袁根成
摘 要:為了在數(shù)學(xué)課堂上滲透數(shù)形結(jié)合數(shù)學(xué)思想方法,在此背景下,筆者以蘇教版小學(xué)數(shù)學(xué)教材的知識點(diǎn)為例,通過借助“形”作為直觀工具、滲透數(shù)軸和平面直角坐標(biāo)、運(yùn)用統(tǒng)計圖和幾何模型、利用代數(shù)和算術(shù)法化解難題等策略,溝通了教學(xué)中“數(shù)”與“形”之間的關(guān)系。
關(guān)鍵詞:蘇教版;數(shù)形結(jié)合;思想方法
小學(xué)生在數(shù)學(xué)課堂上不僅要學(xué)到基礎(chǔ)知識和基本技能這兩個“雙基”,還需要獲得基本活動經(jīng)驗(yàn)和基本數(shù)學(xué)思想方法,這些能影響學(xué)生一輩子的思維方式和做事態(tài)度。在小學(xué)數(shù)學(xué)階段,常見的數(shù)學(xué)思想方法有符號化思想、歸納思想、數(shù)形結(jié)合思想、函數(shù)思想、模型思想等。數(shù)形結(jié)合思想方法是通過數(shù)和形之間的對應(yīng)關(guān)系和相互轉(zhuǎn)化來解決問題的思想方法,打通了數(shù)學(xué)中數(shù)量關(guān)系與空間關(guān)系之間的對立又統(tǒng)一的關(guān)系,使其能夠在一定條件下進(jìn)行相互轉(zhuǎn)化。其中數(shù)形結(jié)合中的“數(shù)”主要是指數(shù)、代數(shù)式、方程、函數(shù)、數(shù)量關(guān)系等,“形”主要是指幾何圖形和函數(shù)圖像。
如筆者在教學(xué)蘇教版小學(xué)數(shù)學(xué)教材時,在課堂上注重數(shù)與形的結(jié)合,收到了不錯的效果。
一、借助“形”作為直觀工具,理解和掌握數(shù)學(xué)知識
數(shù)學(xué)家華羅庚先生曾經(jīng)說過:“數(shù)缺形時少直觀,形少數(shù)時難入微?!边@句話反映了數(shù)學(xué)中數(shù)量與形狀之間的辯證關(guān)系和數(shù)形結(jié)合的重要性。而且小學(xué)生的數(shù)學(xué)思維方式處于從具體形象思維向抽象邏輯思維轉(zhuǎn)變的過程中,因此他們也非常需要借助“形”作為直觀工具來理解數(shù)量關(guān)系,學(xué)習(xí)和掌握教材中的數(shù)學(xué)知識。
如筆者在教學(xué)蘇教版一年級上冊第五單元“認(rèn)識10以內(nèi)的數(shù)”一課時,首先引導(dǎo)學(xué)生認(rèn)識數(shù),拋出了一個問題:“5能表示哪些東西?”有的學(xué)生說“5”可以表示5支筆、5個人、5根手指頭、5本書等,有的學(xué)生說5個點(diǎn)子,有的學(xué)生說凡是有5件物品的都可以用“5”來表示。從這樣隨意親切的聊天中引導(dǎo)學(xué)生經(jīng)歷從具體實(shí)物圖過渡到抽象的點(diǎn)子圖,最后促使學(xué)生理解廣義上的“5”。當(dāng)學(xué)生理解了10以內(nèi)數(shù)的含義后,筆者借助直觀的點(diǎn)子圖引導(dǎo)學(xué)生比較10以內(nèi)數(shù)的大小,這樣學(xué)生就能把這些數(shù)按照從大到小或者從小到大的順序排列出來了。
又如筆者在教學(xué)蘇教版四年級上冊“簡單的周期”一課時,為了給予學(xué)生具體形象的感覺,筆者先出示了一幅帶有實(shí)物圖的題目:“3盆一組,每組按‘藍(lán)花、黃花、紅花的順序排列,按照盆花的排列順序,第19盆花是什么顏色?”在學(xué)生解答過程中,有的學(xué)生畫了19個具體的花盆通過數(shù)數(shù)得到了答案,有的學(xué)生用簡單的符號表示19個花盆再通過“藍(lán)、黃、紅”這樣的數(shù)數(shù)得到答案,有的學(xué)生在數(shù)數(shù)的過程中發(fā)現(xiàn)了周期問題與平均分有關(guān),聯(lián)想到可以用除法來計算。在這個教學(xué)過程中,學(xué)生經(jīng)歷了從抽象文字向具體圖形再到抽象算式這一過程,不僅讓“周期問題”用眼睛看得見,還讓“周期問題”從復(fù)雜的畫圖過渡到簡潔的除法計算。
在這些教學(xué)片段中,我們看到數(shù)學(xué)課堂上如果多呈現(xiàn)出“形”,就能從視覺上加深學(xué)生的記憶效果,有助于他們后續(xù)知識的學(xué)習(xí)。
二、滲透數(shù)軸和平面直角坐標(biāo),理解代數(shù)與幾何關(guān)系
數(shù)軸、平面直角坐標(biāo)系都是幾何中常見的學(xué)習(xí)工具,與數(shù)對、正反比例關(guān)系、位置等知識相結(jié)合,就能讓學(xué)生在幾何圖中理解代數(shù)關(guān)系,體現(xiàn)“以形助數(shù)”的思想,真正將數(shù)與形完美融合在一起。
如筆者在教學(xué)蘇教版一年級下冊第三單元“認(rèn)識100以內(nèi)的數(shù)”,為了讓學(xué)生能夠比較100以內(nèi)數(shù)的大小,筆者充分利用了數(shù)軸、計數(shù)器、算盤、百數(shù)表等工具,在數(shù)字比較中引導(dǎo)學(xué)生概括出“數(shù)位不同,數(shù)位多的數(shù)比較大”“數(shù)位相同,先比較最高位上的數(shù),最高位上的數(shù)大這位數(shù)就大;如果最高位上的數(shù)相同,就接著比較十位上的數(shù);如果十位上的數(shù)不同,十位上大的數(shù)就大;如果十位上的數(shù)相同,就比較個位上的數(shù)”。
又如筆者在教學(xué)蘇教版四年級下冊第八單元“用數(shù)對確定位置”一課時,筆者先從具體的學(xué)生座位圖導(dǎo)入教學(xué),引導(dǎo)學(xué)生用自己的方式來描述小軍坐在哪里,此時有的學(xué)生說“小軍坐在第4排第3個”,有的學(xué)生說“小軍坐在第3排第4個”。接著,筆者把座位表抽象成點(diǎn)子圖,然后引出列和行的概念,引導(dǎo)學(xué)生體會數(shù)學(xué)中的簡潔美。最后,在學(xué)生對小軍座位的各種記錄方式中,筆者介紹如何用數(shù)對來表示第幾列第幾行。整個教學(xué)過程中,筆者自然地將座位表、點(diǎn)子圖等這些“圖”與數(shù)對的“數(shù)”有機(jī)結(jié)合在一起,既讓學(xué)生在形象中理解數(shù)對的知識,還體會到數(shù)學(xué)在生活中的廣泛應(yīng)用。
在這些教學(xué)片段中,我們看到數(shù)形結(jié)合思想方法在幾何與代數(shù)領(lǐng)域的應(yīng)用價值,這樣就能讓我們在“形”中看到“數(shù)”的存在,在“數(shù)”中看到“形”的簡潔。
三、運(yùn)用統(tǒng)計圖和幾何模型,化抽象枯燥為直觀形象
統(tǒng)計圖和幾何模型是將復(fù)雜的語言文字轉(zhuǎn)變成簡單的圖表形式,因此上面的數(shù)學(xué)信息能讓讀者一目了然,并且能從表格中分析提煉出更多的信息。當(dāng)然,教師在教學(xué)統(tǒng)計圖等內(nèi)容時,需要利用具體的生活情境引導(dǎo)學(xué)生自發(fā)地聯(lián)想到用表格的方式來記錄,在思維轉(zhuǎn)變的過程中滲透數(shù)形結(jié)合的數(shù)學(xué)思想方法,感悟數(shù)學(xué)的簡潔美。
如筆者在教學(xué)蘇教版四年級上冊第四單元“統(tǒng)計表和條形統(tǒng)計圖(一)”時,筆者結(jié)合學(xué)生身邊熟悉的生活情境導(dǎo)入新課,組織學(xué)生調(diào)查“本班同學(xué)最喜歡的電視節(jié)目”,通過全班學(xué)生的共同參與,我們用“正字法”記錄了全班學(xué)生喜歡科普類、綜藝類、動畫類和體育類的人數(shù),再根據(jù)調(diào)查記錄結(jié)果轉(zhuǎn)變成統(tǒng)計表和條形統(tǒng)計圖。最后,我們從統(tǒng)計表和條形統(tǒng)計圖中提出更多相關(guān)的數(shù)學(xué)問題、提煉出更多有效的數(shù)學(xué)信息。在整個學(xué)習(xí)過程中,統(tǒng)計圖搭建起文字與圖像之間的聯(lián)系,讓文字具體化,讓圖形生動化。
又如筆者在教學(xué)蘇教版五年級上冊第六單元“統(tǒng)計表和條形統(tǒng)計圖(二)”時,這節(jié)課教學(xué)的是將幾張單式復(fù)式圖組合成一張復(fù)式統(tǒng)計圖。在課始,筆者出示了青云小學(xué)五年級四個樂器興趣小組,在尋找信息中讓學(xué)生意識到要將多張單式統(tǒng)計表制作成一張復(fù)式統(tǒng)計表。接著,學(xué)生在小組內(nèi)共同完成這張復(fù)式統(tǒng)計表,并在全班交流中完善對這張復(fù)式統(tǒng)計表的內(nèi)部結(jié)構(gòu),進(jìn)一步滲透學(xué)生數(shù)形結(jié)合和簡潔的數(shù)學(xué)思想方法。
在這些教學(xué)片段中,我們見證了統(tǒng)計圖和幾何模型能夠?qū)?fù)雜的內(nèi)容變得更加簡單,給予學(xué)生強(qiáng)烈的視覺沖突,喚醒他們在讀表讀圖中的問題意識,感悟數(shù)學(xué)的直觀形象。
四、利用代數(shù)和算術(shù)法化解難題,學(xué)會靈活運(yùn)用知識
數(shù)形結(jié)合這一數(shù)學(xué)思想方法可以將抽象的數(shù)學(xué)問題具體化,使繁難的數(shù)學(xué)問題簡單化,既能將難題轉(zhuǎn)變成簡單的題,又溝通了形象思維和抽象思維之間的關(guān)系。如筆者在教學(xué)蘇教版五年級下冊第五單元“分?jǐn)?shù)加法和減法”一課時,筆者出示了一道分?jǐn)?shù)加法題目:+…=____。學(xué)生初次見到這道題目,看到有無窮多個數(shù)相加,他們就覺得無法計算這道題目。筆者引導(dǎo)他們先觀察這道分?jǐn)?shù)加法中每個加數(shù)的特征,發(fā)現(xiàn)它們每項(xiàng)的分子都是1,后一項(xiàng)的分母是前一項(xiàng)的分母的2倍;于是筆者進(jìn)一步啟發(fā)學(xué)生從分?jǐn)?shù)加法計算聯(lián)想到幾何直觀圖,構(gòu)造出邊長是1或面積是1的正方形,先取邊長的一半為二分之一,再取剩下的一半的一半為四分之一,按照這樣的規(guī)律依次畫出小正方形,此時學(xué)生已經(jīng)從正方形中觀察到這樣無限個分?jǐn)?shù)加起來就相當(dāng)于整個正方形的面積了。因?yàn)檎麄€正方形的面積是1,所以這道分?jǐn)?shù)加法的得數(shù)就是1了。
又如筆者在教學(xué)蘇教版六年級上冊第一單元“長方體和正方體”一課時,筆者出示了一道探究類的題目:把兩個形狀和大小相同的長方體月餅盒包裝成一包,怎樣包裝最省包裝紙?此時,筆者給予學(xué)生一些學(xué)具操作,引導(dǎo)他們拼出各種不同的包裝方法,最后計算出每種不同情況下的表面積大小,尋找到最優(yōu)答案。學(xué)生通過畫圖和計算相結(jié)合,在解決問題的過程中增加了直觀想象,降低了解題的難度。
在這些教學(xué)片段中,學(xué)生把計算和解決問題等題目主動運(yùn)用畫圖等策略變成直觀的示意圖,并且學(xué)會運(yùn)用代數(shù)法和算術(shù)法靈活地解決問題。
總之,在小學(xué)數(shù)學(xué)中,“數(shù)”離不開“形”的支持,“形”離不開“數(shù)”的襯托,在很多時候都需要用到數(shù)形結(jié)合的數(shù)學(xué)思想方法。在代數(shù)知識領(lǐng)域,我們通過圖像來理解數(shù)的意義;在幾何知識領(lǐng)域,我們憑借數(shù)量來表示幾何的數(shù)量和規(guī)律。無論在教學(xué)還是解題中,只有處理好數(shù)與形這組關(guān)系,在合適的時機(jī)運(yùn)用代數(shù)解決幾何問題、運(yùn)用幾何知識解決代數(shù)問題,更完美地解決數(shù)學(xué)問題。
數(shù)學(xué)教學(xué)通訊·小學(xué)版2018年7期