麻文建,鄭磊,張靜,劉洋,朱天輝
(四川農(nóng)業(yè)大學(xué)林學(xué)院,四川雅安625014)
基于序列特異擴(kuò)增區(qū)域標(biāo)記的栗疫菌巢式PCR檢測(cè)技術(shù)
麻文建,鄭磊,張靜,劉洋,朱天輝*
(四川農(nóng)業(yè)大學(xué)林學(xué)院,四川雅安625014)
為建立栗疫菌(Cryphonectria parasitica)快速、準(zhǔn)確的檢測(cè)技術(shù),利用隨機(jī)擴(kuò)增多態(tài)性DNA技術(shù)(random amplified polymorphic DNA,RAPD)對(duì)不同來(lái)源地的栗疫菌和其他真菌分離物進(jìn)行PCR擴(kuò)增,篩選出栗疫菌的RAPD特異片段SCQ494.將特異RAPD片段SCQ494進(jìn)行分離、回收,與載體p MD?19-T載體連接,轉(zhuǎn)化至大腸埃希菌進(jìn)行培養(yǎng),對(duì)目標(biāo)片段克隆測(cè)序.根據(jù)測(cè)序結(jié)果,用Primer 5.0軟件設(shè)計(jì)了序列特異擴(kuò)增區(qū)域(sequence characterized amplified region,SCAR)引物CQ1/CQ2和巢式PCR引物CR1/CR2.利用引物CQ1/CQ2通過(guò)常規(guī)PCR對(duì)不同來(lái)源地供試?yán)跻呔蓴U(kuò)增出1條約1 420 bp的條帶,對(duì)其他供試菌株DNA的PCR產(chǎn)物均無(wú)此條帶,檢測(cè)靈敏度為3 pg/μL的基因組DNA;而以引物CQ1/CQ2為外圈引物和引物CR1/CR2為內(nèi)圈引物進(jìn)行的巢式PCR可從栗疫菌基因組DNA中擴(kuò)增出1條大小約875 bp的條帶,靈敏度達(dá)到30 fg/μL,是常規(guī)PCR的1000倍.驗(yàn)證實(shí)驗(yàn)表明巢式PCR可以從發(fā)病程度不同的栗樹(shù)枝干和在自然感染的栗樹(shù)枝條中檢測(cè)出栗疫菌.
栗疫菌;隨機(jī)擴(kuò)增多態(tài)性DNA技術(shù);序列特異擴(kuò)增區(qū)域;巢式PCR;分子檢測(cè)
SummaryChestnut blight,caused by Cryphonectria parasitica,is a destructive disease on chestnut trees as well as an important international disease in the world.At the end of the 19th century and the beginning of the 20th century,this pathogen dispersed rapidly and nearly killed all the American chestnut trees.Cryphonectria parasitica belongs to ascomycetes,which mainly caused considerable damage to species of genus Castanea,such as C.sativa,C.henryi,C.dentata,and so on.In recent years,the chestnut blight tends to be aggravated and has caused tremendous loss in the ecology and economy.The traditional detection methods for C.parasitica are timeconsuming,tedious,laborious,low sensitivity and accuracy.However,previous studies also did not have a lot of detection reports about C.parasitica.Therefore,rapid and efficient detection of C.parasitica is essential for undertaking appropriate and timely disease management measures.
In the present study,polymerase chain reaction(PCR)assay had been developed for accurate and sensitive detection of some plant pathogens,which are much faster and more specific than traditional detection methods.Theobjective of this study was to develop a sequence characterized amplified region(SCAR)marker and PCR detection of C.parasitica.Randomly amplified polymorphic DNA(RAPD)was used to detect DNA polymorphisms between C.parasitica and other strains,and the specific RAPD fragment of C.parasitica was purified and inserted into p MD?19-T vector that was transformed into Escherichia coli and cloned and sequenced.Based on the sequence of the RAPD marker,SCAR primers and the nested-PCR primers were designed and synthesized.Then the specificity and sensitivity of primers were verified.
The results showed that primer S494 generated a polymorphic pattern displaying a 1 400 bp DNA fragment(SCQ494)specific for C.parasitica,but not from any other strains tested.Based on the sequence of SCQ494,the specific SCAR primers CQ1/CQ2 and the nested-PCR primers CR1/CR2 were designed by the aid of the software Primer Premier 5.0.The regular PCR product of all strains of C.parasitica showed a unique fragment of 1 420 bp with primers CQ1/CQ2;the nested-PCR primers CR1/CR2 amplified only a unique 875 bp band from all C. parasitica and there was no amplification from other strains tested.The detection sensitivity with primer set CQ1/ CQ2 was 3 pg/μL for genomic DNA of C.parasitica in 25μL reaction solution.In contrast,nested-PCR with CQ1/CQ2 as the first round primers and CR1/CR2 as the second round primers increased sensitivity to 30 fg/μL for genomic DNA of C.parasitica.In addition,C.parasitica could be specifically detected by nested-PCR assay from diseased plant tissues collected from field and artificial inoculation branches.
In conclusion,nested-PCR for detection of C.parasitica has been developed based on the use of a SCAR marker and has a great significance for the prevention and control of chestnut blight.This is the first report on generation of SCAR markers for detection of C.parasitica and the result of the study may provide an important reference for the detection of other phytopathogen.
由栗疫菌引起的栗疫?。╟hestnut blight)是一種重要的栗樹(shù)病害,廣泛分布于世界各地,在國(guó)內(nèi)分布也很廣,南至廣東,北至遼寧,東起江蘇,西至山西有10多個(gè)省市均有發(fā)生,局部地方發(fā)病率高達(dá)60%[1].栗疫病的發(fā)生不僅造成嚴(yán)重的經(jīng)濟(jì)損失,而且對(duì)生態(tài)環(huán)境也有一定的影響[2].19世紀(jì)末20世紀(jì)初,栗疫病的發(fā)生使美洲栗遭到全面滅種的威脅,成為植物病害摧毀自然物種的唯一例子[3].栗疫菌主要侵染中國(guó)板栗(Castanea mollissima)、歐洲板栗(C.sativa)、錐栗(C.henryi)、美洲板栗(C. dentata)、櫟樹(shù)(Quercus sp.)和山核桃(Carya sp.)等植物,引起寄主潰瘍,病部以上枝、樹(shù)干先干失水,嚴(yán)重時(shí)整枝和全株枯死.該菌為兼性寄生菌,具有明顯的潛伏侵染特征,在病害侵入植株早期不易被發(fā)現(xiàn),一旦環(huán)境因子達(dá)到致病條件,6~8 d即可出現(xiàn)病斑,且發(fā)展迅速[4].初感染在一些粗皮栗樹(shù)品種上癥狀不明顯,因而對(duì)未顯癥狀的栗樹(shù)枝干上是否存在栗疫菌則很難做出正確判斷.現(xiàn)階段對(duì)栗疫病的檢疫方法主要用顯微技術(shù)和植物組織分離,但多限于已經(jīng)發(fā)病或有明顯癥狀的組織.栗疫菌生長(zhǎng)緩慢,常規(guī)的植物組織分離往往會(huì)產(chǎn)生雜菌,難以快速準(zhǔn)確鑒定該病原菌.因此,開(kāi)發(fā)栗疫菌特異性強(qiáng)和靈敏度高的PCR檢測(cè)技術(shù)對(duì)栗疫病的早期診斷和防控極為重要.
特異擴(kuò)增區(qū)域(sequence characterized amplified region,SCAR)標(biāo)記技術(shù)是由Para和Miehelmore等首先提出,其原理是通過(guò)對(duì)隨機(jī)擴(kuò)增多態(tài)性DNA(random amplified polymorphic DNA,RAPD)目的片段克隆和測(cè)序,并根據(jù)序列特征設(shè)計(jì)與原RAPD片段互補(bǔ)的引物,對(duì)原模板DNA進(jìn)行PCR擴(kuò)增,最終把與原標(biāo)記片段相對(duì)單一位點(diǎn)擴(kuò)增出來(lái)[5-6].由于SCAR標(biāo)記技術(shù)克服了RAPD重復(fù)性差和穩(wěn)定性低的缺點(diǎn),使得其在基因位點(diǎn)變異檢測(cè)、種群分析、病原菌小種檢測(cè)、性別連鎖標(biāo)記、分子輔助育種和遺傳分析上有了廣泛的應(yīng)用[7-15].在植物病害檢測(cè)方面,余仲東等[16]成功地將楊松柵銹病西部和北部2大地理相關(guān)菌群的特異性DNA片段轉(zhuǎn)化為SCAR標(biāo)記.Reddy等[17]運(yùn)用SCAR標(biāo)記引物可以靈敏地鑒定感病植物和土壤中的尖孢鐮刀菌蓖麻?;停‵usarium oxysporum f.sp.ricini).此外,SCAR標(biāo)記技術(shù)還被用于對(duì)小麥矮星黑穗病菌(Tilletia controversa)、赤腐病菌(Colletotrichum falcatum)、立枯絲核菌(Rhizoctonia solani)AG 1-IB的分子檢測(cè)研究[18-20].目前,國(guó)內(nèi)外對(duì)栗疫菌的分子生物學(xué)檢測(cè)進(jìn)行了一些研究,如Ma r a等[21- 22]、潘琪等[23]根據(jù)栗疫菌的交配型設(shè)計(jì)了特異性引物及配套巢式PCR引物,用于交配型的分子檢測(cè). Popov等[24]根據(jù)栗疫菌的交配型的信息素前體編碼基因設(shè)計(jì)了2對(duì)特異性PCR引物,用于栗疫菌的分子檢測(cè).本研究采用SCAR標(biāo)記技術(shù),通過(guò)栗疫菌特異的RAPD片段序列分析和SCAR特異性引物設(shè)計(jì),建立了一種快速、準(zhǔn)確、靈敏的栗疫菌分子檢測(cè)方法,旨在為栗疫菌的檢疫、綜合防治及進(jìn)一步研究提供依據(jù).
1.1 材料
供試菌株:15個(gè)栗疫菌為本實(shí)驗(yàn)室工作人員從四川、河南、湖北、重慶等地收集保存的種群;其他供試菌17個(gè),其中3個(gè)為本實(shí)驗(yàn)室保存,其余均分離自本地栗樹(shù)上,并由四川農(nóng)業(yè)大學(xué)林學(xué)院林木病理實(shí)驗(yàn)室保存.除病原菌外,部分參試菌株通過(guò)形態(tài)學(xué)初步鑒定和分子生物學(xué)技術(shù)鑒定到屬(表1).
表1 實(shí)驗(yàn)供試菌株Table 1 Strains used in this study
試劑:基因組DNA提取試劑盒和瓊脂糖凝膠回收試劑盒購(gòu)自北京天根生物技術(shù)公司;DL2000 DNA標(biāo)志物、Taq DNA聚合酶、d NTP、大腸埃希菌(Escherichia coli)JM109感受態(tài)和p MD?19-T載體等購(gòu)自大連寶生物公司;其他試劑均為進(jìn)口或國(guó)產(chǎn)分析純.
供試板栗品種:紅光,2~3年生,由四川農(nóng)業(yè)大學(xué)林學(xué)院苗圃提供.自然發(fā)病植株樣品,由瀘州古藺縣林業(yè)局提供.
主要培養(yǎng)基:菌株培養(yǎng)用馬鈴薯葡萄糖瓊脂(potato dextrose agar,PDA)培養(yǎng)基和馬鈴薯葡萄糖液體培養(yǎng)基(potato dextrose broth,PDB).
儀器:恒溫培養(yǎng)箱、冰箱、PCR儀、分光光度計(jì)、水平電泳儀和凝膠成像分析系統(tǒng)等.
1.2 方法
1.2.1 供試菌株基因組DNA提取 供試菌株在PDA上純化培養(yǎng)5 d后,從菌落邊緣挑取菌絲塊接入PDB中,25℃、150 r/min搖床振蕩培養(yǎng)7 d,過(guò)濾收集菌絲,冷凍干燥后用液氮研磨成菌絲粉,之后按照北京天根生物技術(shù)公司生產(chǎn)的基因組DNA提取試劑盒說(shuō)明書(shū)提取DNA.檢測(cè)DNA含量和純度后,-20℃保存?zhèn)溆?
1.2.2 RAPD-PCR擴(kuò)增 10 bp的隨機(jī)引物(購(gòu)自上海生工生物工程有限公司)用于RAPD-PCR反應(yīng).反應(yīng)體系和程序參見(jiàn)文獻(xiàn)[25],并優(yōu)化調(diào)整,最終確定反應(yīng)體系:總體積為25μL,其中含有2.5 μL 10×PCR緩沖液,1μL隨機(jī)引物(10μmol/L),2μL d NTP(2.5 mmol/L),2μL MgCl2(25 mmol/ L),0.2μL Taq DNA聚合酶(5 U/μL),1μL供試菌株模板DNA(30 ng/μL),加滅菌重蒸水補(bǔ)足25 μL.PCR反應(yīng)程序:94℃預(yù)變性4 min;94℃變性40 s,37℃退火30 s,72℃延伸1.5 min,共35個(gè)循環(huán);最后72℃延伸5 min.
反應(yīng)結(jié)束后,取5μL PCR產(chǎn)物加1μL溴酚藍(lán)混合后在1%(1×TAE)瓊脂糖凝膠中電泳,100 V,30 min;經(jīng)EB染色后,在凝膠成像系統(tǒng)上檢測(cè)并拍照分析,篩選出能穩(wěn)定、特異性地?cái)U(kuò)增栗疫菌基因組DNA的引物和RAPD特異片段.
1.2.3 RAPD特異片段分析、克隆和測(cè)序 將擴(kuò)增所得的栗疫菌RAPD特異目標(biāo)DNA片段切膠,裝入1.5 m L滅菌離心管中.按照DNA膠回收純化試劑盒說(shuō)明書(shū)進(jìn)行回收、純化后將其連接到p MD?19-T載體上,轉(zhuǎn)化到E.coli JM109感受態(tài)細(xì)胞進(jìn)行克隆,通過(guò)藍(lán)白斑篩選和酶切鑒定后,挑取陽(yáng)性克隆送往上海生工生物工程有限公司進(jìn)行測(cè)序.
1.2.4 引物設(shè)計(jì)與合成 采用軟件DNAStar-Seq Man對(duì)測(cè)序結(jié)果進(jìn)行拼接、整合,獲得栗疫菌RAPD特異片段的完整序列.利用NCBI核酸數(shù)據(jù)庫(kù)與該序列進(jìn)行BLAST在線比對(duì),分析與已知序列的一致性或相似性.根據(jù)栗疫菌RAPD特異的DNA片段序列測(cè)序結(jié)果,用Primer 5.0軟件設(shè)計(jì)栗疫菌特異性SCAR標(biāo)記引物CQ1/CQ2及巢式PCR引物CR1/CR2,2對(duì)引物分別在GenBank中BLAST在線比對(duì),驗(yàn)證其特異性.引物交由上海生工生物工程有限公司合成.
PCR反應(yīng)體系為25μL,其中含有2.5μL 10× PCR緩沖液,上、下游引物(10μmol/L)各1μL,2μL dNTP(2.5 mmol/L),2μL MgCl2(25 mmol/L),0.2 μL Taq DNA聚合酶(5 U/μL),1μL模板DNA(30 ng/μL),加滅菌雙蒸水補(bǔ)足25μL;用滅菌雙蒸水代替模板DNA作陰性對(duì)照.PCR反應(yīng)程序:94℃預(yù)變性4 min;94℃變性40 s,59℃退火30 s,72℃延伸1.5 min,共35個(gè)循環(huán);72℃延伸10 min.
反應(yīng)結(jié)束后,取5μL PCR產(chǎn)物與1μL溴酚藍(lán)混勻,在1%瓊脂糖凝膠中電泳,用EB染色后,在凝膠成像分析系統(tǒng)上拍照分析.
1.2.6 引物靈敏度檢測(cè) 將提取的栗疫菌基因組DNA按10倍梯度分別稀釋成30 ng/μL,3 ng/ μL,300 pg/μL,30 pg/μL,3 pg/μL,300 fg/μL,30 fg/μL,3 fg/μL,300 ag/μL,分別取1μL用于PCR擴(kuò)增模板.常規(guī)PCR反應(yīng):利用引物CQ1/CQ2作為PCR反應(yīng)引物,擴(kuò)增體系和程序同1.2.2節(jié).巢式PCR:用常規(guī)PCR進(jìn)行第1輪擴(kuò)增,將其PCR擴(kuò)增產(chǎn)物稀釋10倍,取1μL為第2輪PCR的模板,加入引物CR1/CR2,其他反應(yīng)體系和程序同常規(guī)PCR.
1.2.7 自然發(fā)病和人工接種栗樹(shù)枝干組織中的栗疫菌檢測(cè) 在四川省瀘州市古藺縣板栗疫病發(fā)生的栽培區(qū)內(nèi),隨機(jī)采集不同發(fā)病程度和健康的樹(shù)枝條.根據(jù)病害發(fā)生程度,將樣品分為發(fā)病初期、具有典型癥狀、當(dāng)年枯死枝條、病株殘?bào)w4類(lèi).在超凈工作臺(tái)上用滅菌刀片刮取0.3 g左右皮質(zhì)組織,用試劑盒提取樣本基因組DNA后,采用1.2.6節(jié)中的巢式PCR擴(kuò)增體系和程序進(jìn)行檢測(cè).
選取2~3年生健康栗樹(shù)枝條為實(shí)驗(yàn)對(duì)象.栗疫菌接種菌體制備及接種參照何邦令等[26]的方法,接種結(jié)果以接種枝條出現(xiàn)典型潰瘍斑為宜.分別采集從接種3 d后到出現(xiàn)典型病斑不同發(fā)病時(shí)期的枝條及健康的枝條,按試劑盒說(shuō)明書(shū)提取基因組DNA,PCR檢測(cè)方法同自然發(fā)病組織的檢測(cè).
2.1 RAPD-PCR擴(kuò)增結(jié)果
引物篩選結(jié)果表明,隨機(jī)引物S494(5′-GGACG CTTCA-3′)的RAPD-PCR擴(kuò)增結(jié)果較理想(圖1).引物S494可在栗疫菌DNA擴(kuò)增出大小約1 400 bp的特異片段,該條帶明亮、清晰且穩(wěn)定出現(xiàn),其他供試菌株之間均無(wú)此片段條帶,命名為SCQ494.因此,引物S494為栗疫菌的特異引物,片段SCQ494為栗疫菌的特異RAPD片段.
總而言之,中國(guó)經(jīng)濟(jì)的高速發(fā)展、國(guó)內(nèi)外消費(fèi)者對(duì)高質(zhì)量產(chǎn)品需求的不斷增多,促使力嘉不斷調(diào)整產(chǎn)品結(jié)構(gòu),提升印刷技術(shù)和企業(yè)管理水平,以使產(chǎn)品及市場(chǎng)競(jìng)爭(zhēng)力持續(xù)提高,向世界級(jí)標(biāo)準(zhǔn)接軌。
2.2 栗疫菌特異RAPD片段序列分析
對(duì)特異片段SCQ494進(jìn)行回收、克隆、測(cè)序后,用軟件DNAStar-Seq Man對(duì)測(cè)序結(jié)果進(jìn)行拼接、整合后,獲得全長(zhǎng)1 420 bp的序列,與RAPD-PCR擴(kuò)增片段大小一致(圖2).在NCBI核酸數(shù)據(jù)庫(kù)進(jìn)行BLAST比對(duì)發(fā)現(xiàn)無(wú)任何同源序列,將該序列向基因庫(kù)提交后,獲得登錄號(hào):KJ729104.
圖1 引物S494的PCR擴(kuò)增電泳Fig.1 Agarose gel electrophoresis patterns of PCR products amplified with the primer S494
圖2 SCQ494序列Fig.2 Sequence of SCQ494
2.3 基于SCAR標(biāo)記的巢式PCR引物設(shè)計(jì)
根據(jù)SCQ494序列,用Primer 5.0軟件設(shè)計(jì)了2對(duì)引物CQ1/CQ2和CR1/CR2.正向引物CQ1:5′-GGACGCTTCATAGCCCAGAC-3′和反向引物CQ2:5′-GGACGCTTCAACATGGACTGAT-3′作為巢式PCR第1輪引物,擴(kuò)增片段大小1 420 bp,位置位于SCQ494序列5′和3′兩端,見(jiàn)圖2序列兩端下劃線部分.正向引物CR1:5′-GTTGTTCTG GCGTGCTTAG-3′和反向引物CR2:5′-CATTC TATGCTCTGGCTTCTC-3為巢式PCR第2輪引物,擴(kuò)增片段大小為875 bp.位置位于SCQ494序列內(nèi)部198 bp至217 bp和1 051 bp至1 073 bp處,見(jiàn)圖2序列中黑體下劃線部分.2對(duì)引物在GenBank中經(jīng)BLAST在線比對(duì)未發(fā)現(xiàn)有同源序列.
2.4 巢式PCR引物特異性檢測(cè)
以表1中的供試菌株基因組DNA為模板,分別用引物CQ1/CQ2和CR1/CR2進(jìn)行PCR擴(kuò)增.結(jié)果表明,引物CQ1/CQ2能在供試的栗疫菌DNA中擴(kuò)增出1條1 420 bp大小的條帶,其他供試菌和陰性對(duì)照均沒(méi)有擴(kuò)增出此條帶(圖3A).由此說(shuō)明,通過(guò)引物CQ1/CQ2的PCR擴(kuò)增,成功實(shí)現(xiàn)了栗疫菌特異RAPD片段標(biāo)記向SCAR標(biāo)記的轉(zhuǎn)化.引物CR1/CR2能在供試?yán)跻呔鶧NA中擴(kuò)增得到875 bp的目的片段,其他參試菌株和陰性對(duì)照無(wú)此條帶(圖3B).說(shuō)明在引物CQ1/CQ2內(nèi)側(cè)設(shè)計(jì)巢式PCR引物是可行的,且引物CR1/CR2具有較高的特異性和普遍的適用性.
圖3 引物CQ1/CQ2(A)和CR1/CR2(B)的特異性檢測(cè)Fig.3 Results of PCR amplification using specific primers CQ1/CQ2(A)and CR1/CR2(B)
2.2 PCR擴(kuò)增栗疫菌基因組DNA的靈敏度檢測(cè)
用引物CQ1/CQ2對(duì)不同質(zhì)量濃度的栗疫菌基因組DNA進(jìn)行常規(guī)PCR擴(kuò)增,能得到1420 bp的目的條帶,可以檢測(cè)到3 pg/μL的基因組DNA(圖4A);而以引物CQ1/CQ2和引物CR1/CR2組合進(jìn)行巢式PCR,可獲得875 bp的目的片段,最低能檢測(cè)到30 fg/μL的栗疫菌基因組DNA,檢測(cè)靈敏度至少提高了1 000倍(圖4B).
2.6 自然發(fā)病和人工接種栗樹(shù)枝干組織中的栗疫菌檢測(cè)
從自然發(fā)病和人工接種栗疫菌的供試樣品中提取DNA,用引物CQ1/CQ2進(jìn)行第1輪PCR擴(kuò)增,可在自然發(fā)病的典型癥狀、當(dāng)年枯死枝、病株殘?bào)w及人工接種出現(xiàn)典型癥狀的樣本DNA中擴(kuò)增出1 420 bp的條帶,而健康植株及發(fā)病初期和未顯癥狀的樣本均沒(méi)有擴(kuò)增片段.經(jīng)巢式PCR進(jìn)行第2輪擴(kuò)增,除了能檢測(cè)到發(fā)病初期的樣本外,其他樣本的檢測(cè)結(jié)果與第1輪擴(kuò)增結(jié)果相同,從樣品中擴(kuò)增出大小875 bp的特異條帶(圖5).后期對(duì)條帶回收、測(cè)序和比對(duì)結(jié)果證明與特異RAPD片段一致.由此表明,本研究所設(shè)計(jì)的基于SCAR標(biāo)記的巢式PCR可快速準(zhǔn)確地從自然發(fā)病及人工接種的栗樹(shù)組織中檢測(cè)到栗疫菌,該技術(shù)可以用于栗疫病的早期診斷.
圖4 栗疫菌常規(guī)PCR和巢式PCR的靈敏度檢測(cè)Fig.4 Sensitivity detection of C.parasitic with regular PCRand nested-PCR
圖5 利用引物CQ1/CQ2和CR1/CR2擴(kuò)增不同組織Fig.5 Detection of C.parasitica from different plant tissues with primers CQ1/CQ2 and CR1/CR2
本研究利用RAPD技術(shù)篩選出能特異性擴(kuò)增栗疫菌DNA的隨機(jī)引物S494和RAPD特異片段SCQ494.基于RAPD特異片段向SCAR標(biāo)記轉(zhuǎn)化,設(shè)計(jì)了2對(duì)引物,建立了一套快速、靈敏、準(zhǔn)確的栗疫菌巢式PCR檢測(cè)方法.
利用RAPD技術(shù)篩選特異引物和片段一般遵循直觀判斷方法,但這種方法有時(shí)會(huì)存在很大誤差.原因是每條隨機(jī)引物RAPD-PCR擴(kuò)增的條帶數(shù)目會(huì)有所差異,加之后期如果凝膠電泳的條件控制不好很容易對(duì)特異片段判讀錯(cuò)誤.RAPD技術(shù)本身也存在重復(fù)性差、穩(wěn)定性低等缺點(diǎn),需要嚴(yán)格控制PCR反應(yīng)條件,這在一定程度上增加了引物篩選的難度[27],因此,對(duì)于篩選出來(lái)的引物有必要做重復(fù)驗(yàn)證,以確定其是否為特異性引物.本研究用篩選出來(lái)的隨機(jī)引物S494對(duì)包括栗疫菌在內(nèi)的供試菌株的RAPD-PCR擴(kuò)增發(fā)現(xiàn),引物S494能在栗疫菌中穩(wěn)定地?cái)U(kuò)增出一條1 400 bp左右的條帶,且條帶清晰明亮,其他供試菌株并無(wú)此條帶產(chǎn)生.因此,認(rèn)為引物S494所擴(kuò)增的片段SCQ494是栗疫菌的特異RAPD片段,該片段具有轉(zhuǎn)化為SCAR標(biāo)記的潛力.本研究對(duì)特異RAPD片段SCQ494兩端隨機(jī)引物進(jìn)行了重新設(shè)計(jì),取得了很好的擴(kuò)增效果,成功實(shí)現(xiàn)了RAPD標(biāo)記向SCAR標(biāo)記的轉(zhuǎn)化.
以往在RAPD標(biāo)記向SCAR標(biāo)記的轉(zhuǎn)化研究中,多是根據(jù)隨機(jī)引物擴(kuò)增序列只設(shè)計(jì)1對(duì)引物,這種方法對(duì)SCAR標(biāo)記轉(zhuǎn)化成功與否可以通過(guò)PCR擴(kuò)增和電泳檢測(cè),能以很直觀地方式判斷出結(jié)果.SCAR標(biāo)記引物對(duì)植物病原菌的檢測(cè)有很強(qiáng)的特異性,但用于田間樣本的檢測(cè)仍需要有較高的靈敏度.PCR技術(shù)對(duì)植物病原菌田間檢測(cè)的一般流程是:提取疑似發(fā)病或已發(fā)病組織的DNA-PCR擴(kuò)增—電泳檢測(cè)—結(jié)果判斷.但多數(shù)情況下從發(fā)病初期或是處于潛伏期而未顯癥狀的植物組織樣中提取總DNA,病原菌DNA的含量極少,普通PCR技術(shù)很難檢測(cè)到,往往會(huì)造成結(jié)果不準(zhǔn)確.一般認(rèn)為巢式PCR可以把檢測(cè)靈敏度提高10~1×105倍,這對(duì)靶標(biāo)病原物的量非常低或存在PCR抑制物時(shí)非常重要[28-29].本研究采用巢式PCR檢測(cè)技術(shù),利用該技術(shù)從自然發(fā)病程度不同和人工接種感染病原菌未顯癥狀的栗樹(shù)組織中檢測(cè)到栗疫菌.表明巢式PCR具有較高的特異性和靈敏度,這對(duì)于栗疫菌的分子鑒定、組織檢測(cè)及田間病原菌的動(dòng)態(tài)監(jiān)測(cè)具有重要的應(yīng)用價(jià)值.
本研究基于栗疫菌RAPD特異片段向SCAR標(biāo)記轉(zhuǎn)化,設(shè)計(jì)了2對(duì)引物CQ1/CQ2和CR1/ CR2,采用巢式PCR擴(kuò)增的方法可以準(zhǔn)確地檢測(cè)自然發(fā)病和人工接種栗樹(shù)組織中的栗疫菌.巢式PCR較一般PCR具有更高的特異性和靈敏度,可以用于病害的早期診斷和病原鑒定,此方法可參考應(yīng)用于栗疫病的檢疫,對(duì)控制栗疫病的傳播和防治有重要的意義.栗疫菌所屬的分類(lèi)地位曾存在很大爭(zhēng)議,目前普遍承認(rèn)的是Cryphonectria屬,中文譯為隱球赤殼屬[30].關(guān)于該屬中與其親緣關(guān)系較近的其他種類(lèi)真菌在國(guó)內(nèi)外研究報(bào)道較少,而栗疫病在世界范圍內(nèi)都普遍發(fā)生,種內(nèi)又存在很大的遺傳變異性[25,31-32],這給栗疫菌的鑒定、檢測(cè)工作增加了難度.本研究所采用的栗疫菌已包括了四川大部分及其他省份的栗疫病主要發(fā)生地區(qū),但仍存在不足之處.為此,下一步的工作將收集更多不同來(lái)源地栗疫菌,用于本研究方法的驗(yàn)證范圍.
(References):
[1] 陳守常,朱天輝,楊佐忠,等.四川森林病害.成都:四川科學(xué)技術(shù)出版社,2006:275-276. Chen S C,Zhu T H,Yang Z Z,et al.Forest Disease in Sichuan.Chengdu:Sichuan Publishing House of Science and Technology,2006:275-276.(in Chinese)
[2] Burke K L.The effects of logging and disease on American chestnut.Forest Ecology and Management,2011,261(6):1027-1033.
[3] 郭世保,徐瑞富,劉鳴韜.栗疫病研究進(jìn)展.中國(guó)農(nóng)學(xué)通報(bào),2005,21(5):339-340. Guo S B,Xu R F,Liu M T.Progress in research of chestnut blight.Chinese Agricultural Science Bulletin,2005,21(5):339-340.(in Chinese with English abstract)
[4] 程遠(yuǎn)渡,易有金,周金偉,等.板栗病害防治研究進(jìn)展.安徽農(nóng)業(yè)科學(xué),2013,41(19):8170-8171. Cheng Y D,Yi Y J,Zhou J W,et al.Research progress in prevention and control of chestnut disease.Journal of Anhui Agricultural Sciences,2013,41(19):8170-8171.(in Chinese with English abstract)
[5] Paran I,Michelmore R W.Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce.Theoretical and Applied Genetics,1993,85(8):985-993.
[6] 孫保娟,李植良,黎振興,等.SCAR標(biāo)記轉(zhuǎn)化失敗的原因和對(duì)策.分子植物育種,2010,8(3):589-594. Sun B J,Li Z L,Li Z X,et al.Reasons for SCAR conversion failure and its remedies.Molecular Plant Breeding,2010,8(3):589-594.(in Chinese with English abstract)
[7] 王剛,李二峰,茆振川,等.對(duì)辣椒抗性基因Me3表現(xiàn)毒性的南方根結(jié)線蟲(chóng)群體的SCAR分子標(biāo)記.中國(guó)農(nóng)業(yè)科學(xué),2013(5):81-87. Wang G,Li E F,Mao Z C,et al.SCAR molecular markers correlated with populations of Meloidogyne incognita virulent to resistance gene Me3.Scientia Agricultura Sinica,2013(5):81-87.(in Chinese with English abstract)
[8] 古瑜,韓啟厚,王武臺(tái),等.菜豆抗炭疽病基因SCAR標(biāo)記在品種抗性鑒定中的應(yīng)用.園藝學(xué)報(bào),2011,38(5):911-920. Gu Y,Han Q H,Wang W T,et al.Application of common bean anthracnose resistance gene SCAR markers in snap bean disease resistance identification.Acta Horticulturae Sinica,2011,38(5):911-920.(in Chinese with English abstract)
[9] 張浩,陳乃中,李正西.中國(guó)舞毒蛾六個(gè)地理種群的RAPD分析及SCAR標(biāo)記構(gòu)建.昆蟲(chóng)學(xué)報(bào),2011,54(6):714-721. Zhang H,Chen N Z,Li Z X.Analysis of RAPD markers and development of SCAR markers of six geographic populations of the gypsy moth,Lymantria dispar L.(Lepidoptera:Lymantriidae),from China.Acta Entomologica Sinica,2011,54(6):714-721.(in Chinese with English abstract)
[10] 陳思,曹遠(yuǎn)銀,李天亞,等.小麥稈銹菌生理小種21C3CTH SCAR標(biāo)記的建立.麥類(lèi)作物學(xué)報(bào),2014,34(6):740-744. Chen S,Cao Y Y,Li T Y,et al.The development of a SCAR marker for Chinese race 21C3CTH of Puccinia graminis f.sp.tritici.Journal of Triticeae Crops,2014,34(6):740-744.(in Chinese with English abstract)
[11] 李仕金,辛培堯,郭鴻彥,等.大麻雄性相關(guān)RAPD和SCAR標(biāo)記的研究.廣東農(nóng)業(yè)科學(xué),2013,39(24):151-154. Li S J,Xin P Y,Guo H Y,et al.Study of male-specific RAPD and SCAR marker in Cannabis sativa L.Guangdong Agricultural Sciences,2013,39(24):151-154.(in Chinese with English abstract)
[12] 史利玉,李新海,謝傳曉,等.玉米抗粗縮病毒SCAR分子標(biāo)記的開(kāi)發(fā).中國(guó)農(nóng)業(yè)科學(xué),2011,44(9):1763-1774. Shi L Y,Li X H,Xie C X,et al.Development of SCARs from AFLP markers linked to resistance to maize rough dwarf virus(MRDV)using bulked segregant analysis in maize.Scientia Agricultura Sinica,2011,44(9):1763-1774.(in Chinese with English abstract)
[13] DianeseéC,de Fonseca M E N,Goldbach R,et al. Development of a locus-specific,co-dominant SCAR marker for assisted-selection of the Sw-5(Tospovirus resistance)gene cluster in a wide range of tomato accessions.Molecular Breeding,2010,25(1):133-142.
[14] Zhao Y E,Wu L P.RAPD-SCAR marker and genetic relationship analysis of three Demodex species(Acari:Demodicidae).Parasitology Research,2012,110(6):2395-2402.
[15] Stewart J E,Andrew M,Bao X,et al.Development of sequence characterized amplified genomic regions(SCAR)for fungal systematics:Proof of principle using Alternaria,Ascochyta and Tilletia.Mycologia,2013,105(4):1077-1086.
[16] 余仲東,張振,曹軒峰,等.松楊柵銹菌兩菌群RAPD特異序列的標(biāo)記轉(zhuǎn)換.中國(guó)農(nóng)業(yè)科學(xué),2009,42(1):349-354. Yu Z D,Zhang Z,Cao X F,et al.Specific RAPD-DNA markers transfer of two populations of Melampsora laricipopulina.Scientia Agricultura Sinica,2009,42(1):349-354.(in Chinese with English abstract)
[17] Reddy J M,Raoof M A,Ulaganathan K.Development of specific markers for identification of Indian isolates of Fusarium oxysporum f.sp.ricini.European Journal of Plant Pathology,2012,134(4):713-719.
[18] Liu J H,Gao L,Liu T G,et al.Development of a sequencecharacterized amplified region marker for diagnosis of dwarf bunt of wheat and detection of Tilletia controversa Kühn. Letters in Applied Microbiology,2009,49(2):235-240.
[19] Nithya K,Bukhari K A,Valluvaparidasan V,et al. Molecular detection of Colletotrichum falcatum causing red rot disease of sugarcane(Saccharum officinarum)using a SCAR marker.Annals of Applied Biology,2012,160(2):168-173.
[20] Grosch R,Schneider J H M,Peth A,et al.Development of a specific PCR assay for the detection of Rhizoctonia solani AG 1-IB using SCAR primers.Journal of Applied Microbiology,2007,102(3):806-819.
[21] Marra R E,Milgroom M G.PCR amplification of the mating-type idiomorphs in Cryphonectria parasitica. Microbiology,1999,8(11):1947-1950.
[22] Marra R E,Milgroom M G.The mating system of the fungus Cryphonectria parasitica:Selfing and selfincompatibility.Heredity,2001,86(2):134-143.
[23] 潘琪,張國(guó)珍,賀偉,等.栗疫菌營(yíng)養(yǎng)體親和型多樣性比較及野生栗栗疫菌交配型的分子檢測(cè).林業(yè)科學(xué)研究,2012,25(5):604-611. Pan Q,Zhan G Z,He W,et al.Comparison of vegetative compatibility diversity of Cryphonectria parasitica from wild and cultivated chestnut and molecular detection of matingtype of the pathogens from wild chestnut.Forest Research,2012,25(5):604-611.(in Chinese with English abstract)
[24] Popov A P,Tsvetkov I L,Belov A A,et al.Molecular genetic identification of the phytopathogen fungus Cryphonectria parasitica.Microbiology,2010,79(2):223-228.
[25] 徐陳賢,周曉云,王克榮.亞歐美栗疫病菌群體的遺傳多樣性.生態(tài)學(xué)報(bào),2005,25(2):232-236. Xu C X,Zhou X Y,Wang K R.Genetic diversity of Cryphonectria parasitica populations in Asia,Europe and North America.Acta Ecologica Sinica,2005,25(2):232-236.(in Chinese with English abstract)
[26] 何邦令,李超,王慶華,等.木霉菌和毛殼菌對(duì)板栗疫病的抗生作用.中國(guó)森林病蟲(chóng),2006,25(3):4-7. He B L,Li C,Wang Q H,et al.Antagonism of Trichoderma and Chaetomium against chestnut blight caused by Cryphonecria parasitica.Forest Pest and Disease,2006,25(3):4-7.(in Chinese with English abstract)
[27] 周秀萍,楊長(zhǎng)順,李爭(zhēng)鳴,等.RAPD反應(yīng)體系優(yōu)化的研究.微生物學(xué)雜志,2010(3):96-99. Zhou X P,Yang C S,Li Z M,et al.Optimization of RAPD reaction system.Journal of Microbiology,2010(3):96-99.(in Chinese with English abstract)
[28] 王健生,王佳妹,李瀟,等.尖鐮孢菌(Fusarium oxysporum)的快速分子檢測(cè).植物病理學(xué)報(bào),2013,43(3):318-322. Wang J S,Wang J M,Li X,et al.Rapid molecular detection of Fusarium oxysporum by PCR.Acta Phytopathologica Sinica,2013,43(3):318-322.(in Chinese with English abstract)
[29] 紀(jì)睿,王健生,廖太林,等.雪松疫霉(Phytophthora lateralis)的快速分子檢測(cè).植物病理學(xué)報(bào),2014,44(2):113-120. Ji R,Wang J S,Liao T L,et al.Rapid molecular detection of Phytophthora lateralis by PCR.Acta Phytopathologica Sinica,2014,44(2):113-120.(in Chinese with English abstract)
[30] 周而勛,王克榮.栗疫病研究進(jìn)展.果樹(shù)科學(xué),1999,16(1):66-71. Zhou E X,Wang K R.Advances in chestnut blight research. Journal of Fruit Science,1999,16(1):66-71.(in Chinese with English abstract)
[31] 樸春根,Kim Kyung-Hee,Lee Sang-Hyun,等.韓國(guó)、美國(guó)和中國(guó)栗疫病菌的遺傳變異分析.林業(yè)科學(xué)研究,2007,20(2):283-286. Pao C G,Kim K H,Lee S H,et al.Genetic variation of strains of Cryphonectria parasitica from Korea,USA and China.Forest Research,2007,20(2):283-286.(in Chinese with English abstract)
[32] Je?ic'M,Krstin L,Rigling D,et al.High diversity in populations of the introduced plant pathogen,Cryphonectria parasitica,due to encounters between genetically divergent genotypes.Molecular Ecology,2012,21(1):87-99.
Development of nested-PCR for detection of Cryphonectria parasitica based on the marker of sequence characterized amplified region.Journal of Zhejiang University(Agric.&Life Sci.),2015,41(1):25-33
Ma Wenjian,Zheng Lei,Zhang Jing,Liu Yang,Zhu Tianhui*(College of Forestry,Sichuan Agricultural University,Ya’an 625014,Sichuan,China)
Cryphonectria parasitica;random amplified polymorphic DNA(RAPD);sequence characterized amplified region(SCAR);nested-PCR;molecular detection
Q 939.95;S 432.44
A
10.3785/j.issn.1008-9209.2014.06.261
教育部博士點(diǎn)基金資助項(xiàng)目(00329701).
朱天輝,E-mail:zhuth1227@126.com
聯(lián)系方式:麻文建,E-mail:yuren2009@126.com
2014 06 26;接受日期(Accepted):2014 08 22;
日期(Published online):2015 01 19 URL:http://www.cnki.net/kcms/detail/33.1247.S.20150119.1649.002.html