生玉秋 宋丹 許璐珂 楊婷 賀三亭
摘 要:為了研究剩余類環(huán)上對稱矩陣模的保行列式的加法映射,首先說明這類加法映射其實都是線性的,然后通過合同變換,利用數(shù)論知識和行列式運算并借助于整數(shù)的標(biāo)準(zhǔn)素分解進(jìn)行分類討論,以確定主要基底的像,再利用映射的線性性質(zhì)確定所有矩陣的像,并討論了本質(zhì)上屬于同一類映射的映射形式之間的關(guān)系。結(jié)果表明,剩余類環(huán)上二階對稱矩陣模上保行列式的加法映射都是規(guī)范的。研究方法解決了一般環(huán)上非零元未必有逆的本質(zhì)帶來的困難,將基礎(chǔ)集擴展到剩余類環(huán)上,此結(jié)果可以看作是保行列式問題向環(huán)靠近的一小步,改進(jìn)了線性保持問題的已有結(jié)果,對剩余類環(huán)上的其他保持問題的研究也具有參考價值。
關(guān)鍵詞:線性代數(shù);加法映射;剩余類環(huán);矩陣模;保行列式
中圖分類號:O151.21?MSC(2010)主題分類:15A86?文獻(xiàn)標(biāo)志碼:A
文章編號:1008-1542(2018)06-0527-05
4?結(jié)?語
本文主要刻畫了剩余類環(huán)上的二階矩陣模上的保行列式的線性映射的具體形式,將保行列式問題的基礎(chǔ)集從域擴展到了環(huán),改進(jìn)了已有文獻(xiàn)的結(jié)果。另外,數(shù)論理論的應(yīng)用在保持問題中還未有過,它主要用來克服一般環(huán)中非零元未必有逆帶來的困擾,也給其他保持問題的解決提供了借鑒,但畢竟剩余類環(huán)相對特殊,未來還應(yīng)著力在除環(huán)或特殊的整環(huán)以至一般的交換環(huán)上考慮這類問題。
參考文獻(xiàn)/References:
[1]?FROBENIUS G.ber die Darstellung Der Endlichen Gruppen Durch Lineare Substitutionen [M]. Berlin: Sitzungsber Deutsch Akad Wiss , 1897.
[2]?EATON M L. On linear transformations which preserve the determinant[J]. Illinois Journal of Mathematics,1969, 13(4): 722-727.
[3]LAUTEMANN C. Linear transformations on matrices: Rank preservers and determinant preservers[J]. Linear and Multilinear Algebra,1981, 10(4):343-345.
[4]?DOLINAR G,EMRL P. Determinant preserving maps on matrix algebras[J]. Linear Algebra and Its Applications, 2002, 348(1/2/3): 189-192.
[5]?TAN V,WANG F. On determinant preserver problems[J]. Linear Algebra and Its Applications, 2003, 369(1):311-317.
[6]?CAO Chongguang, TANG Xiaomin. Determinant preserving transformations on symmetric matrix spaces[J]. Electronic Journal of Linear Algebra, 2004,11(1):205-211.
[7]?ZHANG Xian, TANG Xiaomin, CAO Chongguang. Preserver Problems on Spaces of Matrices[M]. Beijing: Science Press, 2007.
[8]?HUANG Huajun, LIU C N, SZOKOL P, et al. Trace and determinant preserving maps of matrices[J]. Linear Algebra and Its Applications, 2016,507(15): 373-388.
[9]?GERGO N. Determinant preserving maps: An infinite dimensional version of a theorem of frobenius[J]. Linear and Multilinear Algebra,2017, 65(2):351-360.
[10]MARCELL G, SOUMYASHANT N. On a class of determinant preserving maps for finite von Neumann algebras[J]. Jouranl of Mathematical Analysis and Applications, 2018, 464(1):317-327.
[11]GOLBERG M A. The derivative of a determinant[J]. American Mathematical Monthly, 1972,79(10): 1124-1126.
[12]PIERCE S. A survey of linear preserver problems[J]. Pacific Journal of Mathematics, 1992, 204(2):257-271.
[13]AUPETIT B. Spectrum-preserving linear mappings between Banach algebras or Jordan-Banach algebras[J]. Journal of the London Mathematical Society, 2000, 62(3): 917-924.
[14]GUTERMAN A, LI C K, EMRL P. Some general techniques on linear preserver problems[J]. Linear Algebra and Its Applications, 2000, 315(1/3): 61-81.
[15]LI C K, TSING N K. Linear preserver problems: A brief introduction and some special techniques[J]. Linear Algebra and Its Applications, 1992, 162(2):217-235.
[16]LI C K, PIERSE S. Linear preserver problems[J]. American Mathematical Monthly , 2001, 108(7):591-605.
[17]EMRL P. Maps on matrix spaces[J]. Linear Algebra and Its Applications, 2006, 413(2): 364-393.
[18]DUFFNER M A, CRUZ H F D.Rank nonincreasing linear maps preserving the determinant of tensor product of matrices[J]. Linear Algebra and Its Applications, 2016, 510(1): 186-191.
[19]DING Yuting, FOSNER A, XU Jinli, et al. Linear maps preserving determinant of tensor products of Hermitian matrices[J]. Journal of Mathematical Analysis and Applications, 2016, 446(2):1139-1153.
[20]HARDY Y,F(xiàn)OSNER A. Linear maps preserving kronecker quotients[J]. Linear Algebra and Its Applications,2018, 556(2): 200-209.
[21]JI Youqing, LIU Ting, ZHU Sen. On linear maps preserving complex symmetry[J]. Journal of Mathematical Analysis and Applications, 2018, 468(1):1144-1163.
[22]COSTARA C. Linear surjective maps preserving at least one element from the local spectrum[J]. Proceedings of the Edinburgh Mathematical Society, 2018, 61(1):169-175.
[23]ZHANG Jiayu, SHENG Yuqiu. Additive maps preserving determinant on modules of matrices over [J]. International Research Journal of Pure Algebra, 2017, 7(4): 513-521.