王 碩 范祖森
(中國科學(xué)院生物物理研究所,北京 100101)
王 碩,女,中國科學(xué)院生物物理研究所研究員。2017年國家基金委“優(yōu)秀青年”基金獲得者。主要從事天然免疫細(xì)胞發(fā)育分化和免疫應(yīng)答研究,作為第一/共同第一作者和共同通訊作者在Cell、Nat Immunol、Immunity、J Exp Med、Nat Commun和EMBO J等國際權(quán)威雜志發(fā)表研究論文10余篇,在天然免疫細(xì)胞新亞群發(fā)現(xiàn)和免疫識(shí)別機(jī)制領(lǐng)域取得了具有國際影響力的原創(chuàng)性研究成果。
范祖森,男,中國科學(xué)院生物物理所研究員,博士生導(dǎo)師,現(xiàn)任中科院感染與免疫重點(diǎn)實(shí)驗(yàn)室副主任。2004年入選中國科學(xué)院“百人計(jì)劃”回國工作,2005年獲得基金委“杰出青年”基金,2006年入選“新世紀(jì)百千萬人才工程”國家級(jí)人才。2010年享受“國務(wù)院特殊津貼”專家。2014年獲得談家楨生命科學(xué)創(chuàng)新獎(jiǎng)。2015年被授予中科院特聘核心骨干研究員。在免疫應(yīng)答、抗感染免疫、腫瘤免疫研究方面,取得了一系列連續(xù)性、系統(tǒng)性、原創(chuàng)性、突破性的研究成果。近5年來以通訊作者在Cell、Nat Immunol(4篇)、Immunity(2篇)、Cell Stem Cell(2篇)、J Exp Med(3篇)、JCI、NSMB、Nat Commun(8篇)、 EMBO J(2篇)等國際權(quán)威期刊發(fā)表研究論文近50篇,研究成果得到國際同行的廣泛關(guān)注和認(rèn)可。
免疫細(xì)胞是免疫系統(tǒng)的重要組成部分,它們是由造血祖細(xì)胞發(fā)育分化而來[1]。免疫細(xì)胞在形成終末成熟的細(xì)胞后即具備了免疫應(yīng)答的潛能。免疫細(xì)胞通過分泌細(xì)胞因子、吞噬作用和殺傷作用等對(duì)病原體和受感染細(xì)胞進(jìn)行清除,從而控制了疾病的進(jìn)程。另一方面,疾病的發(fā)生發(fā)展過程也影響著免疫細(xì)胞的命運(yùn)。免疫細(xì)胞在成熟以后并非一直處于功能穩(wěn)定的狀態(tài),在不同的應(yīng)激條件下,能夠在不同亞群之間轉(zhuǎn)化,即具有可塑性[2]。隨著病原體刺激信號(hào)和免疫微環(huán)境的改變,免疫細(xì)胞啟動(dòng)表達(dá)不同的轉(zhuǎn)錄因子、細(xì)胞因子和表面受體等,最后形成具有另一特定功能的免疫細(xì)胞亞群,這一過程即為免疫細(xì)胞的轉(zhuǎn)分化過程[3]。轉(zhuǎn)分化過程不需要經(jīng)過前體祖細(xì)胞的分化,提高了免疫系統(tǒng)的效率。研究免疫細(xì)胞的可塑性和轉(zhuǎn)分化機(jī)制對(duì)研究疾病發(fā)生發(fā)展過程以及采取相應(yīng)的干預(yù)策略具有重要的意義。
1.1T細(xì)胞的可塑性 免疫細(xì)胞可塑性目前研究最系統(tǒng)的是T淋巴細(xì)胞[4]。Na?ve T 細(xì)胞受到不同的刺激以后分化形成不同的Th細(xì)胞亞群,它們表達(dá)特征性的細(xì)胞因子和命運(yùn)決定因子。例如Th1表達(dá)IFN-γ和T-bet,Th2表達(dá)IL-4和Gata3,Th17細(xì)胞表達(dá)IL-17和RORγt,Treg細(xì)胞表達(dá)IL-10和FoxP3, Tfh細(xì)胞表達(dá)IL-21和Bcl6。Na?ve T細(xì)胞的可塑性最強(qiáng),可以形成所有類型的Th細(xì)胞。而近幾年研究發(fā)現(xiàn),終末分化的Th細(xì)胞亞群之間也可以互相轉(zhuǎn)換[4]。在炎癥過程中,Th17和Treg細(xì)胞存在著轉(zhuǎn)分化。TGF-β會(huì)誘導(dǎo)表達(dá)FoxP3和RORγt,F(xiàn)oxP3占主導(dǎo)地位,而在TGF-β和IL-6的共同作用下會(huì)誘導(dǎo)表達(dá)RORγt。炎癥過程中產(chǎn)生大量的IL-6會(huì)誘導(dǎo)RORγt表達(dá),從而啟動(dòng)了Treg向Th17的轉(zhuǎn)分化[5]。在炎癥轉(zhuǎn)歸過程中,TGF-β和AhR信號(hào)誘導(dǎo)Th17細(xì)胞形成分泌IL-10的Treg細(xì)胞[6]。在病毒感染過程中,Th2細(xì)胞在IL-12刺激下會(huì)轉(zhuǎn)分化形成分泌IFN-γ的Th1細(xì)胞。Th17細(xì)胞在IL-12的刺激下會(huì)轉(zhuǎn)分化形成Th1細(xì)胞,而在IL-4的刺激下會(huì)形成Th2細(xì)胞。Treg細(xì)胞在B細(xì)胞和CD40-CD40L作用下會(huì)轉(zhuǎn)分化形成Tfh細(xì)胞[7]。
1.2固有淋巴樣細(xì)胞的可塑性 固有淋巴樣細(xì)胞(Innate lymphoid cell,ILC)是一類新近發(fā)現(xiàn)的不具有其他譜系特征分子的天然免疫細(xì)胞亞群[8]。根據(jù)ILC細(xì)胞分泌細(xì)胞因子的不同,可以分為ILC1、ILC2、ILC3和我們新近發(fā)現(xiàn)的調(diào)節(jié)性的ILCreg細(xì)胞。ILC1主要分泌TNF和IFN-γ介導(dǎo)胞內(nèi)菌的清除;ILC2細(xì)胞主要分泌IL-4、IL-5和IL-13介導(dǎo)過敏反應(yīng)和寄生蟲的清除;ILC3細(xì)胞主要分泌IL-17A和IL-22介導(dǎo)胞外菌的清除;而ILCreg細(xì)胞通過產(chǎn)生IL-10和TGF-β負(fù)向調(diào)節(jié)ILC細(xì)胞活性,緩解腸道炎癥[9]。最近研究發(fā)現(xiàn),不同的ILC細(xì)胞亞群之間也存在轉(zhuǎn)分化調(diào)控。在IL-12的刺激下,腸道的ILC3細(xì)胞轉(zhuǎn)分化形成ILC1細(xì)胞,并分泌大量IFN-γ,而IL-23/IL-2/IL-1β/RA可以逆轉(zhuǎn)這一過程[10]。而ILC3細(xì)胞亞型之間也存在相互轉(zhuǎn)換。在T-bet和Notch信號(hào)的刺激下,NCR-ILC3可以轉(zhuǎn)化形成NCR+ILC3,而TGF-β可以抑制NCR+ILC3的轉(zhuǎn)化[11]。肺臟的ILC2細(xì)胞能夠轉(zhuǎn)分化形成產(chǎn)生IFN-γ 的ILC1細(xì)胞,嗜酸性粒細(xì)胞分泌的IL-4可以逆轉(zhuǎn)這個(gè)過程[12]。最近研究發(fā)現(xiàn),在纖維瘤內(nèi)部NK細(xì)胞能轉(zhuǎn)分化形成ILC1細(xì)胞,轉(zhuǎn)分化形成的ILC1細(xì)胞高表達(dá)免疫抑制分子,不再具有免疫監(jiān)視功能,促進(jìn)腫瘤發(fā)展進(jìn)程[13]。
1.3巨噬細(xì)胞的可塑性 巨噬細(xì)胞可以根據(jù)其組織分布和功能進(jìn)行分類。特定組織內(nèi)的巨噬細(xì)胞包括肺臟中的肺泡巨噬細(xì)胞、腸道連接組織中的histiocyte、骨組織中的破骨細(xì)胞、腦組織中的小膠質(zhì)細(xì)胞、腸道巨噬細(xì)胞和肝臟中的Kupffer細(xì)胞等[14]。根據(jù)巨噬細(xì)胞的功能可以將巨噬細(xì)胞分為介導(dǎo)抗腫瘤和炎癥反應(yīng)的M1型巨噬細(xì)胞、介導(dǎo)組織修復(fù)的M2型巨噬細(xì)胞、分泌IL-10的調(diào)節(jié)型巨噬細(xì)胞和促進(jìn)腫瘤發(fā)生發(fā)展的髓系來源的抑制性巨噬細(xì)胞(Myeloid-derived suppressor cells,MDSC)等[15]。細(xì)菌產(chǎn)生的LPS和Th1細(xì)胞因子(如IFN-γ)能夠促進(jìn)巨噬細(xì)胞向M1型轉(zhuǎn)變,而IL-4和IL-13等Th2細(xì)胞因子促進(jìn)向M2型巨噬細(xì)胞轉(zhuǎn)變。在腫瘤發(fā)展的早期,巨噬細(xì)胞分泌大量炎性細(xì)胞因子,呈現(xiàn)M1-like的特征。在腫瘤發(fā)展的后期,巨噬細(xì)胞呈現(xiàn)免疫抑制M2-like的特征。巨噬細(xì)胞在腫瘤的發(fā)展進(jìn)程中同樣存在轉(zhuǎn)分化調(diào)控[16]。腫瘤內(nèi)部巨噬細(xì)胞的類型轉(zhuǎn)化也伴隨著能量代謝從糖酵解向氧化磷酸化的轉(zhuǎn)變[17]。通過研究巨噬細(xì)胞的可塑性調(diào)節(jié)機(jī)制,解除其在腫瘤微環(huán)境中的免疫抑制作用對(duì)腫瘤的治療有著重要的意義。
近年來發(fā)現(xiàn)肥大細(xì)胞、嗜中性粒細(xì)胞等在不同刺激條件下也具有可塑性調(diào)節(jié)。肥大細(xì)胞在高濃度的IgE刺激下會(huì)高表達(dá)FcεRI,從而促進(jìn)其免疫效應(yīng)活性[18],而在IgG刺激下肥大細(xì)胞更趨向于分泌IL-10而產(chǎn)生免疫抑制作用[19]。在TGF-β的誘導(dǎo)下,腫瘤內(nèi)部的嗜中性粒細(xì)胞由N1型向N2型轉(zhuǎn)變,促進(jìn)了腫瘤的發(fā)生發(fā)展[20]。研究免疫細(xì)胞可塑性調(diào)節(jié)過程,明確可塑性的調(diào)控機(jī)制,對(duì)進(jìn)一步加深對(duì)免疫相關(guān)疾病發(fā)生發(fā)展的認(rèn)識(shí)有著重要的意義。
終末分化的免疫細(xì)胞在發(fā)揮免疫效應(yīng)作用的同時(shí)也受到免疫微環(huán)境的調(diào)節(jié),最終導(dǎo)致免疫細(xì)胞功能和類型的轉(zhuǎn)變。這種轉(zhuǎn)變是對(duì)外部刺激的適應(yīng)性調(diào)節(jié),是一個(gè)由外而內(nèi)的調(diào)控過程。免疫細(xì)胞可塑性的調(diào)節(jié)主要包括細(xì)胞外調(diào)節(jié)、胞漿中的調(diào)節(jié)以及細(xì)胞核內(nèi)的調(diào)節(jié),整合了免疫微環(huán)境信號(hào)、細(xì)胞代謝以及細(xì)胞核轉(zhuǎn)錄調(diào)控,最終導(dǎo)致細(xì)胞命運(yùn)的改變,轉(zhuǎn)分化形成了另一類型的免疫細(xì)胞亞群。
2.1免疫微環(huán)境調(diào)節(jié) 免疫細(xì)胞所處的免疫微環(huán)境中多種成分對(duì)其功能都能產(chǎn)生不同的影響,最終導(dǎo)致免疫細(xì)胞轉(zhuǎn)分化。細(xì)胞因子是調(diào)控免疫細(xì)胞轉(zhuǎn)分化最重要的外部調(diào)控因素。早期研究中發(fā)現(xiàn),IL-4 促進(jìn)了Th2細(xì)胞的分化,而IL-12促進(jìn)了Th1細(xì)胞的分化。Th1細(xì)胞在IL-4或者寄生蟲感染時(shí)能夠轉(zhuǎn)分化為分泌IL-4的Th2細(xì)胞。Th2細(xì)胞在IL-12和IFN-γ刺激下能夠分泌Th1細(xì)胞因子[21]。TGF-β對(duì)于Th17向Treg細(xì)胞的轉(zhuǎn)分化至關(guān)重要[6,22]。Treg細(xì)胞在IL-6、IL-1β和 IL-23的共同作用下會(huì)向Th17細(xì)胞轉(zhuǎn)變[23]。一些關(guān)鍵性的細(xì)胞因子與細(xì)胞命運(yùn)有著密切聯(lián)系。例如,在IL-12刺激下,Th2、Tfh、Th17和Treg細(xì)胞均能夠轉(zhuǎn)分化形成Th1細(xì)胞并分泌IFN-γ。IL-4對(duì)于Th2細(xì)胞的轉(zhuǎn)分化至關(guān)重要,能夠促使Th1、Th9、Tfh和Th17等細(xì)胞產(chǎn)生Th2細(xì)胞因子。與T細(xì)胞類似,IL-12能夠促進(jìn)ILC3和ILC2細(xì)胞向ILC1細(xì)胞轉(zhuǎn)分化,IL-4能誘導(dǎo)ILC3和ILC1細(xì)胞向ILC2細(xì)胞轉(zhuǎn)分化。TGF-β促進(jìn)抑制性細(xì)胞類型的轉(zhuǎn)變,例如Th17細(xì)胞向Treg細(xì)胞轉(zhuǎn)分化,M1型巨噬細(xì)胞向M2型的轉(zhuǎn)分化,N1型嗜中性粒細(xì)胞向N2型的轉(zhuǎn)分化。
除此之外,細(xì)胞外調(diào)節(jié)還包括抗原與抗原受體作用的調(diào)控。以T細(xì)胞為例,MHC分子遞呈抗原和受體之間的親和力對(duì)于T細(xì)胞的命運(yùn)決定有著重要調(diào)控作用。高親和力的作用促進(jìn)了Th1細(xì)胞分化,低親和力的作用促進(jìn)了Th2或Tfh細(xì)胞分化[24,25]。瞬時(shí)的或者是低親和力的TCR信號(hào)還能促進(jìn)FoxP3的表達(dá),從而誘導(dǎo)了Treg細(xì)胞分化[26]。細(xì)胞因子和抗原等通過激活與之對(duì)應(yīng)的受體,活化了細(xì)胞內(nèi)的信號(hào)通路,連接了細(xì)胞外和細(xì)胞內(nèi)的信號(hào)傳遞。
2.2細(xì)胞漿中的信號(hào)轉(zhuǎn)導(dǎo)調(diào)控 細(xì)胞外信號(hào)通過免疫細(xì)胞表面受體活化了細(xì)胞內(nèi)的信號(hào)轉(zhuǎn)導(dǎo)通路。細(xì)胞表面受體的活化激活了JAK-STAT通路,STAT入核作為轉(zhuǎn)錄因子啟動(dòng)了轉(zhuǎn)錄調(diào)控網(wǎng)絡(luò)。在Th17細(xì)胞向Th1細(xì)胞轉(zhuǎn)分化過程中,IL-12活化了STAT4,促進(jìn)了IFN-γ等Th1相關(guān)分子的表達(dá)[27];IL-6和 IL-23的組合促進(jìn)了STAT3的活化和向Treg細(xì)胞的分化[28]。PI3K-AKT-mTOR信號(hào)通路在T細(xì)胞可塑性調(diào)控方面發(fā)揮著重要作用。PI3K通過產(chǎn)生的PIP3活化了AKT,AKT進(jìn)一步磷酸化mTORC1并使其活化[29]。PI3K-AKT-mTOR通路在Treg細(xì)胞中被PTEN分子抑制,PTEN缺失會(huì)導(dǎo)致Treg細(xì)胞大量減少,誘導(dǎo)產(chǎn)生炎性的Th17和Th1細(xì)胞[30,31]。mTOR的缺失和雷帕霉素處理均會(huì)促進(jìn)Treg細(xì)胞的分化,mTOR的高度活化會(huì)導(dǎo)致FoxP3蛋白穩(wěn)定性降低,促進(jìn)Treg細(xì)胞向Th17細(xì)胞分化[32,33]。
細(xì)胞內(nèi)的代謝水平對(duì)免疫細(xì)胞的可塑性調(diào)控也有著重要作用。免疫細(xì)胞的代謝水平和代謝方式對(duì)其命運(yùn)決定有著重要作用。以T細(xì)胞為例,CD28信號(hào)能夠?qū)細(xì)胞的代謝從氧化磷酸化轉(zhuǎn)向糖酵解途徑[34]。Treg細(xì)胞代謝不依賴糖酵解途徑,而主要是依賴氧化磷酸化獲得能量。腸道共生菌產(chǎn)生的短鏈脂肪酸能夠促進(jìn)FoxP3的表達(dá),從而誘導(dǎo)Treg細(xì)胞分化[35]。轉(zhuǎn)錄因子HIF1α能夠促進(jìn)糖酵解基因的表達(dá),誘導(dǎo)轉(zhuǎn)錄因子RORγt表達(dá),從而促進(jìn)了Th17細(xì)胞的分化。在Treg細(xì)胞中HIF1α表達(dá)量很低,如果Treg細(xì)胞中HIF1α被高表達(dá),則會(huì)抑制FoxP3表達(dá),導(dǎo)致Treg細(xì)胞分泌IFN-γ[36,37]。細(xì)胞內(nèi)的AMP/ATP比例升高會(huì)引起AMPK激酶活化,AMPK的活化抑制了能量消耗過程(包括蛋白、膽固醇和脂肪酸的合成),而促進(jìn)了能量產(chǎn)生過程(包括葡萄糖的攝入和脂肪酸的氧化過程)。AMPK能夠抑制mTOR通路,AMPK缺失促進(jìn)HIF1α的表達(dá)和mTOR的活化,T細(xì)胞表達(dá)更多的炎性細(xì)胞因子[38]。巨噬細(xì)胞的分化與代謝也有著密切關(guān)系。IFN-γ和LPS誘導(dǎo)細(xì)胞進(jìn)行糖酵解,誘導(dǎo)HIF1a轉(zhuǎn)錄因子表達(dá),促進(jìn)了M1型細(xì)胞分化和炎性細(xì)胞因子分泌,IL-4誘導(dǎo)氧化磷酸化促進(jìn)了M2型細(xì)胞分化[39]。
2.3基因轉(zhuǎn)錄調(diào)控 免疫細(xì)胞命運(yùn)改變的關(guān)鍵是命運(yùn)決定因子的表達(dá)。不同類型的免疫細(xì)胞亞類均有著各自相關(guān)的命運(yùn)決定因子,它們是重要的轉(zhuǎn)錄因子,啟動(dòng)了相關(guān)的細(xì)胞因子、信號(hào)分子以及表面受體等的表達(dá)。這些轉(zhuǎn)錄因子之間有著相互制約的調(diào)控機(jī)制,例如T-bet抑制RORγt、GATA3的表達(dá),從而促使T細(xì)胞向Th1型或ILC細(xì)胞向ILC1型細(xì)胞轉(zhuǎn)變[40]。這些轉(zhuǎn)錄因子是免疫細(xì)胞命運(yùn)決定的執(zhí)行者,然而,只有這些命運(yùn)因子的表達(dá)并不足以介導(dǎo)免疫細(xì)胞亞類之間的轉(zhuǎn)分化。轉(zhuǎn)錄因子調(diào)控基因位點(diǎn)的開放程度同樣對(duì)于免疫細(xì)胞的命運(yùn)決定至關(guān)重要?;蚪M的開放程度受到表觀遺傳相關(guān)蛋白和復(fù)合物的調(diào)控。表觀遺傳的調(diào)控包括DNA甲基化和組蛋白修飾的調(diào)控?;蚪MDNA的開放程度受到組蛋白乙酰轉(zhuǎn)移酶(Histone acetyltransferase,HAT)、組蛋白甲基轉(zhuǎn)移酶(Histone methyltransferase,HMT)、組蛋白賴氨酸去甲基化酶(Histone lysine demethylase,KDM)、TET雙加氧酶等蛋白的調(diào)控。CBP/p300是一類HAT,它能夠維持Foxp3基因位點(diǎn)的開放,CBP/p300的缺失會(huì)抑制Foxp3基因表達(dá)而促進(jìn)IL-17表達(dá)[41]。KMT2A是HMT的一類成員,對(duì)于H3K4的甲基化至關(guān)重要,KMT2A對(duì)于記憶性的Th2細(xì)胞而不是Th1細(xì)胞的分化起著重要作用[42]。
DNA的開放程度的負(fù)向調(diào)節(jié)主要包括DNA甲基化修飾和轉(zhuǎn)錄抑制復(fù)合物的調(diào)控。DNA甲基轉(zhuǎn)移酶DNMT3a在其他的T細(xì)胞亞類中募集到Foxp3基因位點(diǎn),抑制Foxp3基因表達(dá)。DNMT3a若不能正確募集到Foxp3基因位點(diǎn),則會(huì)導(dǎo)致其他亞類的T細(xì)胞表達(dá)Foxp3[43]。在Treg細(xì)胞中組蛋白去乙?;窰DAC3與FoxP3蛋白相互作用抑制了IL-2和IL-17的表達(dá)。HDAC抑制劑能夠穩(wěn)定Foxp3基因的表達(dá)并抑制IL-17的表達(dá)[44]。H3K27組蛋白甲基轉(zhuǎn)移酶EZH2與PRC2相互作用抑制了Th1和Th2細(xì)胞的分化,抑制了IFN-γ表達(dá),促進(jìn)了T細(xì)胞向Treg細(xì)胞的分化[45]。Th17細(xì)胞的分化被PRC2復(fù)合物抑制,PRC1復(fù)合物能夠識(shí)別H3K27修飾,抑制染色質(zhì)開放,PRC1復(fù)合物促進(jìn)了Th2細(xì)胞分化抑制了Th1細(xì)胞的分化[46]。ILC細(xì)胞的分化同樣受到表觀遺傳復(fù)合物的調(diào)節(jié)。染色質(zhì)重塑復(fù)合物BAF復(fù)合物中的Arid1a能夠募集到Ahr基因的啟動(dòng)子區(qū)域介導(dǎo)了ILC3細(xì)胞的分化[47]。非編碼長鏈RNA lncKdm2b能夠通過募集染色質(zhì)重塑復(fù)合物NURF復(fù)合物,調(diào)控轉(zhuǎn)錄因子Zfp292表達(dá),從而促進(jìn)了ILC3細(xì)胞分化[48]。
圖1 T細(xì)胞可塑性調(diào)控Fig.1 Plasticity of T lymphocyteNote:A.Na?ve T cell can differentiate to different types of Th subsets under variety of stimuli.IL-12 drive the differentiation of Th1 cells.IL-4 contributes to the formation of Th2 cells.IL-6/TGF-β induce Th17 cell differentiation.IL-21 promotes the differentiation of Tfh cells;B.Transdifferentiation of T cell subsets.Th2/Th17/Treg/Tfh cells can differentiate to Th1 cells under the stimulation of IL-12.IL-4 induces the transdifferentiation of other Th cells to Th2 cells.Treg cells can switch to Th17 cells under IL-6/IL-21 stimulation,and TGF-β/AhR signaling drive the reversion of them.Treg/Th17 cells can become Tfh cells with the stimulation of CD40-CD40L.
在免疫相關(guān)的疾病(如病原體感染、自身免疫性疾病和腫瘤等)中,免疫細(xì)胞的轉(zhuǎn)分化是普遍存在的[49]。在Ⅰ型糖尿病患者的外周血中,能夠檢測到分泌IFN-γ的Treg細(xì)胞,Treg細(xì)胞相關(guān)基因的甲基化程度升高,Helios等基因表達(dá)被抑制,Th1細(xì)胞相關(guān)的基因如Tbx21和Cxcr3等基因開放程度增加。多發(fā)性硬化癥患者體內(nèi)同樣發(fā)現(xiàn)了存在分泌IFN-γ的Treg細(xì)胞,體外通過IFN-γ抗體處理后可以逆轉(zhuǎn)Treg向Th1類細(xì)胞的轉(zhuǎn)分化[50]。在類風(fēng)濕性關(guān)節(jié)炎患者中,CD25lowFoxp3+CD4+Treg細(xì)胞能夠分泌IL-17,將患者關(guān)節(jié)處的成纖維細(xì)胞與Treg細(xì)胞共培養(yǎng),可以誘導(dǎo)Treg細(xì)胞向Th17細(xì)胞的轉(zhuǎn)分化[51]。結(jié)腸癌患者體內(nèi)出現(xiàn)了表達(dá)RORγt轉(zhuǎn)錄因子的Treg細(xì)胞,特異性清除這類細(xì)胞能夠在一定程度上抑制結(jié)腸癌的發(fā)生發(fā)展[52]。食物過敏兒童的外周血中Treg細(xì)胞分泌IL-4,呈現(xiàn)Th2細(xì)胞的表型[53]。哮喘患者體內(nèi)有分泌IL-17A的Th2細(xì)胞[54]。
T細(xì)胞的轉(zhuǎn)分化與疾病進(jìn)程密切相關(guān),通過利用T細(xì)胞可塑性調(diào)節(jié)能夠在一定程度上控制疾病的進(jìn)程。疾病的進(jìn)程改變了免疫微環(huán)境,那么免疫細(xì)胞的轉(zhuǎn)分化是疾病發(fā)生發(fā)展的原因還是結(jié)果?通過小鼠模型研究發(fā)現(xiàn),轉(zhuǎn)分化形成的Th17或是Treg細(xì)胞對(duì)于炎癥或是免疫抑制都有著重要的作用,通過逆轉(zhuǎn)轉(zhuǎn)分化過程,能夠緩解疾病進(jìn)程[55]。在一類由于HTLV1感染引起的神經(jīng)性炎癥患者體內(nèi),HTLV1病毒通過感染Treg細(xì)胞從而促使Treg細(xì)胞向分泌IFN-γ的Th1細(xì)胞轉(zhuǎn)變,從而導(dǎo)致了神經(jīng)系統(tǒng)病變[56]。由此可見,免疫細(xì)胞的可塑性調(diào)控在誘導(dǎo)疾病演進(jìn)過程中發(fā)揮著重要的調(diào)節(jié)作用。
腸道中產(chǎn)生IFN-γ的ILC1細(xì)胞在正常狀態(tài)下細(xì)胞數(shù)量很少,ILC3細(xì)胞主要產(chǎn)生IL-22維持腸道穩(wěn)態(tài)。而在克羅恩氏病(Crohn′s)患者腸道中存在大量產(chǎn)生IFN-γ的ILC細(xì)胞[57]。這些細(xì)胞的轉(zhuǎn)分化與腸炎的發(fā)生發(fā)展有著密切關(guān)系。在李斯特菌感染過程中,循環(huán)的單核細(xì)胞會(huì)分化形成炎性的M1型巨噬細(xì)胞,對(duì)病原體和感染細(xì)胞進(jìn)行清除,而在感染后期M1型巨噬細(xì)胞會(huì)轉(zhuǎn)分化形成M2型巨噬細(xì)胞介導(dǎo)組織修復(fù)[58]。巨噬細(xì)胞的類型轉(zhuǎn)變同樣出現(xiàn)在腫瘤進(jìn)程中,腫瘤形成初期以M1型巨噬細(xì)胞為主,而在腫瘤發(fā)展后期轉(zhuǎn)分化為M2型巨噬細(xì)胞,抑制了免疫效應(yīng)細(xì)胞的作用,促進(jìn)腫瘤增殖和轉(zhuǎn)移[16]。在受感染或是疾病狀態(tài)下,維持穩(wěn)態(tài)的免疫細(xì)胞向炎性免疫細(xì)胞轉(zhuǎn)分化,介導(dǎo)病原體或是抗原清除反應(yīng),而在免疫反應(yīng)后期的轉(zhuǎn)歸階段,炎性細(xì)胞則會(huì)向免疫抑制細(xì)胞或是組織修復(fù)細(xì)胞類型轉(zhuǎn)化。而在腫瘤的發(fā)生發(fā)展過程中,這種轉(zhuǎn)化導(dǎo)致對(duì)腫瘤的免疫耐受,促進(jìn)了腫瘤的免疫逃逸。
免疫細(xì)胞的可塑性調(diào)控與疾病的進(jìn)程緊密聯(lián)系,在病原體感染、自身免疫性疾病和腫瘤等免疫相關(guān)疾病中均存在免疫細(xì)胞轉(zhuǎn)分化的過程。我國在免疫細(xì)胞可塑性研究方面尚處在起步階段,關(guān)于細(xì)胞可塑性的研究多集中在干祖細(xì)胞的分化和重編程調(diào)控,免疫細(xì)胞的轉(zhuǎn)分化調(diào)控報(bào)道較少。通過免疫細(xì)胞的可塑性研究,發(fā)現(xiàn)疾病過程中新的免疫細(xì)胞轉(zhuǎn)分化形式,揭示免疫細(xì)胞轉(zhuǎn)分化的重要調(diào)控機(jī)制是免疫領(lǐng)域的重要科學(xué)問題,具有重要科學(xué)意義。通過研究疾病演進(jìn)過程中免疫細(xì)胞轉(zhuǎn)分化的調(diào)控機(jī)制,必將針對(duì)不同階段的免疫細(xì)胞特性促進(jìn)、抑制或是逆轉(zhuǎn)轉(zhuǎn)分化過程設(shè)計(jì)不同的干預(yù)策略和手段,為免疫相關(guān)疾病的防治提供重要的理論依據(jù)和新策略。
參考文獻(xiàn):
[1] Orkin SH,Zon LI,Hematopoiesis:an evolving paradigm for stem cell biology[J].Cell,2008,132(4):631-644.
[2] Murphy KM,Stockinger B,Effector T cell plasticity:flexibility in the face of changing circumstances[J].Nat Immunol,2010,11(8):674-680.
[3] Kanno Y,Vahedi G,Hirahara K,etal.Transcriptional and epigenetic control of T helper cell specification:molecular mechanisms underlying commitment and plasticity[J].Annu Rev Immunol,2012,30:707-731.
[4] Zhou L,Chong MM,Littman DR,Plasticity of CD4+T cell lineage differentiation[J].Immunity,2009,30(5):646-655.
[5] Zhou L,Lopes JE,Chong MM,etal.TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function[J].Nature,2008,453(7192):236-240.
[6] Gagliani N,Amezcua Vesely MC,Iseppon A,etal.Th17 cells transdifferentiate into regulatory T cells during resolution of inflammation[J].Nature,2015,523(7559):221-225.
[7] Cannons JL,Lu KT,Schwartzberg PL.T follicular helper cell diversity and plasticity[J].Trends Immunol,2013,34(5):200-207.
[8] Artis D,Spits H,The biology of innate lymphoid cells[J].Nature,2015,517(7534):293-301.
[9] Wang S,Xia P,Chen Y,etal.Regulatory innate lymphoid cells control innate intestinal inflammation[J].Cell,2017,171(1):201-216.e218.
[10] Bernink JH,Krabbendam L,Germar K,etal.Interleukin-12 and -23 control plasticity of CD127(+) group 1 and group 3 innate lymphoid cells in the intestinal lamina propria[J].Immunity,2015,43(1):146-160.
[11] Chea S,Perchet T,Petit M,etal.Notch signaling in group 3 innate lymphoid cells modulates their plasticity[J].Sci Signal,2016,9(426):ra45.
[12] Bal SM,Bernink JH,Nagasawa M,etal.IL-1beta,IL-4 and IL-12 control the fate of group 2 innate lymphoid cells in human airway inflammation in the lungs[J].Nat Immunol,2016,17(6):636-645.
[13] Gao Y,Souza-Fonseca-Guimaraes F,Bald T,etal.Tumor immunoevasion by the conversion of effector NK cells into type 1 innate lymphoid cells[J].Nat Immunol,2017,18(9):1004-1015.
[14] Nahrendorf M,Swirski FK.Monocyte and macrophage heterogeneity in the heart[J].Circ Res,2013,112(12):1624-1633.
[15] Mosser DM,Edwards JP.Exploring the full spectrum of macrophage activation[J].Nat Rev Immunol,2008,8(12):958-969.
[16] Biswas SK,Mantovani A.Macrophage plasticity and interaction with lymphocyte subsets:cancer as a paradigm[J].Nat Immunol,2010,11(10):889-896.
[17] Biswas SK.Metabolic reprogramming of immune cells in cancer progression[J].Immunity,2015,43(3):435-449.
[18] Kawakami T,Galli SJ.Regulation of mast-cell and basophil function and survival by IgE[J].Nat Rev Immunol,2002,2(10):773-786.
[19] Grimbaldeston MA,Nakae S,Kalesnikoff J,etal.Mast cell-derived interleukin 10 limits skin pathology in contact dermatitis and chronic irradiation with ultraviolet B[J].Nat Immunol,2007,8(10):1095-1104.
[20] Fridlender ZG,Sun J,Kim S,etal.Polarization of tumor-associated neutrophil phenotype by TGF-beta:"N1" versus "N2" TAN[J].Cancer Cell,2009,16(3):183-194.
[21] Abbas AK,Murphy KM,Sher A,Functional diversity of helper T lymphocytes[J].Nature,1996,383(6603):787-793.
[22] Bettelli E,Carrier Y,Gao W,etal.Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells[J].Nature,2006,441(7090):235-238.
[23] Yang XO,Nurieva R,Martinez GJ,etal.Molecular antagonism and plasticity of regulatory and inflammatory T cell programs[J].Immunity,2008,29(1):44-56.
[24] van Panhuys N,Klauschen F,Germain RN.T-cell-receptor-dependent signal intensity dominantly controls CD4(+) T cell polarization in vivo[J].Immunity,2014,41(1):63-74.
[25] Fazilleau N,McHeyzer-Williams LJ,Rosen H,etal.The function of follicular helper T cells is regulated by the strength of T cell antigen receptor binding[J].Nat Immunol,2009,10(4):375-384.
[26] Gottschalk RA,Corse E,Allison JP.TCR ligand density and affinity determine peripheral induction of Foxp3 in vivo[J].J Exp Med,2010,207(8):1701-1711.
[27] Lee YK,Turner H,Maynard CL,etal.Late developmental plasticity in the T helper 17 lineage[J].Immunity,2009,30(1):92-107.
[28] Stumhofer JS,Silver JS,Laurence A,etal.Interleukins 27 and 6 induce STAT3-mediated T cell production of interleukin 10[J].Nat Immunol,2007,8(12):1363-1371.
[29] Jewell JL,Russell RC,Guan KL.Amino acid signalling upstream of mTOR[J].Nat Rev Mol Cell Biol,2013,14(3):133-139.
[30] Walsh PT,Buckler JL,Zhang J,etal.PTEN inhibits IL-2 receptor-mediated expansion of CD4+CD25+Tregs[J].J Clin Invest,2006,116(9):2521-2531.
[31] Shrestha S,Yang K,Guy C,etal.Treg cells require the phosphatase PTEN to restrain TH1 and TFH cell responses[J].Nat Immunol,2015,16(2):178-187.
[32] Zeng H,Yang K,Cloer C,etal.mTORC1 couples immune signals and metabolic programming to establish T(reg)-cell function[J].Nature,2013,499(7459):485-490.
[33] Park Y,Jin HS,Lopez J,etal.TSC1 regulates the balance between effector and regulatory T cells[J].J Clin Invest,2013,123(12):5165-5178.
[34] Frauwirth KA,Riley JL,Harris MH,etal.The CD28 signaling pathway regulates glucose metabolism[J].Immunity,2002,16(6):769-777.
[35] Furusawa Y,Obata Y,Fukuda S,etal.Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells[J].Nature,2013,504(7480):446-450.
[36] Shi LZ,Wang R,Huang G,etal.HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells[J].J Exp Med,2011,208(7):1367-1376.
[37] Dang EV,Barbi J,Yang HY,etal.Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1[J].Cell,2011,146(5):772-784.
[38] Blagih J,Coulombe F,Vincent EE,etal.The energy sensor AMPK regulates T cell metabolic adaptation and effector responses in vivo[J].Immunity,2015,42(1):41-54.
[39] Odegaard JI,Chawla A.Alternative macrophage activation and metabolism[J].Annu Rev Pathol,2011,6:275-297.
[40] Oestreich KJ,Weinmann AS.Master regulators or lineage-specifying? Changing views on CD4+T cell transcription factors[J].Nat Rev Immunol,2012,12(11):799-804.
[41] Liu Y,Wang L,Han R,etal.Two histone/protein acetyltransferases,CBP and p300,are indispensable for Foxp3+T-regulatory cell development and function[J].Mol Cell Biol,2014,34(21):3993-4007.
[42] Yamashita M,Hirahara K,Shinnakasu R,etal.Crucial role of MLL for the maintenance of memory T helper type 2 cell responses[J].Immunity,2006,24(5):611-622.
[43] Liu B,Tahk S,Yee KM,etal.The ligase PIAS1 restricts natural regulatory T cell differentiation by epigenetic repression[J].Science,2010,330(6003):521-525.
[44] Wang L,Liu Y,Han R,etal.FOXP3+regulatory T cell development and function require histone/protein deacetylase 3[J].J Clin Invest,2015,125(3):1111-1123.
[45] DuPage M,Chopra G,Quiros J,etal.The chromatin-modifying enzyme Ezh2 is critical for the maintenance of regulatory T cell identity after activation[J].Immunity,2015,42(2):227-238.
[46] Tumes DJ,Onodera A,Suzuki A,etal.The polycomb protein Ezh2 regulates differentiation and plasticity of CD4(+) T helper type 1 and type 2 cells[J].Immunity,2013,39(5):819-832.
[47] Xia P,Liu J,Wang S,etal.WASH maintains NKp46(+) ILC3 cells by promoting AHR expression[J].Nat Commun,2017,8:15685.
[48] Liu B,Ye B,Yang L,etal.Long noncoding RNA lncKdm2b is required for ILC3 maintenance by initiation of Zfp292 expression[J].Nat Immunol,2017,18(5):499-508.
[49] DuPage M,Bluestone JA.Harnessing the plasticity of CD4(+) T cells to treat immune-mediated disease[J].Nat Rev Immunol,2016,16(3):149-163.
[50] Dominguez-Villar M,Baecher-Allan CM,Hafler DA.Identification of T helper type 1-like,Foxp3+regulatory T cells in human autoimmune disease[J].Nat Med,2011,17(6):673-675.
[51] Komatsu N,Okamoto K,Sawa S,etal.Pathogenic conversion of Foxp3+T cells into TH17 cells in autoimmune arthritis[J].Nat Med,2014,20(1):62-68.
[52] Blatner NR,Mulcahy MF,Dennis KL,etal.Expression of RORgammat marks a pathogenic regulatory T cell subset in human colon cancer[J].Sci Transl Med,2012,4(164):164ra159.
[53] Noval Rivas M,Burton OT,Wise P,etal.Regulatory T cell reprogramming toward a Th2-cell-like lineage impairs oral tolerance and promotes food allergy[J].Immunity,2015,42(3):512-523.
[54] Wang YH,Voo KS,Liu B,etal.A novel subset of CD4(+) T(H)2 memory/effector cells that produce inflammatory IL-17 cytokine and promote the exacerbation of chronic allergic asthma[J].J Exp Med,2010,207(11):2479-2491.
[55] Hirota K,Turner JE,Villa M,etal.Plasticity of Th17 cells in Peyer′s patches is responsible for the induction of T cell-dependent IgA responses[J].Nat Immunol,2013,14(4):372-379.
[56] Araya N,Sato T,Ando H,etal.HTLV-1 induces a Th1-like state in CD4+CCR4+T cells[J].J Clin Invest,2014,124(8):3431-3442.
[57] Almeida FF,Belz GT.Innate lymphoid cells:models of plasticity for immune homeostasis and rapid responsiveness in protection[J].Mucosal Immunol,2016,9(5):1103-1112.
[58] Gordon S,Taylor PR.Monocyte and macrophage heterogeneity[J].Nat Rev Immunol,2005,5(12):953-964.