張祖勇 程洪強(qiáng) 董曉巧 王昊 張仕蓉
腦膠質(zhì)瘤小鼠模型構(gòu)建研究進(jìn)展
張祖勇 程洪強(qiáng) 董曉巧 王昊 張仕蓉
腦膠質(zhì)瘤(glioma)是一種常見(jiàn)的腦腫瘤,根據(jù)細(xì)胞形態(tài)等組織學(xué)特征,可以分成Ⅳ級(jí),其中Ⅰ、Ⅱ級(jí)為進(jìn)展慢,惡性程度低的低級(jí)別膠質(zhì)瘤;而Ⅲ、Ⅳ級(jí)為惡性程度高的高級(jí)別腫瘤,包括最常見(jiàn)的多形性膠質(zhì)母細(xì)胞瘤(glioblastoma multiforme,GBM)。膠質(zhì)母細(xì)胞瘤惡性程度高,患者生存時(shí)間短,1年生存率<50%,5年生存率<5%[1]。世界衛(wèi)生組織建議根據(jù)基因突變的分子病理特征對(duì)膠質(zhì)瘤進(jìn)行分型,指導(dǎo)患者的管理和藥物使用[2-4]。目前對(duì)膠質(zhì)瘤的治療方法主要是手術(shù)切除,輔助以術(shù)后放化療。由于膠質(zhì)瘤的高度侵襲性無(wú)法完全去除腫瘤細(xì)胞。血腦屏障的存在降低化療藥物治療效果,膠質(zhì)瘤患者術(shù)后易復(fù)發(fā)[1]。對(duì)膠質(zhì)瘤發(fā)生的分子與細(xì)胞水平的認(rèn)識(shí)及新型治療藥物的研發(fā)均需要模式生物[5]。本文對(duì)膠質(zhì)瘤研究中的小鼠模型進(jìn)行綜述。
上世紀(jì)70年代用致癌劑誘導(dǎo)動(dòng)物產(chǎn)生彌漫性膠質(zhì)瘤是早期廣泛使用的膠質(zhì)瘤動(dòng)物模型。孕鼠尾靜脈注射亞硝基硫脲(N-ethyl-N-Nitrosourea,NEU)導(dǎo)致多數(shù)宮內(nèi)暴露致癌劑仔鼠發(fā)生膠質(zhì)瘤(成年動(dòng)物注射致癌劑不能產(chǎn)生腦瘤)[6]。對(duì)化學(xué)誘變產(chǎn)生的膠質(zhì)瘤進(jìn)行基因變異分析,發(fā)現(xiàn)存在與臨床一致的p53突變和PDGFR/EGFR基因拷貝數(shù)增加等基因變異[7]?;瘜W(xué)誘導(dǎo)產(chǎn)生的膠質(zhì)瘤較好模擬了臨床上膠質(zhì)瘤的遺傳異質(zhì)性,同時(shí)保全小鼠的免疫系統(tǒng)和血腦屏障。然而由于基因突變的隨機(jī)性導(dǎo)致膠質(zhì)瘤生成重復(fù)性差(如腫瘤發(fā)生率,惡性程度,腫瘤類型與位置等)不足,現(xiàn)已較少使用這種小鼠模型研究膠質(zhì)瘤。
現(xiàn)在普遍使用的膠質(zhì)瘤細(xì)胞株,如9L,C6,GL261及CNS-1等,來(lái)自化學(xué)誘導(dǎo)的大鼠或小鼠膠質(zhì)瘤模型[8]。C6細(xì)胞株來(lái)自甲基硫脲處理的大鼠,組化與腫瘤標(biāo)志物與人膠質(zhì)母細(xì)胞瘤相似,但無(wú)抑癌基因p53的變異。CNS-1同樣是大鼠膠質(zhì)瘤細(xì)胞株,表達(dá)膠質(zhì)瘤標(biāo)志物,比如GFAP,S100β等,及表現(xiàn)出人膠質(zhì)瘤的典型特征彌漫性和浸潤(rùn)性生長(zhǎng)。9L和GL261來(lái)自小鼠的膠質(zhì)瘤細(xì)胞株,前者有p53突變和EGFR過(guò)表達(dá),但不表達(dá)GFAP,也不表現(xiàn)為彌漫性侵入式生長(zhǎng),因此認(rèn)為其為膠質(zhì)肉瘤。GL261表現(xiàn)為低分化的膠質(zhì)母細(xì)胞瘤。具有p53和K-ras 基因突變及PI3K/AKT活化等特征。這些細(xì)胞株不僅普遍應(yīng)用于膠質(zhì)瘤的分子細(xì)胞生物學(xué)研究,也是異種細(xì)胞移植模型中普遍使用的細(xì)胞來(lái)源。
將腫瘤細(xì)胞注射入小鼠皮下(異位)或顱腔內(nèi)(原位)可以形成異位或原位膠質(zhì)瘤[9]。腫瘤細(xì)胞可以是來(lái)自化學(xué)誘變的膠質(zhì)瘤動(dòng)物的腫瘤細(xì)胞系,也可以是膠質(zhì)瘤患者來(lái)源的腫瘤細(xì)胞。皮下異位移植操作簡(jiǎn)單,重復(fù)性好,易觀察腫瘤生長(zhǎng)的動(dòng)態(tài)過(guò)程,適合研究腫瘤細(xì)胞的增殖行為。異位細(xì)胞移植失去腦部的環(huán)境特征,限制其在藥物研發(fā)中的作用,尤其是針對(duì)腫瘤微環(huán)境的藥物研發(fā)。原位膠質(zhì)瘤細(xì)胞移植模型能較好的規(guī)避腫瘤微環(huán)境問(wèn)題。異種移植的另外一個(gè)缺陷是使用免疫缺陷的小鼠,阻礙對(duì)腫瘤與免疫系統(tǒng)相互作用的研究。人源化小鼠的研發(fā)與使用可以讓異種細(xì)胞移植模型更好的服務(wù)于腫瘤的基礎(chǔ)與藥物開發(fā)研究。該小鼠模型在膠質(zhì)瘤基礎(chǔ)研究中廣泛使用,檢測(cè)或篩選新的基因或信號(hào)通路在膠質(zhì)瘤發(fā)生發(fā)展中的作用[10-11]。
小鼠與人在遺傳與生理上存在多方面相似性,這是小鼠成為主要模式動(dòng)物的原因。隨著技術(shù)的進(jìn)步,現(xiàn)在可以在分子水平操作小鼠的基因組,包括不可傳代的體細(xì)胞轉(zhuǎn)染和可傳代的穩(wěn)定遺傳修飾。研究發(fā)現(xiàn)RTK/PI3K、p53和Rb信號(hào)異常是膠質(zhì)瘤發(fā)生與惡性進(jìn)展的核心通路,因此膠質(zhì)瘤小鼠模型主要是回繞這些核心通路構(gòu)建的。
3.1 IDH1R132H突變條件性敲入小鼠模型 異檸檬酸脫氫酶IDH是三羧酸循環(huán)中一個(gè)關(guān)鍵限速酶,包括IDH1、IDH2和IDH3三個(gè)亞型,催化異檸檬酸氧化脫羧生成α-酮戊二酸。人膠質(zhì)瘤中存在IDH1突變,主要是R132H突變,與患者預(yù)后相關(guān)[2,3,12]。在星形細(xì)胞瘤、少突膠質(zhì)瘤和繼發(fā)膠質(zhì)母細(xì)胞瘤中,>90%患者存在IDH1突變。與之相反,在原發(fā)膠質(zhì)母細(xì)胞瘤中,較少發(fā)生IDH1突變,表明IDH1突變?cè)谀z質(zhì)瘤的發(fā)生中發(fā)揮關(guān)鍵作用。突變的IDH1獲得新的催化能力,將α-酮戊二酸進(jìn)一步轉(zhuǎn)化成2-羥基戊二酸(2-HG)。代謝物2-HG可以抑制α-酮戊二酸依賴的與表觀遺傳有關(guān)的酶類(如 TET2,DNMT1),導(dǎo)致基因組 DNA 高度甲基化[13]。還可以通過(guò)抑制JAK活化,抑制細(xì)胞凋亡,促進(jìn)腫瘤發(fā)生
[14]。最近的一項(xiàng)研究應(yīng)用Cre-loxP系統(tǒng)構(gòu)建了條件性IDH1突變(IDH1R132H)敲入小鼠模型[15]。在小鼠IDH1基因的外顯子3上引入R132H突變,并在外顯子2與3間的內(nèi)含子中插入包括loxP位點(diǎn)的IDH1小基因(mini-gene,包括野生型外顯子3~9序列,3'非翻譯區(qū)和polyA信號(hào))。條件性突變敲入小鼠與Nes-CreERT2小鼠(Nestin基因啟動(dòng)子驅(qū)動(dòng)Cre重組酶在神經(jīng)干/前體細(xì)胞特異表達(dá),CreERT2為Cre的修飾形式,在他莫昔芬作用下發(fā)揮重組酶活性)雜交產(chǎn)生的后代成年后用他莫昔芬誘導(dǎo)可以在神經(jīng)干/前體細(xì)胞中表達(dá)突變的IDH1。分析發(fā)現(xiàn)該小鼠發(fā)生與膠質(zhì)瘤早期相似的病變[15]。表現(xiàn)為小鼠SVZ神經(jīng)干/前體細(xì)胞數(shù)目增加,SVZ細(xì)胞侵襲并發(fā)生異位增殖形成膠質(zhì)瘤前體灶。尤為重要的是,Wnt信號(hào)、端粒酶信號(hào)、細(xì)胞周期等活性增強(qiáng)及基因組DNA甲基化水平上升,且基因表達(dá)譜也與人膠質(zhì)瘤相近。IDH1突變敲入小鼠模型有力支持了IDH1突變?cè)谀z質(zhì)瘤發(fā)生早期的關(guān)鍵作用。IDH1突變敲入小鼠的表型為神經(jīng)干細(xì)胞的不可控增殖,與臨床上膠質(zhì)瘤還是存在一定的差異,因此該小鼠模型適合于研究膠質(zhì)瘤的發(fā)生與細(xì)胞起源,而不適合于膠質(zhì)瘤的治療藥物篩選。人膠質(zhì)瘤中,IDH1突變與P53突變共同發(fā)生,因此該小鼠組合p53基因敲除能否發(fā)生與人膠質(zhì)瘤病理更加接近的小鼠膠質(zhì)瘤值得進(jìn)一步研究。
3.2 p53/Nf1條件性雙敲除小鼠模型 p53是一個(gè)抑癌基因,在多數(shù)的腫瘤包括膠質(zhì)瘤中存在p53基因突變。Nf1(Neurofibromatosis type 1)也是一個(gè)抑癌基因,負(fù)向調(diào)控Ras信號(hào),因此Nf1缺失導(dǎo)致Ras信號(hào)活化[16]。在小鼠中,僅敲除p53基因不能夠產(chǎn)生膠質(zhì)瘤[17]。GFAP-Cre(Glial fibrillary acidic protein,在星形膠質(zhì)細(xì)胞特異表達(dá)Cre,)介導(dǎo)的p53/Nf1雙基因條件性敲除小鼠發(fā)生典型的膠質(zhì)瘤,存在偽柵欄樣(pseudopalisading)腫瘤細(xì)胞、壞死、小血管增生等典型特征[17]。該小鼠模型表明雙抑癌基因缺失足夠誘導(dǎo)小鼠產(chǎn)生膠質(zhì)瘤,并存在低級(jí)別膠質(zhì)瘤向高級(jí)別膠質(zhì)瘤惡性進(jìn)展現(xiàn)象。與此類似的,GFAP-Cre介導(dǎo)的p53與另一抑癌基因PTEN組合缺失小鼠也發(fā)生膠質(zhì)母細(xì)胞瘤[18]。抑癌基因雙缺失小鼠膠質(zhì)瘤模型是研究膠質(zhì)瘤發(fā)生中腫瘤細(xì)胞起源問(wèn)題的工具[19-20],同時(shí)也可以用于膠質(zhì)瘤靶向藥物的研發(fā)。雖然p53與Nf1雙突變能夠誘導(dǎo)小鼠產(chǎn)生類似人膠質(zhì)瘤病變,但在Nf1突變?cè)谌四z質(zhì)瘤中不常見(jiàn),PDGFR或EGFR拷貝數(shù)增加引起Ras信號(hào)異常活化。
3.3 PDGF限制性過(guò)表達(dá)小鼠模型 PDGF/PDGFR信號(hào)屬于RTK信號(hào),通過(guò)活化下游的PI3K/AKT和Ras/MAPK促進(jìn)腫瘤細(xì)胞增殖和抗凋亡能力。PDGF阻止膠質(zhì)前體細(xì)胞的分化,促進(jìn)其自我更新。高級(jí)別膠質(zhì)母細(xì)胞瘤中存在PDGFR基因拷貝數(shù)增加的現(xiàn)象,表明PDGF/PDGFR信號(hào)在膠質(zhì)瘤的發(fā)生發(fā)展中發(fā)揮重要的作用。在GFAP或Nestin陽(yáng)性的神經(jīng)干細(xì)胞中通過(guò)病毒介導(dǎo)過(guò)表達(dá)PDGF可以誘導(dǎo)小鼠產(chǎn)生膠質(zhì)瘤,大部分為低級(jí)別少突膠質(zhì)瘤。這一小鼠模型表明小鼠膠質(zhì)細(xì)胞或神經(jīng)干細(xì)胞中自分泌過(guò)量PDGF足以誘導(dǎo)小鼠神經(jīng)前體細(xì)胞產(chǎn)生腫瘤[21]。PDGF過(guò)表達(dá)加上抑癌基因INK4a-ARF敲除能夠誘導(dǎo)小鼠產(chǎn)生高級(jí)別膠質(zhì)瘤。INK4a-ARF基因通過(guò)mRNA剪接編碼兩個(gè)功能不同蛋白,分別是細(xì)胞周期抑制分子p16INK4a和p19ARF[22]。INK4a-ARF基因敲除小鼠自發(fā)產(chǎn)生多種腫瘤[23]。INK4a-ARF基因敲除還可以與EGFR活化突變過(guò)表達(dá)組合產(chǎn)生膠質(zhì)瘤樣病變[24]。INK4a-ARF基因敲除小鼠組合PDGF過(guò)表達(dá)膠質(zhì)瘤小鼠模型用于篩選蛋白酪氨酸激酶抑制劑,發(fā)現(xiàn)CSF-1R阻斷增加膠質(zhì)瘤對(duì)RTK抑制劑的敏感性[25]。
PDGFB過(guò)表達(dá)是通過(guò)RCAS/tv-a系統(tǒng)實(shí)現(xiàn)的。RCAS病毒載體是鳥逆轉(zhuǎn)錄病毒(avian sarcoma-leukosis virus-A,ASLV-A)RCAS/tv-a系統(tǒng)衍生載體,限制性感染帶有tv-a受體的鳥類細(xì)胞[26]。哺乳動(dòng)物細(xì)胞轉(zhuǎn)染表達(dá)tv-a受體,或通過(guò)轉(zhuǎn)基因方法在小鼠特異細(xì)胞或組織中表達(dá)tv-a受體,能夠?qū)崿F(xiàn)RCAS載體攜帶的基因在特異細(xì)胞或組織中過(guò)表達(dá)。如在小鼠中,通過(guò)GFAP或Nestin基因的啟動(dòng)子在膠質(zhì)細(xì)胞或者神經(jīng)干細(xì)胞中特異表達(dá)tv-a受體的轉(zhuǎn)基因小鼠Gtv-a或Ntv-a,感染帶有EGFR或PDGFB的RCAS載體能夠在膠質(zhì)細(xì)胞或神經(jīng)干細(xì)胞中特異過(guò)表達(dá)EGFR或PDGFB。同樣,通過(guò)RCAS載體表達(dá)干擾RNA,也能夠?qū)崿F(xiàn)在小鼠特定表達(dá)t-va受體的細(xì)胞中敲降目的基因的表達(dá)。該系統(tǒng)在其它腫瘤的研究中也有應(yīng)用[27-28]。
3.4 其它小鼠 GFAP基因啟動(dòng)子驅(qū)動(dòng)的癌基因在小鼠膠質(zhì)細(xì)胞中高表達(dá)也可以誘導(dǎo)小鼠產(chǎn)生膠質(zhì)瘤,比如GFAP-vsrc轉(zhuǎn)基因小鼠中,GFAP啟動(dòng)子驅(qū)動(dòng)Rous肉瘤病毒v-Src在小鼠膠質(zhì)細(xì)胞特異表達(dá),可以使小部分小鼠產(chǎn)生膠質(zhì)瘤[29]。同樣GFAP基因啟動(dòng)子驅(qū)動(dòng)的V-Ha-RAS轉(zhuǎn)基因小鼠可以產(chǎn)生星形細(xì)胞瘤[30]。Src和Ras活化雖然能夠誘導(dǎo)小鼠產(chǎn)生膠質(zhì)瘤樣病變,但臨床上,Src和Ras基因突變并不常見(jiàn),因此這兩種膠質(zhì)瘤小鼠模型目前已經(jīng)較少使用。
除RCAS/tv-a系統(tǒng)改變小鼠神經(jīng)細(xì)胞基因的方法外,最近也有研究把最新的基因編輯技術(shù)CRISPR/Cas9引入小鼠膠質(zhì)瘤中[31-32],簡(jiǎn)單快速的在小鼠神經(jīng)細(xì)胞中敲除一個(gè)或多個(gè)抑癌基因。CRISPR/Cas9也可以應(yīng)用于轉(zhuǎn)基因小鼠的制備,取代之前廣泛使用的胚胎干細(xì)胞中基因重組的方法。
隨著新技術(shù)在臨床研究中的應(yīng)用,目前對(duì)膠質(zhì)瘤的分子病理已經(jīng)有較系統(tǒng)的認(rèn)識(shí),世界衛(wèi)生組織也建議在分子基礎(chǔ)上對(duì)膠質(zhì)瘤進(jìn)行分型管理和治療。動(dòng)物水平的研究可以較好的驗(yàn)證這些基因變異在腫瘤發(fā)生與惡性進(jìn)展中的確切作用,補(bǔ)充了臨床研究。目前膠質(zhì)瘤基礎(chǔ)研究多集中在成人膠質(zhì)瘤方向,而兒童膠質(zhì)瘤是兒童的主要腫瘤,與成人膠質(zhì)瘤有不同的基因突變和組化特征。兒童膠質(zhì)瘤的理解與治療的改善需要與之對(duì)應(yīng)的動(dòng)物模型的發(fā)展。
[1] Brown TJ,Brennan MC,Li M,et al. Association of the Extent of Resection With Survival in Glioblastoma: A Systematic Review and Meta-analysis. JAMA Oncol,2016,2(11):1460-1469.
[2] Diamandis P,Aldape KD. Insights From Molecular Profiling of Adult Glioma. J Clin Oncol,2017,35(21):2386-2393.
[3] Verhaak RG. Moving the needle: Optimizing classification for glioma. Sci Transl Med,2016,8(350):314f-350f.
[4] Reifenberger G,Wirsching HG,Knobbe-Thomsen CB,et al.Advances in the molecular genetics of gliomas-implications for classification and therapy. Nat Rev Clin Oncol,2017,14(7):434-452.
[5] Lenting K,Verhaak R,Ter Laan M,et al. Glioma: experimental models and reality. Acta Neuropathol,2017,133(2):263-282.
[6] Russell WL,Kelly EM,Hunsicker PR,et al. Specific-locus test shows ethylnitrosourea to be the most potent mutagen in the mouse. Proc Natl Acad Sci USA,1979,76(11):5818-5819.
[7] Zook BC,Simmens SJ,Jones RV. Evaluation of ENU-induced gliomas in rats: nomenclature,immunochemistry,and malignancy.Toxicol Pathol,2000,28(1):193-201.
[8] Stylli SS,Luwor RB,Ware TM,et al. Mouse models of glioma. J Clin Neurosci,2015,22(4):619-626.
[9] Misuraca KL,Cordero FJ,Becher OJ. Pre-Clinical Models of Diffuse Intrinsic Pontine Glioma. Front Oncol,2015,5:172.
[10] Wang J,Cheng P,Pavlyukov MS,et al. Targeting NEK2 attenuates glioblastoma growth and radioresistance by destabilizing histone methyltransferase EZH2. J Clin Invest,2017,127(8):3075-3089.
[11] Jung E,Osswald M,Blaes J,et al. Tweety-Homolog 1 Drives Brain Colonization of Gliomas. J Neurosci,2017,37(29):6837-6850.
[12] M GL,Boulay K,Topisirovic I,et al. Oncogenic Activities of IDH1/2 Mutations: From Epigenetics to Cellular Signaling.Trends Cell Biol,2017.
[13] Yang Z,Jiang B,Wang Y,et al. 2-HG Inhibits Necroptosis by Stimulating DNMT1-Dependent Hypermethylation of the RIP3 Promoter. Cell Rep,2017,19(9):1846-1857.
[14] Jiang B,Zhang J,Xia J,et al. IDH1 Mutation Promotes Tumorigenesis by Inhibiting JNK Activation and Apoptosis Induced by Serum Starvation. Cell Rep,2017,19(2):389-400.
[15] Bardella C,Al-Dalahmah O,Krell D,et al. Expression of Idh1R132H in the Murine Subventricular Zone Stem Cell Niche Recapitulates Features of Early Gliomagenesis. Cancer Cell, 2016,30(4):578-594.
[16] Philpott C,Tovell H,Frayling IM,et al. The NF1 somatic mutational landscape in sporadic human cancers. Hum Genomics,2017,11(1):13.
[17] Zhu Y,Guignard F,Zhao D,et al. Early inactivation of p53 tumor suppressor gene cooperating with NF1 loss induces malignant astrocytoma. Cancer Cell,2005,8(2):119-130.
[18] Qi Q,Kang S S,Zhang S,et al. Co-amplification of phosphoinositide 3-kinase enhancer A and cyclin-dependent kinase 4 triggers glioblastoma progression. Oncogene,2017,36(32):4562-4572.
[19] Alcantara L S,Wang Z,Sun D,et al. Adult Lineage-Restricted CNS Progenitors Specify Distinct Glioblastoma Subtypes. Cancer Cell,2015,28(4):429-440.
[20] Liu C,Sage JC,Miller MR,et al. Mosaic analysis with double markers reveals tumor cell of origin in glioma. Cell,2011,146(2):209-221.
[21] Dai C,Celestino JC,Okada Y,et al. PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes Dev,2001,15(15):1913-1925.
[22] Quelle DE,Zindy F,Ashmun RA,et al. Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell,1995,83(6):993-1000.
[23] Serrano M,Lee H,Chin L,et al. Role of the INK4a locus in tumor suppression and cell mortality. Cell,1996,85(1):27-37.
[24] Holland EC,Hively WP,Depinho RA,et al. A constitutively active epidermal growth factor receptor cooperates with disruption of G1 cell-cycle arrest pathways to induce glioma-like lesions in mice.Genes Dev,1998,12(23):3675-3685.
[25] Yan D,Kowal J,Akkari L,et al. Inhibition of colony stimulating factor-1 receptor abrogates microenvironment-mediated therapeutic resistance in gliomas. Oncogene,2017.
[26] Moore LM,Holmes KM,Fuller GN,et al. Oncogene interactions are required for glioma development and progression as revealed by a tissue specific transgenic mouse model. Chin J Cancer, 2011,30(3):163-172.
[27] Reddy JP,Li Y. The RCAS-TVA system for introduction of oncogenes into selected somatic mammary epithelial cells in vivo.J Mammary Gland Biol Neoplasia,2009,14(4):405-409.
[28] Kuzu OF, Nguyen FD, Noory MA, et al. Current State of Animal(Mouse)Modeling in Melanoa Research. Cancer Growth Metastasis, 2015,8(Suppl 1):81-94.
[29] Weissenberger J,Steinbach J P,Malin G,et al. Development and malignant progression of astrocytomas in GFAP-v-src transgenic mice. Oncogene,1997,14(17):2005-2013.
[30] Ding H,Roncari L,Shannon P,et al. Astrocyte-specific expression of activated p21-ras results in malignant astrocytoma formation in a transgenic mouse model of human gliomas. Cancer Res, 2001,61(9):3826-3836.
[31] Zuckermann M, Hovestadt V, Knobbe-Thomsen CB, et al.Somatic CRISPR/Cas9-mediated tumour suppressor disruption enables versatile brain tumour modelling. Nat Commun, 2015,6:7391.
[32] Bressan RB,Dewari PS,Kalantzaki M,et al. Efficient CRISPR/Cas9-assisted gene targeting enables rapid and precise genetic manipulation of mammalian neural stem cells. Development,2017,144(4):635-648.
浙江省科技廳公益基金項(xiàng)目(2015C37114)
31007 杭州市中醫(yī)院(張祖勇)
31005浙江大學(xué)醫(yī)學(xué)院病理與病理生理學(xué)系(程洪強(qiáng))
310006 杭州市第一人民醫(yī)院(董曉巧 王昊 張仕蓉)