丁洪 洪薈春
[摘 要]驅動的策略有把脈遷移點、找準生長點、貫通相同點和點燃共情點。教學“用數(shù)對確定位置”時,運用驅動策略教學概念,能夠溝通生活與數(shù)學的聯(lián)系,提升學生的學習品質,幫助學生形成關鍵能力和數(shù)學素養(yǎng)。
[關鍵詞]生活問題;問題驅動;概念建構;數(shù)學化
[中圖分類號] G623.5[文獻標識碼] A[文章編號] 1007-9068(2019)14-0003-03
弗賴登塔爾指出,數(shù)學教育“必須聯(lián)系生活實際,注重培養(yǎng)和發(fā)展學生從客觀現(xiàn)象發(fā)現(xiàn)數(shù)學問題的能力”。這里所說的“生活實際”,其實是一種特殊的“問題情境”。這種問題情境既來源于生活,又高于生活,是一種對“生活實際”的智慧篩選和合理創(chuàng)造。情境中的生活問題貼近學生實際,富有趣味性、挑戰(zhàn)性和啟發(fā)性,能夠“激活、支持和維持構成學習事件的內(nèi)部過程”,驅動學生“順勢而為”地學習。以蘇教版教材四年級下冊第8單元“用數(shù)對確定位置”為例,在磨課過程中,筆者對生活問題與數(shù)學學習之間的關系有了更深刻的體驗和認識。
一、第一次執(zhí)教:為傳授而教
1.教學設想
數(shù)對確定位置“是依據(jù)人的某種需要或者習慣人為規(guī)定”的知識,這些約定具有明顯的主觀特征,存在可變性和多樣性。《義務教育數(shù)學課程標準(2011年版)》在“課程基本理念”中指出,“認真聽講、積極思考……都是學習數(shù)學的重要方式?!被诖耍P者決定充分用好主題圖,通過生活問題的驅動,精當講解,幫助學生掌握確定位置的方法,并在初步運用中發(fā)現(xiàn)確定位置的規(guī)律。
2.教學設計
教學以確定教室里小軍位置的問題導入,引發(fā)學生在感知事物多樣性和合理性的基礎上,發(fā)現(xiàn)統(tǒng)一規(guī)定的必要性;接著,學生通過自學課本,匯報數(shù)學約定的具體內(nèi)容,將“樸素表達”修正為“統(tǒng)一樣式”;最后,在數(shù)學簡潔表達的驅動下,學生初步掌握用數(shù)對表征問題的模型,并進行針對性的內(nèi)化練習。以下是四個主要教學環(huán)節(jié):
(1)驅動個性表達
師(出示主題圖):小軍坐在哪里?你能用數(shù)學的方法描述他的位置嗎?
生1:第4組第3個。
生2:第3排第4個。
師:位置相同,表示位置的方法不相同,這樣交流起來不方便,怎么辦呢?
(2)統(tǒng)一規(guī)定方法
師:在剛才匯報的結果中,有些已經(jīng)非常接近數(shù)學家的創(chuàng)造,大家翻開課本,自學這些數(shù)學約定,比一比,看誰知道得多!
(學生匯報自學內(nèi)容,教師板書關鍵信息:“豎排叫作列”“橫排叫作行”“從左往右”“從前往后”)
師:現(xiàn)在回過頭來看看,小軍的位置又該怎樣表示呢?
(游戲:快速用數(shù)對表示某個學生的位置)
師:像這樣用“第幾列第幾行”表示位置有什么好處呢?
(教師用課件演示“列”和“行”規(guī)定的過程和方法,并安排游戲環(huán)節(jié))
(3)建構數(shù)對模型
師:規(guī)范統(tǒng)一的表達,是為了方便交流。問題是,這種表示方法能不能再簡潔一些呢?
師:以小軍的位置為例,數(shù)對模型(4,3)讀作“數(shù)對四三”。
師:數(shù)對原來就是一對特殊的數(shù),多用了符號,少寫了字,“先列后行”的內(nèi)部結構沒有變。
(游戲:快速用數(shù)對表示某個學生的位置)
(4)運用理解內(nèi)化
a.“練一練”第1~2題和“練習十五”第1題。
b.“練習十五”第2題。引導歸納:表示同一列瓷磚位置的數(shù)對,列上的數(shù)字相同;表示同一行瓷磚位置的數(shù)對,行上的數(shù)字相同。
c.“練習十五”第3題。引導學生從列和行兩種角度對比歸納紅花的排列規(guī)律。(課件配合演示)
3.教學反思
縱觀整堂課,有問題驅動,也有目標達成,但看似短平快的教學現(xiàn)場,數(shù)學化沒有得到充分發(fā)展,導致學生的學習更多的是機械模仿,一知半解在所難免。在某種程度上,“植入式”的傳授還扼制了學生的學習興趣、想象能力的生長。怎么辦?首先,問題的情境能否整合成一條“智慧鏈”?變“走馬觀花”為“專題研究”,增強問題情境的實效性;其次,學生的主觀能動性怎樣才能被充分激發(fā)?變“要我學”為“我要學”,提高學生學習的參與性;最后,數(shù)學約定背后的合理性究竟在哪里?變“簡單告訴”為“親身經(jīng)歷”,建構思維內(nèi)部的關聯(lián)性。期望這樣的改變,能夠告別“教了教材,就事論事”的現(xiàn)狀。
二、第二次執(zhí)教:為建構而教
1.目標定位
隨著學習和思考的深入,我們對“教什么”和“怎么教”有了更本質的把握。顯然,從“教什么”的角度看,“確定位置”屬于人為“發(fā)明”的知識,是現(xiàn)實需求的產(chǎn)物;從“怎么教”的角度看,“確定位置”需要搭建“需求與創(chuàng)造”的平臺,引導學生“像專家一樣思考”,經(jīng)歷知識的“再創(chuàng)造”過程。因此,第二次執(zhí)教的目標,分三個層次實施:(1)生活需求驅動數(shù)學表達;(2)內(nèi)部需求驅動“再創(chuàng)造”;(3)應用需求驅動模型解構。
2.教學實踐
首先,要求學生描述自己好朋友的位置,讓其他同學通過他的描述猜猜是誰,引發(fā)學生聚焦確定位置的方法。在學生給出很多方法后,通過問題:“你最喜歡哪種方式?”幫助學生明確生活中表達位置的方法和方式有很多,都有一定的合理性,但是其中“第×組第×個”“第×排第×個”相對簡潔。
接著,出示主題圖 “小軍的位置在哪里?”讓學生嘗試表達位置,學生在嘗試表達位置的過程中產(chǎn)生疑問:合理但不統(tǒng)一,交流不方便,怎么辦?
然后,借助多媒體演示“行”和“列”的數(shù)學規(guī)定,引導學生結合生活經(jīng)驗和表達習慣,明確講臺上的教師是描述位置的“觀察點”,而第一列就是教師左手邊的第一組,第一行就是挨近教師的第一排,以此豐富知識的現(xiàn)實意義。再次安排“說出好朋友的位置”的游戲,幫助學生鞏固新知,引發(fā)學生創(chuàng)造性地表達。教師展示學生的創(chuàng)造成果,評價歸納后抽象出的用數(shù)對確定位置的模型,并完善用數(shù)對確定位置的方法。
最后,創(chuàng)設“點贊好學生”的活動?!皵?shù)對(4,y)夸的是哪些學生?這些數(shù)對有什么特點?”“數(shù)對(x,4)夸的是哪些學生?這些數(shù)對有什么特點?”……探究模型內(nèi)部規(guī)律,局部把握模型特征。而“數(shù)對(x,y)夸的又是哪些學生呢?”則是對模型解構后的又一次整體重構。
3.再次反思
第二次執(zhí)教在情境整合、學生興趣和體悟合理三個方面有所突破,基本完成初次執(zhí)教后提出的構想。面對“好朋友的位置”“點贊好學生”等一系列“自己的事”,基于表達的迫切性,學生的主體意識被激發(fā),學習熱情高漲,在豐富意義的引領和浸潤下,學生初步感受到數(shù)學約定的現(xiàn)實性和合理性。尤其是探究模型內(nèi)部特征的環(huán)節(jié),“可視化”的互動學習,層次分明的解構活動,使重構“像呼吸一樣自然”。
但是,思考并沒有因此而停止,反觀課堂,我們對還有可能改進的地方提出相應的構想。設想一:知識與生活之間聯(lián)系緊密,學習能否建立在已有生活經(jīng)驗和學習過的概念之上,自然生長出“未知”?設想二:知識的“再創(chuàng)造”是基于需要和習慣,能否找到其他具有現(xiàn)實意義的理由,多角度理解知識的存在方式?設想三:知識是有文化背景的,能否回溯到“創(chuàng)造現(xiàn)場”,在欣賞中汲取精神力量?設想四:知識是有價值的,但是不能只局限于特殊情境,能否找到“跨界”的案例,感受外在形式的不同,歸納提升內(nèi)在本質的統(tǒng)一?期待這樣的思考,助力教師走出“用教材教,簡單建?!钡臓顟B(tài)。
三、第三次執(zhí)教:為理解而教
為了解決第二次執(zhí)教提出的構想,我們再次進行理論學習,并對大量優(yōu)秀案例進行深入細致的對比和整合,提出“為理解而教”的理想目標,以期能提升學生素養(yǎng),服務學生未來。
【教學片段1】調(diào)用經(jīng)驗,激趣導入
師:喜歡看電影嗎?
生1:喜歡。
師(出示課件):來看幾個經(jīng)典的電影畫面。你能說出電影的名字嗎?
生(齊):一條狗的使命。
師(出示課件):是的,這是特別溫馨的一部電影。前幾天,我也從網(wǎng)上訂了兩張票陪兒子去看,你們知道我們坐在哪里嗎?
生2:深藍影院的1號廳,第8排第4座和第8排第5座。
師:找座位要關注哪些信息?
生3:地點,幾號廳。
生4:幾排幾座,對號入座。
師:第幾排怎樣確定?第幾座呢?
生5:第幾排是從前往后數(shù)的,第幾座是從左往右數(shù)的。
生6:不一定,有的電影院,第幾座是從右往左數(shù)的。
師:是的,觀察有角度,記錄有方法?,F(xiàn)在,我們回到課堂上。教室內(nèi)的位置,你能確定嗎?
【思考:適切的生活情境有助于推動學習發(fā)生。“影院位置”情境的創(chuàng)設,喚醒了學生的生活經(jīng)驗,在“找座位要關注哪些信息?”“第幾排怎樣確定?第幾座呢?”的問題驅動下,學生碎片化的經(jīng)驗被提煉成“觀察有角度,記錄有方法”的認知,為后續(xù)學習做好鋪墊?!?/p>
【教學片段2】游戲互動,逐步建構
師:先來玩?zhèn)€“找朋友”的游戲,規(guī)則是“你說位置,我猜名字”。
(師生互動,玩游戲)
師(出示:在××南邊、第三排、在××旁邊、第4排第3個):看看大家給的幾種表達方法。如果再玩這個游戲,你會選擇哪種?為什么?
生1:第4排第3個。
生2:在××旁邊。
生3:其實“第4排第3個”有兩種可能,從左往右就是任嘉倪,從右往左就是沈紀宇。
師:有意思,位置在你的眼里是確定的,而在別人眼里卻變成“可能”。對此你有什么好的建議?
生4:可以在說的時候介紹規(guī)則。
師:“規(guī)則”這個詞用得好,問題是“公說公有理,婆說婆有理”,怎么辦?
生(齊):統(tǒng)一規(guī)則。
(學生自學,匯報時教師操作電腦配合學生演示“觀察點”“第幾列”“第幾行”)
師:為什么約定“先列后行”?
生5:可能與習慣有關,平時點名“先組后排”,所以約定“先列后行”。
生6:可能與位置有關,電影院左右間距小,要先確認排,教室前后間距小,要先確認列。
師(課件出示班級學生座位的正面照片):我站在講臺上看你們,或者轉身面對屏幕,看照片中的你們,有什么區(qū)別?
生(齊):結果一樣。
師:是的,這樣我們就能始終處于觀察點,方便交流和研究。
【思考:“再創(chuàng)造”就是要引導學生充分地經(jīng)歷知識產(chǎn)生的“關鍵步子”。首先是感知統(tǒng)一的必要性——方法多樣導致結果模糊,共同約定才能方便交流;其次是體會內(nèi)容的合理性,與“生活習慣”有關的個性解讀,促使約定背后的原因逐漸顯現(xiàn);最后是體會表達的現(xiàn)實價值,既能解決問題,又能服務生活。這樣,學生在“玩”中學會創(chuàng)造,又在“玩”中深度學習。】
【教學片段3】反思創(chuàng)造,理解內(nèi)化
師:再來玩?zhèn)€“巧記錄”的游戲,規(guī)則是“聽位置信息,自己創(chuàng)造方式記錄”。
(師生互動,玩游戲)
師(以“第4列第3行”為例,呈現(xiàn)“4列3行”“4L3H”“4,3”“4、3”“4.3”“43”……):這些創(chuàng)造方式怎么樣?
生1:“43”與整數(shù)43容易混淆。
生2:“4、3”“4.3”都容易與小數(shù)4.3混淆。
生3:“4L3H”比“4列3行”要簡潔一些。
生4:要說簡潔、合理,我推薦“4,3”,逗號剛好表示沒有結束。
師:你覺得創(chuàng)造時要注意什么?
生5:數(shù)字4和3不能少,而且順序不能亂。
師:說得好!創(chuàng)造同樣要緊扣關鍵點。說來也巧,數(shù)學家正是用逗號隔開“列”和“行”,而且還在一對數(shù)外加上“( ?)”。你猜這是為什么?
生6:可能表示一個整體。
生7:可能表示有特殊含義。
師:了不起!你們的想法與數(shù)學家不謀而合,這樣一對特殊的數(shù),在數(shù)學上就叫作“數(shù)對”。你能用“數(shù)對”的方式,夸夸你的同學嗎?
……
師:我也來夸一夸。(4,y)夸的是哪些同學?這些數(shù)對有什么特點?(x,4)夸的是哪些同學?這些數(shù)對有什么特點?數(shù)對(x,y)夸的又是哪些同學?
【思考:數(shù)學本身就有簡潔表達的需求。通過游戲活動,把這種需求傳達給學生,促使學生積極創(chuàng)造并感知簡潔的合理;對逗號和小括號作用的個性解讀,使模型建構“無縫對接”主體經(jīng)驗,讓學生體驗簡潔的合情;夸獎環(huán)節(jié)既是模型運用,也是模型解構后的重構,內(nèi)化簡潔的融合。】
【教學片段4】對比提升,把握本質
師:生活中哪些地方也要確定位置?
(結合學生回答,適時出示:國際象棋棋盤(g2)、車位號(A-001)、火車座位號(04A號)、飛機座位號(30F))
師:這些不同的方法都有什么相同之處?
生1:外形上都比較簡潔。
生2:寫下的都是關鍵信息。
生3:表達的位置是唯一的。
師:方法外形不一樣,內(nèi)在原理卻相通。
師:走出教室,像這樣雜亂的物體,其位置又怎樣確定呢?一起來聽聽。
(動畫配合演示:面對雜亂的物體,怎樣確定位置呢?三百多年前,就有人遇上了這個問題,他就是法國大數(shù)學家笛卡爾。他曾經(jīng)為此冥思苦想了很久。一天,他生病臥床,突然看見一只蜘蛛在織網(wǎng),這讓笛卡爾的思路豁然開朗。因為縱橫交錯的線,能產(chǎn)生一個個相交的點,每個相交的點都是確定的,這樣,點的位置恰好與物體的位置一一對應起來。)
師(借用手勢):如果魚在網(wǎng)外,可以將網(wǎng)張得大一些,如果網(wǎng)內(nèi)有漏網(wǎng)之魚,可以將網(wǎng)織得密一些。就這樣,所有物體的位置都能被“一網(wǎng)打盡”。
師:鎖定關鍵,方便表達,這也許就是用數(shù)對確定位置的本質。
【思考:對比是數(shù)學學習的重要方式。首先是對比各種確定位置的模型,發(fā)現(xiàn)情境雖然不同,但是都能緊扣關鍵信息,從而感知外形豐富與內(nèi)在統(tǒng)一的辯證關系;接著是引導學生對比現(xiàn)在的自己與歷史中的笛卡爾,面對同樣的問題,感受笛卡爾富有啟發(fā)性的角度、方法和思想,以及研究過程中展現(xiàn)出的人格魅力,以此滋潤學習,澎湃人生?!?/p>
【總評】生活問題對數(shù)學學習的重要性不言而喻。但是,要使生活問題的作用發(fā)揮極致,則需要甄別、選擇和整合,有時甚至是智慧地創(chuàng)造,以便有效地服務于數(shù)學的專題學習。經(jīng)歷這一系列磨課后,有以下幾點收獲:一是把脈問題的遷移點,如借助影院位置的生活問題,順勢切入教室位置的探究;二是找準問題的生長點,如確認影院位置“生長”出“觀察有角度和記錄有方法”,描述好朋友位置“生長”出“統(tǒng)一規(guī)則”的需要,創(chuàng)造紀錄中“生長”出數(shù)學約定的“合情合理”,夸贊學生活動中“生長”出模型內(nèi)部特征;三是貫通問題的相同點,對比不同位置的模型,透過現(xiàn)象看本質,感知關鍵信息、需要和習慣在創(chuàng)造中的作用;四是點燃問題的共情點,從生活問題中透出生活態(tài)度,“穿越”到“歷史現(xiàn)場”,感受遇到問題時的焦灼不安、困頓無措和豁然開朗,在欣賞中共情共生,在自省中重建精神世界。也許這樣,才能打通經(jīng)驗世界與數(shù)學世界的回路,到達“超越教材,整合共生”的境界。
[本文系南通市“十三五”教育科學規(guī)劃2016年度青年專項課題“基于問題驅動的數(shù)學化過程的研究”階段性成果(課題編號:QN2016012)。]
(責編 金 鈴)