李盼盼 朱玉君 郭梁 莊杰云 樊葉楊,*
利用剩余雜合體衍生的近等基因系精細(xì)定位水稻粒長微效QTL
李盼盼1朱玉君1郭梁2莊杰云1樊葉楊1,*
(1中國水稻研究所 水稻生物學(xué)國家重點實驗室/國家水稻改良中心, 杭州 310006;2袁隆平農(nóng)業(yè)高科技股份有限公司, 長沙 410001;*通信聯(lián)系人, E-mail: fanyeyang@caas.cn)
【】本研究旨在對前期在水稻第1染色體長臂521.8 kb的區(qū)間內(nèi)定位到的進(jìn)行精細(xì)定位。從和所在區(qū)間分別呈雜合的2個BC2F9單株配組衍生的F4群體中,篩選到Wn28826-RM1231區(qū)間內(nèi)雜合片段呈梯系排列的3個單株,構(gòu)建了3套F5:6近等基因系。2017年種植于浙江杭州,考查千粒重、粒長和粒寬。利用SAS軟件的GLM程序進(jìn)行雙因素方差分析,對的效應(yīng)進(jìn)行了驗證。在此基礎(chǔ)上,篩選出雜合片段更小且呈交迭排列的6個剩余雜合體,發(fā)展了6套F8:9近等基因系,2018年種植于海南陵水。對每套近等基因系中雙親基因型株系的表型差異進(jìn)行雙因素方差分析。在2個試驗中對粒長和千粒重均呈極顯著差異,效應(yīng)方向一致且大小穩(wěn)定。密陽46等位基因能分別增加粒長0.027 mm和提高千粒重0.17 g,貢獻(xiàn)率分別達(dá)到27.12%和19.09%。鑒于在前后試驗中對粒長影響最為顯著,而對粒寬作用不顯著,故將重新命名為。通過比較各套近等基因系的分離區(qū)間的基因組位置,最終將定位于Wn29077和Wn29154之間約76.8 kb的區(qū)間內(nèi)。
水稻;近等基因系;微效作用;粒長;精細(xì)定位
水稻(L.)是保障糧食安全的重要作物之一,其單產(chǎn)的提高對糧食安全發(fā)揮了重要的作用。千粒重是水稻產(chǎn)量構(gòu)成因子的三要素之一,主要由籽粒大小和充實度控制,而籽粒大小一般以粒長、粒寬和粒厚等來衡量,此外粒長和粒寬還與稻米外觀品質(zhì)息息相關(guān)[1]。因此,分離和克隆籽粒大小相關(guān)的基因可為水稻高產(chǎn)優(yōu)質(zhì)育種奠定重要的理論基礎(chǔ)并提供可用的基因資源。
籽粒大小屬于典型的數(shù)量性狀,由大量的數(shù)量性狀座位(Quantitative Trait Loci,QTL)控制。迄今已有17個QTL獲得克隆,它們分布于除水稻第1、10、11和12染色體外的8條染色體上。其中,/、、/、、/、//、、、和等10個QTL主要控制粒長和千粒重[2-16];、、和等4個QTL主要控制粒寬和千粒重[17-21];對粒長和粒寬的效應(yīng)大小相近且方向相同,故最終控制千粒重[22];/和雖然也對粒長和粒寬兼具效應(yīng),但其效應(yīng)方向相反,故對千粒重并不表現(xiàn)出顯著效應(yīng)[23-25]。這些QTL主要涉及植物激素、泛素-蛋白酶體通路和G蛋白信號等分子途徑[26-27]。這些研究豐富了我們對水稻籽粒大小的分子調(diào)控機(jī)制的了解,但其調(diào)控通路網(wǎng)絡(luò)尚不清楚。
主效QTL和微效QTL均是解析復(fù)雜性狀遺傳機(jī)制的重要組成部分[28-29]。主效QTL因其效應(yīng)較大,能在不同遺傳背景和環(huán)境中穩(wěn)定檢測到,故而是精細(xì)定位和克隆的首選;相對地,微效QTL效應(yīng)較小,更易受遺傳背景和環(huán)境的干擾,故而在初級定位中較難穩(wěn)定檢測到[30],目前尚未有籽粒大小微效QTL克隆的報道。因此,籽粒大小微效QTL的發(fā)掘、精細(xì)定位和克隆,對全面揭示籽粒大小調(diào)控機(jī)制具有重要意義。
在前期研究中,我們應(yīng)用珍汕97///珍汕97//珍汕97/密陽46衍生的高代回交群體,在水稻第1染色體長臂將千粒重QTL分解為和,其中,被界定于RM11554-RM11569約521.8 kb的區(qū)間內(nèi),密陽46等位基因顯著增加粒長,提高粒重[31]。本研究針對,新構(gòu)建了分離區(qū)間呈梯系排列的3套近等基因系(Near Isogenic Lines, NILs),對其效應(yīng)進(jìn)行驗證,并進(jìn)一步發(fā)展了分離區(qū)間更為精細(xì)且交迭排列的6套近等基因系,開展精細(xì)定位。
本研究所用定位群體為9套近等基因系,其中3套F5:6近等基因系用于效應(yīng)驗證,6套F8:9近等基因系用于精細(xì)定位,材料構(gòu)建過程(圖1)如下。
利用珍汕97///珍汕97//珍汕97/密陽46組合衍生的1個BC2F9群體,從中挑選在區(qū)間(RM11437-RM11615)和區(qū)間(RM11615-RM11800)[32]分別呈雜合的2個單株,配組衍生1個F4群體。經(jīng)分離區(qū)間標(biāo)記檢測,篩選到Wn28826-RM1231區(qū)間內(nèi)雜合片段呈梯系排列的3個單株,自交形成3個NIL-F2型的F5群體,分別從每個群體中挑選分離區(qū)間呈母本純合型(即珍汕97純合型)和父本純合型(即密陽46純合型)的單株,自交后構(gòu)建了3套F5:6近等基因系,命名為Y1、Y2和Y3。Y1包含珍汕97純合型株系30個和密陽46純合型株系29個,Y2和Y3分別包含珍汕97純合型和密陽46純合型株系各30個。3套近等基因系的分離區(qū)間分別為Wn28826-RM1231、Wn28990-RM1231和Wn29154-RM1231(圖2-A)。
Fig. 1. Procedure for developing the nine sets of near isogenic lines (NILs).
同時,為進(jìn)一步篩選雜合區(qū)間更為精細(xì)的梯系剩余雜合體材料,從衍生出Y1的F5群體中挑選整個分離區(qū)間(Wn28826-RM1231)呈雜合的2個單株,經(jīng)過“剩余雜合體-NIL-F2型群體-剩余雜合體-NIL-F2型群體”2次標(biāo)記篩選,獲得了雜合片段更小且呈交疊排列的6個F7單株,自交形成6個NIL-F2型F8群體。從中挑選珍汕97純合型和密陽46純合型單株,自交后構(gòu)建了6套F8:9近等基因系,分別命名為LP1、LP2、LP3、LP4、LP5和LP6,每套近等基因系分別包含珍汕97純合型株系和密陽46純合型株系各30個。LP3和LP5來源于同一個F5單株,LP1、LP2、LP4和LP6則來源于另一個F5單株。6套近等基因系的分離區(qū)間分別為Wn28826-Wn28893、Wn28826-Wn28990、Wn28990-Wn29048、Wn29048-Wn29125、Wn29125-RM1231和Wn29154-RM1231(圖2-B)。
3套F5:6近等基因系于2017年5月種植在浙江省杭州市中國水稻研究所試驗基地(以下簡稱杭州試驗)。6套F8:9近等基因系于2018年12月種植在海南省陵水市中國水稻研究所試驗基地(簡稱陵水試驗)。采用完全隨機(jī)區(qū)組設(shè)計,2次重復(fù),每株系種植1行,每行8株,行株距16.7 cm×26.7 cm,正常田間管理。每株系混收中間4株。根據(jù)Zhang等[31]方法挑選飽谷600粒,采用萬深SC-G自動種子考種分析及千粒重儀測定千粒重、粒長和粒寬。
采用Zheng等[33]的方法提取微量DNA,其中NIL-F2型群體分單株提取DNA,近等基因系每株系取中間6株的葉片混提DNA。在RM11554-RM11569區(qū)間共開發(fā)了8對特異分子標(biāo)記,包括2對InDel、2對CAPS和4對dCAPS標(biāo)記(表1)。按常規(guī)方法進(jìn)行PCR擴(kuò)增[34],采用2%瓊脂糖凝膠電泳或6%~10%的非變性聚丙烯酰胺凝膠電泳檢測PCR擴(kuò)增產(chǎn)物和酶切產(chǎn)物。
采用Microsoft Excel計算2個試驗9套近等基因系千粒重、粒長和粒寬的基本統(tǒng)計數(shù)據(jù),包括平均值、標(biāo)準(zhǔn)差、變異系數(shù)、變異范圍、偏斜度和峰度。應(yīng)用SAS軟件的一般線性模型(Proc GLM)[35]對每套近等基因系中珍汕97純合型株系和密陽46純合型株系的表型差異進(jìn)行雙因素方差分析。當(dāng)檢測到顯著的(<0.05)基因型差異時,則計算加性效應(yīng)和貢獻(xiàn)率[36]。
A–用于驗證的3套F5:6近等基因系; B–用于精細(xì)定位的6套F8:9近等基因系。
Fig. 2. Genotypic compositions of the nine NILs sets in the target region.
在千粒重、粒長和粒寬這3個性狀上,3套F5:6近等基因系在杭州試驗以及6套F8:9近等基因系在陵水試驗的性狀均呈連續(xù)分布,且偏斜度和峰度較小,表現(xiàn)出數(shù)量性狀的特點(表2)。
從平均值以及變異范圍來看,各套近等基因系的粒長均值和變異范圍在兩地試驗中相差不大,但各套近等基因系的千粒重和粒寬均值和變異范圍在杭州試驗中均比陵水試驗中小,表明粒長受地域環(huán)境的影響比千粒重和粒寬小。
比較同一世代中各套近等基因系在同一個性狀上的平均值,發(fā)現(xiàn)杭州試驗中Y1和Y3同一性狀的平均值較為接近,而Y2均值最大;陵水試驗中6套近等基因系的平均值呈線性連續(xù)分布,且LP4在3個性狀上的平均值都高于其他5套近等基因系。表明同一世代各套近等基因系的遺傳背景還存在控制這3個性狀的微效QTL差異。
表1 本研究新開發(fā)的DNA標(biāo)記
表2 9套近等基因系千粒重、粒長和粒寬的表型變異
按2種基因型劃分,比較各套近等基因系同一性狀雙親基因型分布,發(fā)現(xiàn)千粒重和粒長存在明顯的群體間差異(圖3)。Y1和LP4中2種基因型株系在千粒重和粒長性狀上,表現(xiàn)出珍汕97純合型株系趨向于低值區(qū)而密陽46純合型株系趨向于高值區(qū)的特點,特別是粒長,呈現(xiàn)出孟德爾式分離。表明Y1和LP4的分離區(qū)間可能存在控制粒長和千粒重的QTL。
圖3 9套近等基因系千粒重和粒長分布
Fig. 3. Distributions of 1000-grain weight and grain length in nine NILs sets.
表3 9套近等基因系千粒重、粒長和粒寬的QTL檢測結(jié)果
?密陽46等位基因取代珍汕97等位基因所產(chǎn)生的遺傳效應(yīng)。R?效應(yīng)對表型方差的貢獻(xiàn)率。
,Additive effect of replacing a Zhenshan 97 allele with a Milyang 46 allele.R,Proportion of phenotypic variance explained by the QTL effect.
前期將定位于RM11554-RM11569約521.8 kb的區(qū)間,對千粒重和粒長表現(xiàn)顯著效應(yīng),其加性效應(yīng)大小分別為0.06 g和0.017 mm,增效等位基因均來自于密陽46[31]。杭州試驗中3套近等基因系千粒重、粒長和粒寬的雙因素方差分析表明。在分離區(qū)間為Wn28826-RM1231的Y1中,3個性狀均在雙親純合基因型株系間檢測到極顯著差異(<0.01),加性效應(yīng)分別為0.13 g、0.023 mm和0.008 mm,增效等位基因均來自密陽46;在分離區(qū)間為Wn28990-RM1231的Y2中,僅粒長在雙親純合基因型株系間分別檢測到顯著差異(<0.05),加性效應(yīng)大小為0.015 mm;而在分離區(qū)間為Wn29154-RM1231的Y3中,3個性狀在雙親純合基因型株系間的差異均未達(dá)到顯著水平(表3)。比較本研究中QTL對粒長的效應(yīng)大小和方向,發(fā)現(xiàn)其與效應(yīng)大小相近,方向一致,表明Y1和Y2很可能存在的分離,而Y3則不存在的分離。比較3套近等基因系的分離區(qū)間(圖3-A),將初步界定于Wn28944-Wn29154之間約210.2 kb的范圍內(nèi)。
Wn29048-Wn29125區(qū)間呈分離的LP4中,千粒重和粒長雙親純合基因型株系間均檢測到極顯著差異(<0.0001)。加性效應(yīng)大小分別為0.17 g和0.027 mm,增效等位基因均來自密陽46(圖4),貢獻(xiàn)率達(dá)到19.09%和27.12%,粒寬則未在雙親純合基因型株系間檢測到顯著差異,表明LP4存在的分離(表3)。
圖4 攜帶ZS97純合型和MY46純合型qGL1.1等位基因的近等基因系的籽粒(標(biāo)尺:10 mm)
Fig. 4. Grains of NILZS97and NILMY46for(Scale bar: 10 mm).
分離區(qū)間為Wn28990-Wn29048的LP3中也檢測到千粒重和粒長的顯著差異,但值僅為0.0394,其加性效應(yīng)大小分別為0.08 g和0.012 mm,但其增效等位基因來自珍汕97,貢獻(xiàn)率為4.30%和5.25%。鑒于LP3中檢測到的千粒重和粒長QTL效應(yīng)大小僅為效應(yīng)值的一半左右,更重要的是效應(yīng)方向相反。因此,該QTL很可能不是,而是一個新的控制千粒重和粒長的QTL。
分離區(qū)間為Wn29154-RM1231的LP6中僅檢測到粒長的顯著差異(< 0.05),其加性效應(yīng)大小和方向與LP3類似:加性效應(yīng)大小為0.013 mm,珍汕97增效等位基因增加粒長,貢獻(xiàn)率為6.03%。鑒于LP3與LP6的分離區(qū)間相互獨立,我們推測LP6可能還存在另外一個控制粒長的QTL。
而分離區(qū)間為Wn28826-Wn28893、Wn28826-Wn28990和Wn29125-RM1231的LP1、LP2和LP5中則均未檢測到3個性狀在雙親純合基因型株系間的顯著差異。有意思的是,LP5是除LP4外唯一1套粒長性狀上密陽46純合型均值大于珍汕97純合型均值的近等基因系,一個密陽46等位基因取代珍汕97等位基因所產(chǎn)生的粒長遺傳效應(yīng)為(8.105–8.083) / 2 = 0.011 mm,該值正好約等于LP4和LP6的粒長加性效應(yīng)值之和。因此我們推測,LP5粒長的表現(xiàn)很可能是和LP6所檢測到的QTL共同作用的結(jié)果。
綜上所述,最終將定位于LP4和LP5兩套近等基因系共有分離標(biāo)記Wn29125及其兩側(cè)重組區(qū)間,即Wn29077-Wn29154,大小約76.8 kb。鑒于在前期試驗和本研究中對粒長表現(xiàn)最為顯著,且對粒寬作用不顯著,故將重新命名為。
微效QTL由于效應(yīng)較小,很容易被遺傳背景和環(huán)境的效應(yīng)掩蓋,所以較難在初定位中穩(wěn)定檢測到。而構(gòu)建遺傳背景高度純合的近等基因系,可以有效消除遺傳背景的干擾,進(jìn)而對效應(yīng)較小的微效QTL 進(jìn)行驗證和分解, 乃至精細(xì)定位和克隆[37]。近年來,本實驗室利用剩余雜合體構(gòu)建近等基因系,通過多輪“梯系剩余雜合體篩選-近等基因系構(gòu)建- QTL分析”,在水稻第1染色體長臂定位和分解出6個微效QTL,其中、、和,分別界定在120.4 kb、77.5 kb、35.2 Mb和125.5 kb的染色體區(qū)間內(nèi)[31,38-40]。本研究將()定位至76.8 kb的范圍內(nèi),進(jìn)一步佐證了該方法和策略在微效QTL精細(xì)定位中的有效性和高效性。
在F5:6近等基因系Y1中,粒長和千粒重的加性效應(yīng)分別為0.023 mm和0.13 g,值和貢獻(xiàn)率分別為0.0018和0.0017、8.13%和8.09%;而在F8:9近等基因系LP4中,粒長和千粒重的加性效應(yīng)分別為0.027 mm和0.17 g,值均小于0.0001,貢獻(xiàn)率分別為27.12%和19.09%。這表明隨著自交的連續(xù),遺傳背景更加同質(zhì),在加性效應(yīng)基本不變的情況下,顯著性水平和貢獻(xiàn)率均得到了大幅提升。此外,不同世代的近等基因系雖然分別種植于浙江杭州和海南陵水,但表現(xiàn)一致,表明在不同環(huán)境中能穩(wěn)定發(fā)揮作用,在高產(chǎn)育種中具有重要的應(yīng)用潛力和價值。
LP5中雙親純合基因型株系間盡管沒有檢測到粒長的顯著差異,但從粒長的加性效應(yīng)大小來看,恰好近似于LP4和LP6的粒長加性效應(yīng)值之和,效應(yīng)的方向也與效應(yīng)較大的LP4中檢測到的QTL,即的效應(yīng)方向一致?;诖耍覀兺茰yLP5同時包含了以及LP6中檢測到的另一個微效粒長QTL。因此,我們將定位于LP4和LP5共有分離標(biāo)記Wn29125及其兩側(cè)重組區(qū)間,即Wn29077-Wn29154區(qū)間內(nèi)。
經(jīng)Rice Genome Annotation Project Database (http://rice.plantbiology.msu.edu/)檢索,在Wn29077-Wn29154區(qū)間76.8 kb的范圍內(nèi)預(yù)測有13個注釋基因。其中5個編碼已知功能域蛋白,8個是編碼未知功能蛋白。5個注釋基因分別是LOC_Os01g 50680(編碼OsSub2-假定同源類枯草桿菌蛋白酶)、LOC_Os01g50690(編碼包含G蛋白-β亞基WD重復(fù)結(jié)構(gòu)域的蛋白),LOC_Os01g50700(編碼脫水家族蛋白),LOC_Os01g50720(MYB家族轉(zhuǎn)錄因子)和LOC_Os01g50750(編碼C3H4型結(jié)構(gòu)域的鋅指蛋白)。8個未知功能的注釋基因包括4個編碼逆轉(zhuǎn)座子:LOC_Os01g50640、LOC_Os01g50650、LOC_ Os01g50660和LOC_Os01g50670,4個編碼未知功能的表達(dá)蛋白或假設(shè)蛋白:LOC_Os01 g50730、LOC_Os01g50740、LOC_Os01g50630和LOC_ Os01g50710。在已克隆的籽粒大小相關(guān)QTL中,編碼的G 蛋白γ亞基功能缺失時,促進(jìn)了細(xì)胞的伸長,進(jìn)而產(chǎn)生長粒的表型,此外,G蛋白的α亞基和β亞基也分別報道與籽粒大小有關(guān)[27]。因此,編碼包含G蛋白-β亞基WD重復(fù)結(jié)構(gòu)域蛋白的LOC_Os01g50690可能是的候選基因。
LP3和LP6也均檢測到粒長的顯著效應(yīng),與相比,不但效應(yīng)較小,而且方向相反??紤]到這兩套近等基因系的分離區(qū)間相互獨立,我們推測在的上下游還各存在1個與相斥的粒長QTL,其效應(yīng)尚需進(jìn)一步驗證。
[1] Xing Y Z, Zhang Q F. Genetic and molecular bases of rice yield[J]., 2010, 61: 421-442.
[2] Duan P G, Ni S, Wang J M, Zhang B L, Xu R, Wang Y X, Chen H Q, Zhu X D, Li Y H.Regulation ofby OsmiR396 controls grain size and yield in rice[J]., 2016, 2: 15203.
[3] Hu J, Wang Y X, Fang Y X, Zeng L J, Xu J, Yu H P, Shi Z Y, Pan J J, Zhang D, Kang S J, Zhu L, Dong G J, Guo L B, Zeng D L, Zhang G H, Xie L H, Xiong G S, Li J Y, Qian Q. A rare allele ofenhances grain size and grain yield in rice[J]., 2015, 8: 1455-1465.
[4] Yu J P, Xiong H Y, Zhu X Y,Zhang H L, Li H H, Miao J L, Wang W S, Tang Z S, Zhang Z Y, Yao G X, Zhang Q, Pan Y H, Wang X, Rashid M A R, Li J J, Gao Y M, Li Z K, Yang W C, Fu X D, Li Z C.contributing to rice grain length and yield was mined by Ho-LAMap[J]., 2017, 15: 28.
[5] Yu J P, Miao J L, Zhang Z Y, Xiong H Y, Zhu X Y, Sun X M, Pan Y H, Liang Y T, Zhang Q, Abdul Rehman R M, Li J J, Zhang H L, Li Z C. Alternative splicing ofcontrols grain length and yield inrice[J]., 2018, 16: 1667-1678.
[6] Liu Q, Han R X, Wu K, Zhang J Q, Ye Y F, Wang S S, Chen J F, Pan Y J, Li Q, Xu X P, Zhou J W, Tao D Y, Wu Y J, Fu X D. G-protein βγ subunits determine grain size through interaction with MADS-domain transcription factors in rice[J]., 2018, 9: 852.
[7] Fan C C, Xing Y Z, Mao H L, Lu T T, Han B, Xu C G, Li X H, Zhang Q F., a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein[J]., 2006, 112: 1164-1171.
[8] Qi P, Lin Y S, Song X J, Shen J B, Huang W, Shan J X, Zhu M Z, Jiang L W, Gao P J, Lin H X. The novel quantitative trait locuscontrols rice grain size and yield by regulating Cyclin-T1;3[J]., 2012, 22: 1666-1680.
[9] Zhang X J, Wang J F, Huang J, Lan H X, Wang C L, Yin C F, Wu Y Y, Tang H J, Qian Q, Li J Y, Zhang H S. Rare allele ofassociated with grain length causes extra-large grain and a significant yield increase in rice[J]., 2012, 109(52): 21534-21539.
[10] Hu Z J, Lu S J, Wang M J, He H H, Sun L, Wang H R, Liu X H, Jiang L, Sun J L, Xin X Y, Kong W, Chu C C, Xue H W, Yang J S, Luo X J, Liu J X. A novel QTLencodes the GSK3/SHAGGY-like kinase OsGSK5/OsSK41 that interacts with OsARF4 to negatively regulate grain size and weight in rice[J]., 2018, 11:736-749.
[11] Xia D, Zhou H, Liu R j, Dan W H, Li P B, Wu B, Chen J X, Wang L Q, Gao G J, Zhang Q L, He Y Q., a novel QTL encoding a GSK3/SHAGGY-like kinase, epistatically interacts withto produce extra-long grains in rice[J]., 2018, 11: 754-756.
[12] Ying J Z, Ma M, Bai C, Huang X H, Liu J L, Fan Y Y, Song X J., a major QTL that negatively modulates grain length and weight in rice[J]., 2018, 11: 750-753.
[13] Wu W G, Liu X Y, Wang M H, Meyer R S, Luo X J, Ndjiondjop M N, Tan L B, Zhang J W, Wu J Z, Cai H W, Sun C Q, Wang X K, Wing R A, Zhu Z F. A single-nucleotide polymorphism causes smaller grain size and loss of seed shattering during African rice domestication[J]., 2017, 3: 17064.
[14] Wang A H, Hou Q Q, Si L Z,Huang X H, Luo J H, Lu D F, Zhu J J, Shangguan Y Y, Miao J S, Xie Y F, Wang Y C, Zhao Q, Feng Q, Zhou C C, Li Y, Fan D L, Lu Y Q, Tian Q L, Wang Z X, Han B.The PLATZ transcription factor GL6 affects grain length and number in rice[J]., 2019, 180 : 2077-2090.
[15] Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B I, Onishi A, Miyagawa H, Katoh E. Loss of function of the IAA-glucose hydrolase geneenhances rice grain weight and increases yield[J]., 2013, 45(6): 707-711.
[16] Si L Z, Chen J Y, Huang X H, Gong H, Luo J H, Hou Q Q, Zhou T Y, Lu T T, Zhu J J, Shangguan Y Y, Chen E W, Gong C X, Zhao Q, Jing Y F, Zhao Y, Li Y, Cui L L, Fan D L, Lu Y Q, Weng Q J, Wang Y C, Zhan Q L, Liu K Y, Wei X H, An K, An G, Han B.controls grain size in cultivated rice[J]., 2016, 48(4): 447-456.
[17] Song X J, Huang W, Shi M, Zhu M Z, Lin H X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase[J]., 2007, 39(5): 623-630.
[18] Li Y B, Fan C C, Xing Y Z, Jiang Y H, Luo L J, Sun L, Shao D, Xu C J, Li X H, Xiao J H, He Y Q, Zhang Q F. Natural variation inplays an important role in regulating grain size and yield in rice[J].2011, 43(12): 1266-1269.
[19] Duan P G, Xu J S, Zeng D L, Zhang B L, Geng M F, Zhang G Z, Huang K, Huang L J, Xu R, Ge S, Qian Q, Li Y H. Natural variation in the promoter ofcontributes to grain size diversity in rice[J]., 2017, 10: 685-694.
[20] Liu J F, Chen J, Zheng X M, Wu F Q, Lin Q B, Heng Y Q, Tian P, Cheng Z J, Yu X W, Zhou K N, Zhang X, Guo X P, Wang J L, Wang H Y, Wan J M.acts in the brassinosteroid signaling pathway to regulate grain width and weight in rice[J].2017, 3: 17043.
[21] Wang S K, Wu K, Yuan Q B, Liu X Y, Liu Z B, Lin X Y, Zeng R Z, Zhu H T, Dong G J, Qian Q, Zhang G Q, Fu X D. Control of grain size, shape and quality byin rice[J].2012, 44(8): 950-954.
[22] Song X J, Kuroha T, Ayano M, Furuta T, Nagai K, Komeda N, Segami S, Miura K, Ogawa D, Kamura T, Suzuki T, Higashiyama T, Yamasaki M, Mori H, Inukai Y, Wu J Z, Kitano H, Sakakibara H, Jacobsen S E, Ashikari M. Rare allele of a previously unidentified histone H4 acetyltransferase enhances grain weight, yield, and plant biomass in rice[J]., 2015, 112(1): 76-81.
[23] Wang Y X, Xiong G S, Hu J, Jiang L, Yu H, Xu J, Fang Y X, Zeng L J, Xu E B, Xu J, Ye W J, Meng X B, Liu R F, Chen H Q, Jing Y H, Wang Y H, Zhu X D, Li J Y, Qian Q. Copy number variation at thelocus contributes to grain size diversity in rice[J].2015, 47(8): 944-948.
[24] Wang S K, Li S, Liu Q, Wu K, Zhang J Q, Wang S S, Wang Y, Chen X B, Zhang Y, Gao C X, Wang F, Huang H X, Fu X D. Theregulatory module determines grain shape and simultaneously improves rice yield and grain quality[J]., 2015, 47(8): 949-954.
[25] Zhao D S, Li Q F, Zhang C Q, Zhang C, Yang Q Q, Pan L X, Ren X Y, Lu J, Gu M H, Liu Q Q.acts as a transcriptional activator to regulate rice grain shape and appearance quality[J]., 2018, 9: 1240.
[26] Li N, Xu R, Duan P G, Li Y H. Control of grain size in rice[J]., 2018, 31: 237-251.
[27] 劉喜,牟昌鈴,周春雷,程治軍,江玲,萬建民. 水稻粒型基因克隆和調(diào)控機(jī)制研究進(jìn)展[J]. 中國水稻科學(xué),2018, 32(1): 1-11.
Liu X, Mou C L, Zhou C L, Cheng Z J, Jiang L, Wang J M. Research progress on cloning and regulation mechanism of rice grain shape genes[J]., 2018, 32(1): 1-11. (in Chinese with English abstract)
[28] Mackay T F C, Stone E A, Ayroles J F. The genetics of quantitative traits: challenges and prospects[J].2009, 10: 565-577.
[29] Kumar J, Gupta D S, Gupta S, Dubey S, Gupta P, Kumar S. Quantitative trait loci from identification to exploitation for crop improvement[J].2017, 36: 1187-1213.
[30] Yamamoto T, Yonemaru J, Yano M. Towards the understanding of complex traits in rice: substantially or superficially[J]., 2009, 16: 141-154.
[31] Zhang H W, Fan Y Y, Zhu Y J, Chen J Y, Yu S B, Zhuang J Y. Dissection of theregion into two tightly-linked minor QTLs having stable effects for grain weight in rice[J]., 2016, 17: 98.
[32] Guo L, Wang K, Chen J Y, Huang D R, Fan Y Y, Zhuang J Y. Dissection of two quantitative trait loci for grain weight linked in repulsion on the long arm of chromosome 1 of rice (L.) [J]2013, 1: 70-76.
[33] Zheng K L, Huang N, Bennett J, Khush G S. PCR-based marker-assisted selection in rice breeding//IRRI Discussion Paper Series No. 12. Los Banos: International Rice Research Institute, 1995.
[34] Chen X, Temnykh S, Xu Y, Cho Y G, McCouch S R. Development of a microsatellite framework map providing genome-wide coverage in rice(L.) [J].1997, 95: 553-567.
[35] SAS Institute Inc. SAS/STAT User’s Guide[M]. Cary, NC: SAS Institute, 1999.
[36] Dai W M, Zhang K Q, Wu J R, Wang L, Duan B W, Zheng K L, Cai R, Zhuang J Y. Validating a segment on the short arm of chromosome 6 responsible for genetic variation in the hull silicon content and yield traits of rice[J].2008, 160: 317-324.
[37] Abiola O, Angel J M, Avner P, Bachmanov A A, Belknap J K, Bennett B, Blankenhorn E P, Blizard D A, Bolivar V, Brockmann G A, Buck K J, Bureau J F, Casley W L, Chesler E J, Cheverud J M, Churchill G A, Cook M, Crabbe J C, Crusio W E, Darvasi A, Haan G D, Dermant P, Doerge R W, Elliot R W, Farber C R, Flaherty L, Flint J, Gershenfeld H, Gibson J P, Gu J, Gu W, Himmelbauer H, Hitzemann R, Hsu H C, Hunter K, Iraqi F F, Jansen R C, Johnson T E, Jones B C, Kempermann G, Lammert F, Lu L, Manly K F, Matthews D B, Medrano J F, Mehrabian M, Mittlemann G, Mock B A, Mogil J S, Montagutelli X, Morahan G, Mountz J D, Nagase H, Nowakowski R S, O'Hara B F, Osadchuk A V, Paigen B, Palmer A A, Peirce J L, Pomp D, Rosemann M, Rosen G D, Schalkwyk L C, Seltzer Z, Settle S, Shimomura K, Shou S, Sikela J M, Siracusa L D, Spearow J L, Teuscher C, Threadgill D W, Toth L A, Toye A A, Vadasz C, Van Zant G, Wakeland E, Williams R W, Zhang H G, Zou F; Complex Trait Consortium. The nature and identification of quantitative trait loci: A community’s view[J].2003, 4(11): 911-916.
[38] Wang L L, Chen Y Y, Guo L, Zhang H W, Fan Y Y, Zhuang J Y. Dissection ofto three QTLs for grain weight and grain size in rice (L.) [J]., 2015, 202: 119-127.
[39] Dong Q, Zhang Z H, Wang L L,Zhu Y J, Fan Y Y, Mou T M, Ma L Y, Zhuang J Y. Dissection and fine-mapping of two QTL for grain size linked in a 460-kb region on chromosome 1 of rice[J]., 2018, 11: 44.
[40] Wang W H, Wang L L, Zhu Y J, Fan Y Y, Zhuang J Y. Fine-mapping of, a quantitative trait locus for 1000-grain weight in rice[J]., 2019, 26(4): 220-228.
Fine Mapping of, a Minor QTL for Grain Length, Using Near Isogenic Lines Derived from Residual Heterozygotes in Rice
LI Panpan1, ZHU Yujun1, GUO Liang2, ZHUANG Jieyun1, FAN Yeyang1,*
(1State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China;2Yuan Longping High-tech Agriculture Co, Changsha 410001, China;*Corresponding author, E-mail: fanyeyang@caas.cn)
The objective of this study is to fine-mapwhich was previously mapped in a 521.8-kb region on the long arm of rice chromosome 1.In this study, two BC2F9plants carryingand,respectively, was crossed and produced an F4population. Three plants carrying sequential heterozygous segments in the interval Wn28826-RM1231 were selected and selfed to develop three sets of near isogenic lines (NILs) comprising the two homozygous genotypes. The NILs in F5:6were planted in Hangzhou in 2017 and the 1000-grain weight, grain length and grain width were measured. The effect ofwas validated by two-way analysis of variance (ANOVA) using SAS program. Then six new sequential residual heterozygotes carrying smaller heterozygous segments overlapped in the interval Wn28826-RM1231 were identified. Six sets of pairwise NILs in F8:9were planted in Lingshui in 2018 and the three traits were measured. Phenotypic differences between the two homozygous genotypic groups were analyzed using ANOVA.The allelic direction ofremained consistent and the genetic effects were stable in the two trials. The Milyang 46 allele could significantly increase grain length and 1000-grain weight by 0.027 mm and 0.17 g with the contribution up to 27.12% and 19.09%, respectively.Considering thatstably showed significant effect to grain length but not to grain width in both previous and this study,was renamed asAs a result,was delimited into a 76.8-kb region flanked by Wn29077 and Wn29154 based on comparing of the segregating regions among the six sets of NILs.
rice; near isogenic line; minor effect; grain length; fine mapping
Q943.2; S511.03
A
1001-7216(2020)02-0125-10
10.16819/j.1001-7216.2020.9125
2019-11-21;
2019-12-28。
國家重點研發(fā)計劃資助項目(2017YFD0100305);中央公益性科研院所基本科研業(yè)務(wù)費(fèi)專項(2017RG001-2)。