEP1基因編碼受體表達(dá)增強(qiáng)蛋白-1,參與脊髓和大腦運(yùn)動(dòng)神經(jīng)元的線粒體和內(nèi)質(zhì)網(wǎng)蛋白加工和轉(zhuǎn)運(yùn)。SPG31病人從兒童期到成年期都有可能發(fā)病,也可能導(dǎo)致吞咽困難、弓形足和遠(yuǎn)端肌肉萎縮[27]。
SPG5是HSP病人中極少的亞型,是由編碼膽固醇-7α-羥化酶的CYP7B1基因的雙基因突變導(dǎo)致的常染色體隱性遺傳HSP。膽固醇-7α-羥化酶參與原代膽汁酸生物合成的微粒體酸性途徑[4]。雖然目前絕大多數(shù)SPG5病例都屬于兒童或成人起病緩慢進(jìn)展的純HSP模式,但偶有復(fù)雜的表型被發(fā)現(xiàn),其可引起小腦性共濟(jì)失調(diào)、痙攣性共濟(jì)失調(diào)、弓形足、視神經(jīng)萎縮等;神經(jīng)影像學(xué)檢查只能偶爾觀察到細(xì)微的白質(zhì)變化和小腦、脊髓萎縮[28]。氧甾醇會(huì)損害人體皮質(zhì)神經(jīng)元的代謝活性和生存能力。SPG5病人皮質(zhì)神經(jīng)元中的氧甾醇濃度升高,表明高水平的氧甾醇可能是SPG5的關(guān)鍵致病因素[29]。
4 HSP診斷依據(jù)
HSP的初步診斷主要依靠典型臨床癥狀、陽性家族史,根據(jù)病人的起病年齡、首發(fā)癥狀、病情進(jìn)展等,結(jié)合完整和規(guī)范的神經(jīng)系統(tǒng)查體。臨床診斷通常參照HARDING[1]的診斷標(biāo)準(zhǔn):①臨床表現(xiàn)主要是雙下肢無力、肌張力增高等上運(yùn)動(dòng)神經(jīng)元受累癥狀,逐漸出現(xiàn)步態(tài)異常,進(jìn)行性發(fā)展為雙下肢痙攣性截癱,部分病人可伴有尿頻、尿急、認(rèn)知障礙、癲癇發(fā)作、視力下降、錐體外系癥狀等;②神經(jīng)系統(tǒng)檢查主要為錐體束征,下肢較明顯;③腦和脊髓CT或MRI檢查多正常,但有部分病人可出現(xiàn)脊髓和(或)小腦萎縮,還可伴有胼胝體萎縮;④多有家族史,符合常染色體顯性遺傳、常染色體隱性遺傳、X-連鎖隱性遺傳或線粒體母系遺傳,偶有散發(fā)病例;⑤排除其他疾病所致的痙攣性截癱,如腦癱、多發(fā)性硬化癥、腎上腺腦白質(zhì)營養(yǎng)不良、運(yùn)動(dòng)神經(jīng)元病等。
然而,HSP的確診必須依靠基因檢測。傳統(tǒng)的基因測序方法主要為Sanger測序,它屬于第一代DNA測序技術(shù)。其基本原理是,在反應(yīng)體系中加入一定比例帶有放射性核素標(biāo)記的某種2′,3′-雙脫氧核苷酸(ddNTP),通過凝膠電泳和放射自顯影,可以根據(jù)電泳帶的位置確定待測分子的DNA序列[30-31]。受試基因的選擇取決于在家族中觀察到的表型(單純/復(fù)雜型)、首發(fā)癥狀出現(xiàn)時(shí)的年齡和遺傳方式。例如,在單純型常染色體顯性遺傳HSP病人中,SPAST的分子檢測優(yōu)先考慮發(fā)病年齡大于10歲的病人,而ATL1首先考慮在發(fā)病年齡小于10歲的病人中進(jìn)行分析。如果這些基因的分析是陰性的,那么需要更進(jìn)一步篩選REEP1、KIF5A、NIPA1等基因[19]。由于Sanger測序不支持檢測雜合子微重排改變基因,從而建立了一種測量每個(gè)外顯子數(shù)量的方法,例如多重連接依賴探針擴(kuò)增(MLPA)和定量PCR,建議與Sanger法同時(shí)進(jìn)行測序[19]。
近幾年,新技術(shù)如微陣列和二代測序(NGS)分別檢測全基因組中存在的拷貝數(shù)變異和小變異,徹底改變了用于基因鑒定的策略,能夠?qū)π〖易搴土阈遣±M(jìn)行分析。NGS技術(shù)通常用于研究或診斷目的的全外顯子測序(即對一個(gè)基因組的所有編碼區(qū)域進(jìn)行測序)和選定基因(基因板)的測序[19]。NGS的引入改變了HSP分子檢測的策略,大大降低了DNA測序的成本,允許快速高效地在一個(gè)實(shí)驗(yàn)中對數(shù)百萬甚至幾十億個(gè)堿基進(jìn)行分析,提供了同時(shí)分析所有基因的可能性,已成為傾向于完全取代Sanger測序的實(shí)驗(yàn)室診斷方法[32-33]。
僅僅依靠臨床表現(xiàn)和陽性家族史不足以確診HSP。雖然基因檢測是診斷HSP的金標(biāo)準(zhǔn),但由于HSP的顯著異質(zhì)性并且很多亞型仍未被檢測出,所以基因檢測對于明確診斷也不總是可行的。詳細(xì)的步態(tài)分析可幫助我們鑒別診斷,更重要的是有助于決定合適的治療方案。儀器式三維臨床步態(tài)分析通過實(shí)時(shí)攝像、計(jì)算以及分析骨盆、髖關(guān)節(jié)、膝關(guān)節(jié)、踝關(guān)節(jié)、前足5個(gè)關(guān)節(jié)的矢狀面、水平面和冠狀面3個(gè)維度,從運(yùn)動(dòng)學(xué)、時(shí)間與空間角度,為鑒別診斷HSP與腦癱等其他原因引起的痙攣性截癱,指導(dǎo)確定HSP病人康復(fù)治療方案,提供了新的思路與方法[34]。HSP病人主要通過增加脊柱運(yùn)動(dòng)來代償下肢步行的運(yùn)動(dòng)改變,而其他原因引起的痙攣性截癱主要通過加大上肢擺動(dòng)來代償[35]。步態(tài)分析顯示,與健康正常同齡兒童相比,HSP病兒的步頻較低、步速較慢、步幅較短,雙腿支撐時(shí)間增加,平均骨盆傾斜值較高,首次觸地和擺動(dòng)相髖關(guān)節(jié)屈曲較大,支撐相髖關(guān)節(jié)伸展較低,首次觸地時(shí)膝關(guān)節(jié)屈曲增加,膝關(guān)節(jié)屈曲范圍減小[36-37]。HSP與腦癱的臨床步態(tài)十分相似,都存在首次觸地時(shí)代償性增加屈膝、支撐相中期伴隨膝過伸,但HSP在支撐相髖、膝過伸,踝跖屈時(shí)間較腦癱長,足觸地、支撐相與擺動(dòng)相交替時(shí)軀干擺動(dòng)角度較腦癱變化大[38]。
5 HSP治療方法
HSP一般不會(huì)影響病人的生存[39],但其進(jìn)行性加重的特點(diǎn)會(huì)嚴(yán)重影響病人的勞動(dòng)能力和生活自理能力,然而目前尚無有效的方法預(yù)防、終止或逆轉(zhuǎn)該病[4],只能通過藥物治療、物理治療或手術(shù)治療來緩解病人癥狀。
巴氯芬、替扎尼定和丹曲林是臨床常用上運(yùn)動(dòng)神經(jīng)元損傷后肢體痙攣的口服解痙藥物,價(jià)格便宜,病人易接受,但治療效果因人而異,臨床上發(fā)現(xiàn)有部分病人服用最小劑量上述藥物就出現(xiàn)嚴(yán)重肌無力、嗜睡等不良反應(yīng),還有一部分病人肌張力改良Ashworth分級可達(dá)3級甚至僵直狀態(tài),給予最大劑量、多種藥物聯(lián)合治療后解痙效果仍然不明顯。有研究表明,達(dá)伐吡啶可能通過阻斷電壓門控K+通道導(dǎo)致長時(shí)間除極作用對髓鞘形成異常的HSP表型有治療作用[40]。有研究發(fā)現(xiàn),在果蠅SPG4模型中,長春胺可通過調(diào)節(jié)微管動(dòng)力學(xué)改善痙攣癥狀,為治療HSP痙攣和相關(guān)疾病提供了潛在藥物[41]。由于SPG5致病機(jī)制與羥固醇的積累有關(guān),因此降脂藥物通過降低27-羥基膽固醇可在一定程度上改善此類病人的臨床癥狀[29]。
隨著醫(yī)學(xué)研究的進(jìn)步與發(fā)展,近幾年體內(nèi)置入巴氯芬泵[42-43]和靶肌肉注射A型肉毒毒素[44]治療方法在很大程度上為緩解肌張力提供了新思路與有效方法,但巴氯芬泵在國內(nèi)暫無報(bào)道。A型肉毒毒素注射治療已被證明可針對性緩解靶肌肉痙攣,緩解疼痛,改善病人步行速度,但病人步行速度達(dá)不到正常人最大速度,并且該方法對功能性運(yùn)動(dòng)改善效果不明確[45]。若保守治療效果不佳,可考慮行選擇性腰骶段脊神經(jīng)后根部分切斷術(shù)(SPR),通過電刺激確定責(zé)任神經(jīng)根后,選擇性切斷肌梭傳入的Ⅰa類纖維,阻斷脊髓反射中的γ-環(huán)路,降低過強(qiáng)的肌張力,從而解除肢體痙攣[46]。長期痙攣造成的足部固定畸形嚴(yán)重影響病人的正常步行、生活質(zhì)量和美觀,跟腱延長術(shù)和肌腱轉(zhuǎn)移術(shù)可糾正病人馬蹄內(nèi)翻足、弓形足畸形[47-48]。干細(xì)胞移植一直是神經(jīng)系統(tǒng)等各個(gè)系統(tǒng)疾病治療探索的熱點(diǎn)[49],在HSP也不例外,國內(nèi)已有報(bào)道臍帶間充質(zhì)干細(xì)胞移植治療HSP短期療效明顯,可以改善病人的臨床癥狀,延緩病情的進(jìn)展[50]。
康復(fù)治療有助于HSP病人運(yùn)動(dòng)功能的恢復(fù)。ZHANG等[51]研究發(fā)現(xiàn),水療治療后HSP病人的步速和步幅顯著提高,但這可能主要是通過髖關(guān)節(jié)內(nèi)旋的補(bǔ)償策略實(shí)現(xiàn)的,而不是改善步態(tài)動(dòng)力學(xué)的效果。機(jī)器人輔助步態(tài)訓(xùn)練可能改善單純型HSP病人的平衡、行走能力和生活質(zhì)量,并且治療效果至少可以保持2個(gè)月[52]。
重復(fù)經(jīng)顱磁刺激(rTMS)是近幾年神經(jīng)系統(tǒng)疾病康復(fù)治療的研究熱點(diǎn),已有研究表明,rTMS在腦卒中、肌萎縮性側(cè)索硬化和多發(fā)性硬化等疾病中對改善病人無力、痙攣和步態(tài)障礙有積極作用[53]。rTMS可通過一系列的重復(fù)磁脈沖使靶神經(jīng)元除極,引起受刺激皮質(zhì)區(qū)的神經(jīng)活動(dòng)性和興奮性改變,誘導(dǎo)對應(yīng)的特異性皮質(zhì)區(qū)域的可塑性;高頻(>5 Hz)的磁脈沖產(chǎn)生興奮作用,而低頻(<1 Hz)產(chǎn)生抑制作用[54]。最近研究表明,高頻rTMS刺激雙下肢肌肉初級運(yùn)動(dòng)區(qū)可改善HSP病人的步行、肌肉力量,并緩解痙攣,同時(shí)發(fā)現(xiàn)位于對應(yīng)皮質(zhì)位置較為淺表的下肢近端肌肉對rTMS治療效果反應(yīng)更好[55]。
6 結(jié)語
HSP雖然發(fā)病率較低,一般不會(huì)危及病人生命,但由于嚴(yán)重影響病人的生活質(zhì)量和社會(huì)活動(dòng),大大降低了病人的勞動(dòng)能力,給個(gè)人、家庭和社會(huì)帶來巨大的經(jīng)濟(jì)負(fù)擔(dān)。因此,全面地了解認(rèn)識HSP是非常必要的,有助于早期識別此類病人,并根據(jù)病人臨床評估和基因分析,采取針對性的治療方法,改善病人的功能狀態(tài)。但目前仍沒有安全有效的方法來預(yù)防、治愈HSP和逆轉(zhuǎn)HSP病程,期待隨著醫(yī)學(xué)的發(fā)展與進(jìn)步早日攻克這一醫(yī)學(xué)難題。
[參考文獻(xiàn)]
[1]HARDING A E. Classification of the hereditary ataxias and paraplegias[J].? Lancet, 1983,1(8334):1151-1155.
[2]RACIS L, TESSA A, DI FABIO R, et al. The high prevalence of hereditary spastic paraplegia in Sardinia, insular Italy[J].? Journal of Neurology, 2014,261(1):52-59.
[3]林鵬飛,龔瑤琴,焉傳祝. 遺傳性痙攣性截癱的分子遺傳學(xué)研究進(jìn)展[J].? 中華神經(jīng)科雜志, 2015,48(11):1030-1038.
[4]DE SOUZA P V, DE REZENDE PINTO W B, DE REZENDE BATISTELLA G N, et al. Hereditary spastic paraplegia: cli-nical and genetic hallmarks[J].? Cerebellum (London, England), 2017,16(2):525-551.
[5]BLACKSTONE C. Cellular pathways of hereditary spastic pa-raplegia[J].? Annual Review of Neuroscience, 2012,35(1):25-47.
[6]SALINAS S, PROUKAKIS C, CROSBY A, et al. Hereditary spastic paraplegia: clinical features and pathogenetic mechanisms[J].? Lancet Neurology, 2008,7(12):1127-1138.
[7]HEDERA P, DIMAURO S, BONILLA E, et al. Mitochond-rial analysis in autosomal dominant hereditary spastic paraplegia[J].? Neurology, 2000,55(10):1591-1592.
[8]KARLE K N, SCHLE R, KLEBE S, et al. Electrophysiological characterisation of motor and sensory tracts in patients with hereditary spastic paraplegia (HSP)[J].? Orphanet Journal of Rare Diseases, 2013,8:158.
[9]NOVARINO G, FENSTERMAKER A G, ZAKI M S, et al. Exome sequencing links corticospinal motor neuron disease to common neurodegenerative disorders[J].? Science (New York, N.Y.), 2014,343(6170):506-511.
[10]趙國華,唐北沙,羅巍,等. 遺傳性痙攣性截癱的臨床和遺傳特點(diǎn)[J].? 臨床神經(jīng)病學(xué)雜志, 2003,16(1):31-33.
[11]LO GIUDICE T, LOMBARDI F, SANTORELLI F M, et al. Hereditary spastic paraplegia: clinical-genetic characteristics and evolving molecular mechanisms[J].? Experimental Neuro-logy, 2014,261:518-539.
[12]FINK J K. Advances in the hereditary spastic paraplegias[J].? Experimental Neurology, 2003,184(Suppl 1):S106-S110.
[13]RUANO L, MELO C, SILVA M C, et al. The global epidemiology of hereditary ataxia and spastic paraplegia: a syste-matic review of prevalence studies[J].? Nuroepidemiology, 2014,42(3):174-183.
[14]FINK J K. Hereditary spastic paraplegia: clinical principles and genetic advances[J].? Seminars in Neurology, 2014,34(3):293-305.
[15]BRASCHINSKY M, PARTS K, MAAMGI H, et al. Functional assessment of lower extremities in hereditary spastic paraplegia[J].? Archives of Physical Medicine and Rehabilitation, 2009,90(11):1887-1890.
[16]FINK J K. Hereditary spastic paraplegia[J].? Current Neurology and Neuroscience Reports, 2006,6(1):65-76.
[17]FINSTERER J, LOSCHER W, QUASTHOFF S, et al. Hereditary spastic paraplegias with autosomal dominant, recessive, X-linked, or maternal trait of inheritance[J].? Journal of the Neurological Sciences, 2012,318(1/2):1-18.
[18]COUTINHO P, BARROS J, ZEMMOURI R, et al. Clinical heterogeneity of autosomal recessive spastic paraplegias: ana-lysis of 106 patients in 46 families[J].? Archives of Neurology, 1999,56(8):943-949.
[19]KLEBE S, STEVANIN G, DEPIENNE C. Clinical and genetic heterogeneity in hereditary spastic paraplegias: from SPG1 to SPG72 and still counting[J].? Revue Neurologique, 2015,171(6/7):505-530.
[20]PARODI L, COARELLI G, STEVANIN G, et al. Hereditary ataxias and paraparesias: clinical and genetic update[J].? Current Opinion in Neurology, 2018,31(4):462-471.
[21]MANNAN A U, BOEHM J, SAUTER S M, et al. Spastin, the most commonly mutated protein in hereditary spastic paraplegia interacts with Reticulon 1 an endoplasmic reticulum protein[J].? Neurogenetics, 2006,7(2):93-103.
[22]HU J J, SHIBATA Y, ZHU P P, et al. A class of dynamin-like GTPases involved in the generation of the tubular ER network[J].? Cell, 2009,138(3):549-561.
[23]FINK J K. Hereditary spastic paraplegia: clinico-pathologic features and emerging molecular mechanisms[J].? Acta Neuropathologica, 2013,126(3):307-328.
[24]SOLOWSKA J M, BAAS P W. Hereditary spastic paraplegia SPG4: what is known and not known about the disease[J].? Brain: a Journal of Neurology, 2015,138(Pt 9):2471-2484.
[25]JULIEN C, LISSOUBA A, MADABATTULA S, et al. Conserved pharmacological rescue of hereditary spastic paraplegia-related phenotypes across model organisms[J].? Human Mole-cular Genetics, 2016,25(6):1088-1099.
[26]ORLACCHIO A, MONTIERI P, BABALINI C, et al. Late-onset hereditary spastic paraplegia with thin corpus callosum caused by a new SPG3A mutation[J].? Journal of Neurology, 2011,258(7):1361-1363.
[27]HEWAMADDUMA C, MCDERMOTT C, KIRBY J, et al. New pedigrees and novel mutation expand the phenotype of REEP1-associated hereditary spastic paraplegia (HSP)[J].? Neurogenetics, 2009,10(2):105-110.
[28]ARNOLDI A, CRIMELLA C, TENDERINI E, et al. Clinical phenotype variability in patients with hereditary spastic paraplegia type 5 associated with CYP7B1 mutations[J].? Clinical Genetics, 2012,81(2):150-157.
[29]SCHOLS L, RATTAY T W, MARTUS P, et al. Hereditary spastic paraplegia type 5: natural history, biomarkers and a randomized controlled trial[J].? Brain: a Journal of Neurology, 2017,140(12):3112-3127.
[30]劉朋虎,林冬梅,林占熺,等. DNA測序技術(shù)及其應(yīng)用研究進(jìn)展[J].? 福建農(nóng)業(yè)學(xué)報(bào), 2012,27(10):1130-1133.
[31]烏日拉嘎,徐海燕,馮淑貞,等. 測序技術(shù)的研究進(jìn)展及三代測序的應(yīng)用[J].? 中國乳品工業(yè), 2016,44(4):33-37.
[32]DUFKE C, SCHLIPF N, SCHLE R, et al. A high-throughput resequencing microarray for autosomal dominant spastic paraplegia genes[J].? Neurogenetics, 2012,13(3):215-227.
[33]KUMAR K R, BLAIR N F, VANDEBONA H, et al. Targeted next generation sequencing in SPAST-negative hereditary spastic paraplegia[J].? Journal of Neurology, 2013,260(10):2516-2522.
[34]OUNPUU S. The importance of understanding gait features in hereditary spastic paraplegia: accomplishments and next steps[J].? Developmental Medicine and Child Neurology, 2016,58(8):790-791.
[35]BONNEFOY-MAZURE A, TURCOT K, KAELIN A, et al. Full body gait analysis may improve diagnostic discrimination between hereditary spastic paraplegia and spastic diplegia: a preliminary study[J].? Research in Developmental Disabilities, 2013,34(1):495-504.
[36]PULIDO-VALDEOLIVAS I, GMEZ-ANDRS D, MAR-TN-GONZALO J A, et al. Gait phenotypes in paediatric hereditary spastic paraplegia revealed by dynamic time warping analysis and random forests[J].? PloS One, 2018,13(3):e0192345.
[37]ADAIR B, RODDA J, MCGINLEY J L, et al. Kinematic gait deficits at the trunk and pelvis: characteristic features in children with hereditary spastic paraplegia[J].? Developmental Medicine and Child Neurology, 2016,58(8):829-835.
[38]WOLF S I, BRAATZ F, METAXIOTIS D, et al. Gait analysis may help to distinguish hereditary spastic paraplegia from cerebral palsy[J].? Gait & Posture, 2011,33(4):556-561.
[39]SCHULE R, SCHOLS L. Genetics of hereditary spastic paraplegias[J].? Seminars in Neurology, 2011,31(5):484-493.
[40]BREAU M, ANHEIM M, CHANSON J B, et al. Dalfampridine in hereditary spastic paraplegia: a prospective, open study[J].? Journal of Neurology, 2015,262(5):1285-1288.
[41]ORSO G, MARTINUZZI A, ROSSETTO M G, et al. Di-sease-related phenotypes in a Drosophila model of hereditary spastic paraplegia are ameliorated by treatment with vinblastine[J].? The Journal of Clinical Investigation, 2005,115(11):3026-3034.
[42]DAN B, BOUILLOT E, BENGOETXEA A, et al. Effect of intrathecal baclofen on gait control in human hereditary spastic paraparesis[J].? Neuroscience Letters, 2000,280(3):175-178.
[43]HEETLA H W, HALBERTSMA J P, DEKKER R, et al. Improved gait performance in a patient with hereditary spastic paraplegia after a continuous intrathecal baclofen test infusion and subsequent pump implantation: a case report[J].? Archives of Physical Medicine and Rehabilitation, 2015,96(6):1166-1169.
[44]PAURI F, BOFFA L, CASSETTA E, et al. Botulinum toxin type-a treatment in spastic paraparesis: a neurophysiological study[J].? Journal of the Neurological Sciences, 2000,181(1/2):89-97.
[45]SERVELHERE K R, FABER I, MARTINEZ A, et al. Botulinum toxin for hereditary spastic paraplegia: effects on motor and non-motor manifestations[J].? Arquivos de Neuro-Psiquiatria, 2018,76(3):183-188.
[46]于炎冰,張黎,徐曉利,等. 改良選擇性腰骶段脊神經(jīng)后根部分切斷術(shù)治療痙攣性截癱的初步療效報(bào)告[J].? 中華神經(jīng)外科雜志, 2009,25(7):601-603.
[47]ROTHSCHILD H, SHOJI H, MCCORMICK D. Heel deformity in hereditary spastic paraplegia[J].? Clinical Orthopaedics and Related Research, 1981(160):48-51.
[48]栗靈,王承武,范源. 遺傳性痙攣性截癱[J].? 中華骨科雜志, 1997,17(12):50-51.
[49]LIANG J, ZHANG H, HUA B, et al. Allogeneic mesenchymal stem cells transplantation in treatment of multiple sclerosis[J].? Multiple Sclerosis, 2009,15(5):644-646.
[50]劉剛強(qiáng),靖明,孟陽,等. 臍帶血間充質(zhì)干細(xì)胞移植治療遺傳性痙攣性截癱2例[J].? 武警后勤學(xué)院學(xué)報(bào)(醫(yī)學(xué)版), 2013,22(6):544-546.
[51]ZHANG Y X, ROXBURGH R, HUANG L, et al. The effect of hydrotherapy treatment on gait characteristics of hereditary spastic paraparesis patients[J].? Gait & Posture, 2014,39(4):1074-1079.
[52]BERTOLUCCI F, DI MARTINO S, ORSUCCI D, et al. Robotic gait training improves motor skills and quality of Life in hereditary spastic paraplegia[J].? NeuroRehabilitation, 2015,36(1):93-99.
[53]CHA H G, KIM M K. Effects of strengthening exercise integrated repetitive transcranial magnetic stimulation on motor function recovery in subacute stroke patients: a randomized controlled trial[J].? Technology and Health Care, 2017,25(3):521-529.
[54]LEFAUCHEUR J P, ALEMAN A, BAEKEN C, et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): an update (2014-2018)[J].? Clinical Neurophysiology, 2020,131(2):474-528.
[55]ANTCZAK J, PERA J, DABRO M, et al. The effect of repetitive transcranial magnetic stimulation on motor symptoms in hereditary spastic paraplegia[J].? Neural Plasticity, 2019,2019:7638675.
(本文編輯 馬偉平)
[收稿日期]2019-06-08; [修訂日期]2020-02-18
[基金項(xiàng)目]國家自然科學(xué)基金青年科學(xué)基金項(xiàng)目(81802248)
[第一作者]楊迪(1993-),女,碩士研究生。
[通信作者]高正玉(1979-),男,博士,副主任醫(yī)師。E-mail:0532gzheng@163.com。