肖鳳虎,張蕾,謝鎮(zhèn),郭巖彬,陳敏文,王勇軍,4*
(1.浙江農(nóng)林大學林業(yè)與生物技術學院,浙江臨安311300;2.浙江科技學院,杭州310023;3.中國農(nóng)業(yè)大學資源與環(huán)境學院,北京100094;4.浙江農(nóng)林大學生物農(nóng)藥高效制備技術國家地方聯(lián)合工程實驗室,浙江臨安311300)
組氨酸激酶基因barA在水生拉恩菌中的生防調(diào)控功能
肖鳳虎1,張蕾2,謝鎮(zhèn)1,郭巖彬3,陳敏文1,王勇軍1,4*
(1.浙江農(nóng)林大學林業(yè)與生物技術學院,浙江臨安311300;2.浙江科技學院,杭州310023;3.中國農(nóng)業(yè)大學資源與環(huán)境學院,北京100094;4.浙江農(nóng)林大學生物農(nóng)藥高效制備技術國家地方聯(lián)合工程實驗室,浙江臨安311300)
為探究水生拉恩菌(Rahnella aquatilis)HX2的生防性狀表現(xiàn)機制,利用轉(zhuǎn)座子mini-Tn5對HX2菌株進行隨機突變,篩選獲得1個對葡萄根癌菌K308(Agrobacterium vitis K308)拮抗活性減弱的突變體,并確定該插入位點的基因為雙組分調(diào)控系統(tǒng)中的組氨酸激酶基因bar A.該基因編碼的蛋白含有組氨酸激酶結構域HAMP(histidine kinases,adenylyl cyclases,methyl binding proteins,phosphatases)、組氨酸磷酸傳遞結構域His KA(histidine kinase acceptor)、C-端催化ATP結合結構域HATPase_C(histidine associated ATPase C terminal)、磷酸接受結構域REC(receiver domain)和含組氨酸的磷酸轉(zhuǎn)移結構域HPT(histidine phosphotransferase domain),是一種跨膜的雜合組氨酸激酶蛋白.通過雙交換突變,獲得了bar A缺失突變體并構建了互補菌株.通過比較分析發(fā)現(xiàn),barA基因缺失后,細菌HX2生物膜形成能力顯著提高,但細菌游動和涌動能力降低,以及對葡萄根癌病的生防效果從野生型的86.2%降低至26.7%,構建的互補菌株能夠恢復突變菌株在該研究中的所有測定性狀.由此推測,組氨酸激酶基因bar A是細菌HX2表現(xiàn)生防性狀的一個重要調(diào)控基因,為生防細菌HX2在植物病害防治上提供理論基礎.
水生拉恩菌;組氨酸激酶基因barA;雙組分調(diào)控系統(tǒng);生物防治
SummaryRahnella aquatilis HX2,which was isolated from the vineyard soil,is a gram-negative,plant growthpromoting rhizobacteria.Previous results showed that R.aquatilis HX2 has significant antagonistic effect on certain pathogenic bacteria and fungi including Agrobacterium tumefaciens,Xanthomonas oryzae,F(xiàn)usarium oxysporum,Botrytis cinerea,Altemaria solani,etc,and exhibited the potential biocontrol value against rice sheath blight and crown gall ofgrapevine and sunflower.The completed genomic DNA sequence of R.aquatilis HX2 has been finished.
For further discovery of the regulatory systems which regulate its biocontrol and physiological traits,random mutagenesis based on mini-Tn5 transposon was used to investigate the regulatory genes.The candidated genes were focused on the regulatory function in biocontrol-related physiological traits and biocontrol effects.Consequently,a mutant TR57 which had less antagonitic effect against the plant pathogen Agrobacterium vitis K308 was obtained after the random mutagenesis based on mini-Tn5 transposon and antagonitic assay.The DNA sequence flanking the inserted mini-Tn5 transposon was verified as a Bar A-liked histidine kinase gene.The putative Bar A protein in R.aquatilis HX2 contains HAMP domain,HisKA domain,HATPase_C domain,REC domain and HPT domain.Bar A has been reported as the sensor protein of a two-component regulatory system Bar A/Uvr Y in many bacteria,such as Escherichia coli,Pseudomonas spp.and the Bar A/Uvr Y was known as a global regulatory functioning in bacterial survival under the circumstance of p H value and nutrition change.For further investigation of Bar A in R.aquatilis HX2,null barA mutant was constructed based on homologous recombination.A vector pSRΔbarA was constructed after inserting the flanking region of barA loci into the suicide vector pSR47S,and transformed into E.coli DH5α(λ-pir).The triparental mating strategy was used to transfer the vector pSRΔbarA into R.aquatilis HX2.After the two-step homologous recombination,the null barA mutant MR57 was obtained consequently.Meanwhile,the complemented vector pRK barA was constructed after inserting the barA operon into the shuttle vector pRK415G,and then was transformed into MR57.
The biocontrol-related physiological traits and biocontrol effect of R.aquatilis HX2 and its derivative strains were compared to valuate the barA regulation function.The experimental results indicated that the mutagenesis of barA caused higher bacterial biofilm formation ability,less swimming and swarming ability.The biocontrol efficiency of barA mutant against A.vitis K308 on grape plants decreased to 26.7%,comparing to 86.2%of the wild type strain.Moreover,the complemented strain could recover all the measured biological characters and biocontrol efficiency.Therefore,it was supposed that the histidine kinase gene barA plays the key role in biocontrol function of R.aquatilis HX2.
In summary,barA is firstly found as a regulation gene functioning in bacterial biocontrol effect in this study. The results also give us the indication that the modification of bacterial two-component regulation systems would be helpful to facilitate the application of biocontrol bacteria.
利用微生物進行病害防治及促進植物生長已經(jīng)被人們認為是一種降低農(nóng)業(yè)化學品使用的有效方法,如用與植物相關的細菌控制病害發(fā)生、刺激宿主植物生長、改善作物的土壤結構等[1].細菌在農(nóng)業(yè)上的應用受到諸多因素的影響,特別是細菌對新環(huán)境的適應能力.當前已有報道證實了細菌的很多生物學性狀,如生物膜的形成、細菌的游動性、細菌的涌動性、拮抗物質(zhì)產(chǎn)生能力、定殖能力、抗氧化能力等都直接影響了細菌的生防效果或促生效果[2].這些性狀在細菌細胞內(nèi)都是由很多調(diào)控系統(tǒng)來調(diào)控表達,如雙組分調(diào)控系統(tǒng)(two-component regulatory system)、群體感應系統(tǒng)(quorum-sensing system)、c-di-GMP(cyclic diguanylate)調(diào)控系統(tǒng)、σ因子調(diào)控系統(tǒng)等,使細菌能敏感地感受外界條件,調(diào)控細胞體內(nèi)功能基因的表達[2].
雙組分調(diào)控系統(tǒng)是當前細菌功能基因調(diào)控研究的一個熱點.該系統(tǒng)由一個受體組氨酸激酶和一個反應調(diào)控因子組成.受體組氨酸激酶大多是一些跨膜蛋白,膜外結構域感應外界信號,如營養(yǎng)物質(zhì)、p H值、滲透壓等,然后通過構型變化,激活胞內(nèi)激酶進行自身磷酸化,通過磷酸轉(zhuǎn)移激活反應調(diào)節(jié)因子.反應調(diào)節(jié)因子通過直接作用于DNA或者調(diào)控其他轉(zhuǎn)錄因子作用于下游基因,最終達到細菌感應環(huán)境而調(diào)控自身功能基因表達的目的.當前已經(jīng)確定的調(diào)控因子有GacS-Gac A調(diào)控熒光假單胞菌(Pseudomonas f luorescens)的定殖、2,4-DAPG的產(chǎn)量[3-5],CusR-CusS調(diào)控大腸埃希菌(Escherichia coli)K-12對銅離子的適應[6],SenX3-RegX3調(diào)控恥垢分枝桿菌(Mycobacterium smegmatis)對磷的吸收,從而調(diào)控細菌在寄主體內(nèi)的定殖[7].ComD-ComE感受外界刺激蛋白的濃度,從而調(diào)控肺炎鏈球菌(Streptococcus pneumoniae)的感受態(tài)形成[8];RoxS-RoxR調(diào)控惡臭假單胞菌(Pseudomonas putida)對細菌群體濃度的感應,從而調(diào)控細菌在植物葉表的定殖[9];PhoP-PhoQ調(diào)控細菌熒光假單胞菌的群體感應以及生物膜的形成,從而調(diào)控細菌2P24的生防功能[10].
水生拉恩菌(Rahnella aquatilis)HX2是1株從葡萄根圍分離出的細菌,能產(chǎn)生抗生素[11],其對水稻黃單胞菌(Xanthomonas oryzae)、葡萄土壤桿菌(Agrobacterium vitis)、黃瓜枯萎病菌(Fusarium oxysporum f.sp.cucumerinum)、西瓜枯萎病菌(F. oxysporum f.sp.niveum)、番茄灰霉(Botrytis cinerea)等多種植物病原細菌和真菌具有明顯的拮抗作用,對葡萄根癌病具有顯著的防治效果[12].為進一步探明該細菌的生防機制,本研究利用轉(zhuǎn)座子隨機突變,獲得1株突變體,發(fā)現(xiàn)了組氨酸激酶基因bar A對細菌生防相關性狀以及生防效果的調(diào)控特征.
1.1 菌株、質(zhì)粒與培養(yǎng)條件
本研究所用菌株、質(zhì)粒見表1.水生拉恩菌(R. aquatilis)HX2及其衍生菌株在PDA培養(yǎng)基中28℃培養(yǎng),大腸埃希菌在LB(Luria-Bertani)培養(yǎng)基中37℃培養(yǎng).三親雜交在ABM基本培養(yǎng)基上進行[13].使用抗生素的終質(zhì)量濃度分別為氨芐西林(ampicilin,AP)50μg/m L,卡那霉素(kanamycin,Km)50μg/m L,四環(huán)素(tetracycline,Tc)20μg/m L.
表1 本研究所用菌株和質(zhì)粒Table 1 Bacterial strains and plasmids used in this study
1.2 barA基因缺失突變體及其互補菌株構建
根據(jù)bar A基因在細菌HX2染色體中的定位及其側翼序列,用設計好的引物P1/P2、P3/P4以基因組DNA為模板進行PCR擴增,得到bar A基因的上、下游片段,其長度大約1 000 bp,經(jīng)相應限制性酶切后連接到載體pBluescriptⅡSK+上.以連接barA上、下游片段的p BluescriptⅡSK+質(zhì)粒為模板,用引物P7/P8擴增連接片段,長度約為2 000 bp.經(jīng)限制性內(nèi)切酶NotⅠ酶切后連接到自殺性載體pSR47s上,得到缺失載體pSRΔbar A.將缺失載體通過三親(pSRΔbar A、p RK600、HX2)雜交轉(zhuǎn)入HX2菌株中,再進行2次篩選獲得缺失突變菌株MR57.
以引物對P5/P6擴增bar A基因,構建bar A基因互補菌株,經(jīng)Hin dⅢ和KpnⅠ雙酶切后連接到穿梭質(zhì)粒p RK415G中,得到互補載體p RK bar A.將該載體通過三親雜交導入缺失突變體MR57中,得到互補菌株MR57(p RK bar A).
1.3 生物膜的定量測定
生物膜的形成及定量依據(jù)O’Toole等[14]的方法:將待測各菌株分別在LB培養(yǎng)基上活化24 h,制備成1×109CFU/m L的菌懸液,取100μL菌懸液加入到裝有1 m L胞外多糖(extracellular polysaccharide,EPS)培養(yǎng)液的1.5 m L離心管中,28℃靜置培養(yǎng)48 h,用無菌水沖洗1遍,加入1.5 m L 1%結晶紫染液,染色15 min,用無菌水將染液沖洗干凈.每管用95%乙醇洗滌,以不加菌懸液的EPS作為對照,用紫外分光光度計測定D(590 nm).吸光值D(590 nm)的大小與生物膜形成能力成正比.每個處理5個重復.
1.4 細菌游動和涌動能力檢測
參考Chow等[15]的方法進行調(diào)整,分別在含有質(zhì)量分數(shù)為0.3%和0.5%瓊脂粉的PDA培養(yǎng)基上檢測細菌游動和涌動能力,每隔3 h觀測細菌菌落直徑.每個處理5個重復.
1.2 葡萄根癌菌A.vitis K308平板抑菌檢測
采用Stonier雙層培養(yǎng)法[16],將待測各菌株配制成菌懸液,各吸取5μL點于PDA培養(yǎng)基上,28℃培養(yǎng)48 h,用三氯甲烷熏蒸殺死細菌.10~12 h后,吸取50μL K308菌懸液加入10 m L融化后冷卻到50℃的半固體YEB培養(yǎng)基中,迅速混勻,立即倒入培養(yǎng)基,鋪成均勻的薄層,28℃培養(yǎng)24 h,觀察抑菌圈的出現(xiàn)并定時測量抑菌圈的直徑.每個處理5個重復.
1.6 室溫防治葡萄根癌病
將HX2、突變體以及互補菌株制成菌懸液,重懸于無菌的0.9%氯化鈉溶液中,分別與等量的病原菌K308懸浮液混勻,以K308單獨接種作為對照.用滅菌接種針在3年生葡萄苗上呈縱向劃傷,吸取5μL待測菌液接種于傷口,并用封口膜包裹傷口,3 d后去掉封口膜,25℃培養(yǎng)箱培養(yǎng)60 d后觀察結瘤情況并稱質(zhì)量,每個處理設5個重復,按分級標準調(diào)查發(fā)病情況并計算防治效果.
防治效果/%=(對照的病情指數(shù)-處理的病情指數(shù))/對照的病情指數(shù)×100.
1.7 統(tǒng)計分析
運用SPSS 17.0軟件中的單因素分析方差(one-way ANOVA)比較各處理數(shù)據(jù)的差異性.所有數(shù)據(jù)以平均值±標準差表示.
2.1 R.aquatilis HX2產(chǎn)細菌素突變體的篩選及barA基因鑒定
利用mini-Tn5對HX2菌株進行隨機突變,獲得約3 000個突變體,將突變體菌株對葡萄根癌病菌A.vitis K308進行拮抗檢測,發(fā)現(xiàn)突變體TR57的拮抗圈明顯降低(圖1A).提取突變體基因組DNA,根據(jù)mini-Tn5的序列,測定轉(zhuǎn)座子插入位點的序列,比對細菌基因組序列[13](NCBI登錄號:CP003403)發(fā)現(xiàn),轉(zhuǎn)座子插入推定的barA基因中間(圖1B).分析該基因編碼的氨基酸序列,發(fā)現(xiàn)該基因從N端開始,依次含有HAMP結構域、His KA結構域、HATPase_C結構域、REC結構域和HPT結構域(圖1C),與報道的大腸埃希菌Bar A蛋白相似.
2.2 R.aquatilis HX2中barA缺失突變體的構建
按圖2A設計bar A基因兩端序列引物P1和P2擴增bar A下游片段,P3和P4擴增bar A上游片段(表2),缺失bar A基因中His KA結構域和HATPase_C結構域,長度為464 bp.將擴增獲得的DNA片段連接到自殺載體pSR47S上,獲得載體pSRΔbar A,將載體通過三親雜交,轉(zhuǎn)入到HX2菌株中,2次遺傳重組獲得克隆,利用兩端引物P1和P4進行PCR擴增(表2),以基因組為對照發(fā)現(xiàn),獲得了1株陽性克隆為缺失突變體菌株MR57(圖2B);該菌株與野生型菌株相比,在bar A基因內(nèi)部缺少了464 bp(圖2B),與設計結果一致.
圖1 R.aquatilis HX2中barA突變體的篩選及Bar A蛋白結構分析Fig.1 Screening of bar A mutant of R.aquatilis HX2 and putative secondary structure of Bar A
表2 本試驗所用PCR引物Table 2 Primers used in this study
2.3 R.aquatilis HX2中barA基因生物學功能及生防調(diào)控功能分析
按圖2A設計bar A的互補載體引物,將擴增的片段連接到載體p RK415G上,獲得bar A互補載體p RK bar A.利用電擊轉(zhuǎn)化至突變體菌株MR57中,獲得互補菌株MR57(p RK bar A).將野生型菌株HX2、突變體菌株MR57和互補菌株MR57(p RK bar A)進行拮抗根癌病菌A.vitis K308,并檢測生物膜形成能力、細菌游動和涌動能力.結果(圖3)表明,MR57較野生菌株HX2的拮抗能力明顯下降,互補菌株能恢復細菌對根癌菌的拮抗能力.同時發(fā)現(xiàn),bar A突變后,生物膜形成能力明顯上升,而細菌的游動和涌動都呈現(xiàn)下降趨勢,說明bar A突變后,細菌處于一種相對不活躍的狀態(tài),對環(huán)境的敏感性下降.互補菌株能恢復細菌的生物膜形成,以及細菌游動和涌動的能力.
圖2 R.aquatilis HX2的barA缺失突變體的構建Fig.2 Construction of bar A null mutant of R.aquatilis HX2
為進一步確定bar A對細菌生防能力的影響,將突變體菌株MR57和HX2分別與K 308菌株混合,在葡萄植株上進行防治效果檢測,發(fā)現(xiàn)HX2可以很好控制K308引起的根癌病,防效可以達到86.2%,bar A突變體處理組與對照組的瘤質(zhì)量差別不明顯,對根癌病防效下降至26.7%,說明bar A對R.aquatilis HX2的生防功能具有重要調(diào)控作用(表3).
表3 R.aquatilis HX2和barA突變體對葡萄根癌病的防治效果Table 3 Control efficiency of R.aquatilis HX2 and its barA nullmutant on grape crown gall disease
圖3 R.aquatilis HX2、barA突變體和互補菌株的生物性狀比較Fig.3 Comparison of biological traits among R.aquatilis HX2,bar A mutant MR57 and the bar A complemented strain MR57
本研究利用轉(zhuǎn)座子隨機突變細菌R.aquatilis HX2,篩選得到1個能明顯降低葡萄根癌病防效的突變體,并鑒定了轉(zhuǎn)座子插入位點為一個組氨酸激酶基因bar A.通過缺失突變,發(fā)現(xiàn)bar A基因突變后,細菌拮抗葡萄根癌病菌能力的確明顯下降,同時發(fā)現(xiàn)細菌更容易形成生物膜,細菌游動和涌動能力都減弱.最后比較了突變體與野生型菌株防治葡萄根癌病的效果,發(fā)現(xiàn)bar A基因突變后,細菌的生防能力顯著降低,防效從86.2%降低至26.7%.結果表明,組氨酸激酶基因bar A在生防細菌R. aquatilis HX2中發(fā)揮著重要的調(diào)控作用.該結果與已報道的P.fluorescens中感應蛋白基因gacS的結果相似[3-4].
受體組氨酸激酶Bar A首次在大腸埃希菌中發(fā)現(xiàn)可以在env Z缺失突變時調(diào)控感應調(diào)節(jié)因子OmpC和Omp F,從而對環(huán)境適應做出相應的調(diào)控[17].后續(xù)發(fā)現(xiàn)Bar A與一個調(diào)節(jié)因子Uvr Y相互作用,Bar A感應外界環(huán)境中的信號發(fā)生磷酸化,激活細胞體內(nèi)的Uvr Y蛋白,組成了一個完整的雙組分調(diào)控系統(tǒng)[18].R.aquatilis HX2中的Bar A蛋白含有HAMP結構域、His KA結構域、HATPase_C結構域、REC結構域和HPT結構域(圖1C).細菌利用Bar A的N端形成跨膜區(qū)域嵌入細胞膜內(nèi),感應外界信號,通過改變HAMP結構域構型[19],激活His KA結構域以及HATPase_C結構域進行磷酸化或者去磷酸化[20-21],REC結構域提供磷酸化接受位點[22],HPT結構域可以穩(wěn)定Bar A與Uvr Y磷酸交換的狀態(tài)[23].最終,Bar A蛋白感應外界信號,如p H變化、甲酸、乙酸等環(huán)境改變[24-25],通過磷酸化將信號傳遞給細胞體內(nèi)的Uvr Y,實現(xiàn)細菌對環(huán)境的適應(圖4).
圖4 R.aquatilis HX2中的Bar A感應調(diào)控模型Fig.4 Putative model of Bar A sensing system in R.aquatilis HX2
水生拉恩菌HX2是1株生防效果優(yōu)良的菌株.已有研究結果驗證了該細菌的細菌素產(chǎn)生是細菌生防的一個重要方面[12].本研究中R.aquatilis HX2的生防效果可能和細菌素產(chǎn)生有關并受到bar A的調(diào)控,bar A缺失后,可能導致細菌素的產(chǎn)生下降.生物膜的形成與細菌在環(huán)境中的定殖有一定的關系[26],細菌的定殖能力是生防菌發(fā)揮其生防功能的前提條件.研究結果同時發(fā)現(xiàn),R.aquatilis中bar A基因缺失突變體產(chǎn)生生物膜的能力顯著提高,說明bar A基因有調(diào)控生物膜形成的功能.細菌游動和涌動也是細菌適應環(huán)境和表現(xiàn)生防功能的重要性狀,bar A對R.aquatilis HX2游動和涌動都具有顯著的調(diào)控功能.從本研究結果表明,組氨酸激酶基因bar A對生防細菌R.aquatilis HX2的生防功能有關鍵的調(diào)控作用.后續(xù)研究將針對bar A基因下游調(diào)控基因進行篩選,以獲得bar A調(diào)控生防的信號途徑,為生防細菌R.aquatilis HX2在病害防治及應用上提供理論基礎.
(References):
[1] Compant S,Duffy B,Nowak J,et al.Use of plant growthpromoting bacteria for biocontrol of plant diseases:Principles,mechanisms of action,and future prospects. Applied and Environmental Microbiology,2005,71(9):4951-4959.
[2] Gray E J,Smith D L.Intracellular and extracellular PGPR:Commonalities and distinctions in the plant-bacterium signaling processes.Soil Biology and Biochemistry,2005,37(3):395-412.
[3] Duffy B K,Dfago G.Controlling instability in gacS-gac A regulator genes during inoculants production of Pseudomonas fluorescens biocontrol strains.Applied and Environmental Microbiology,2000,66(8):3142-3150.
[4] 魏海雷,張力群.熒光假單胞菌2P24中生防相關調(diào)控基因gacS的克隆和功能分析.微生物學報,2005,45(3):368-372. Wei H L,Zhang L Q.Cloning and functional characterization of the gacS gene of the biocontrol strain Pseudomonas fluorescens 2P24.Acta Microbiologica Sinica,2005,45(3):368-372.(in Chinese with English abstract)
[5] 閆小雪,張力群.調(diào)控基因gac A在熒光假單胞菌2P24防治土傳病害中的作用.植物病理學報,2004,34(3):272-279.
Yan X X.Zhang L Q.The role of regulatory gene gac A in the suppression of soil-borne diseases by Pseudomonas fluorescens 2P24.Acta Phytopathologica Sinica,2004,34(3):272-279.(in Chinese with English abstract)
[6] Munson G P,Lam D L,Outten F W,et al.Identification of a copper-responsive two-component system on the chromosome of Escherichia coli K-12.Journal of Bacteriology,2000,182(20):5864-5871.
[7] James J N,Hasan Z,Loerger T R,et al.Deletion of Sen X3-RegX3,a key two-component regulatory system of Mycobacterium smegmatis results in growth defects under phosphate-limiting conditions.Microbiology,2012,158(11):2724-2731.
[8] Guiral S,Hénard V,Granadel C,et al.Inhibition of competence development in Streptococcus pneumoniae by increased basal-level expression of the Com DE twocomponent regulatory system.Microbiology,2006,152(2):323-331.
[9] Fernández-Pinar~nar R,Ramos J L,Rodríguez-Herva J J,et al.A two-component regulatory system integrates redox state and population density sensing in Pseudomonas putida. Journal of Bacteriology,2008,190(23):7666-7674.
[10] Yan Q,Gao W,Wu X G,et al.Regulation of the Pcol/PcoR quorum-sensing system in Pseudomonas fluorescens 2P24 by the PhoP/Pho Q two-component system.Microbiology,2009,155(1):124-133.
[11] Chen F,Li J Y,Guo Y B,et al.Biological control of grapevine crown gall:Purification and partial characterisation of an antibacterial substance produced by Rahnella aquatilis strain HX2.European Journal of Plant Pathology,2009,124:427-437.
[12] Chen F,Guo Y B,Wang J H,et al.Biological control of grape crown gall by Rahnella aquatilis HX2.Plant Disease,2007,91(8):957-963.
[13] Guo Y,Li J,Li L,et al.Mutations that disrupt either the pqq or the gdh gene of Rahnella aquatilis abolish the production of an antibacterial substance and result in reduced biological control of grapevine crown gall.Applied and Environmental Microbiology,2009,75(21):6792-6803.
[14] O’Toole G A,Kolter R.Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Molecular Microbiology,1998,30(2):295-304.
[15] Chow S,Gu K,Jiang L,et al.Salicylic acid affects swimming,twitching and swarming motility in Pseudomonas aeruginosa,resulting in decreased biofilm formation. Journal of Experimental Microbiology and Immunology,2011,15:22-29.
[16] Stonier T.Agrobacterium tumefaciens ConnⅡ.Production of an antibiotic substance.Journal of Bacteriology,1960, 79(6):889-898.
[17] Nagasawa S,Tokishita S,Aiba H,et al.A novel sensorregulator protein that belongs to the homologous family of signal-transduction proteins involved in adaptive responses in Escherichia coli.Molecular Microbiology,1992,6(6):799-807.
[18] Pernestig A K,Melefors T J,Georgellis D.Identification of Uvr Y as the cognate response regulator for the Bar A sensor kinase in Escherichia coli.Journal of Biological Chemistry,2001,276(1):225-231.
[19] Parkinson J S.Signaling mechanisms of HAMP domains in chemoreceptors and sensor kinases.Annual Review of Microbiology,2010,64:101-122.
[20] Dago A E,Schug A,Procaccini A,et al.Structural basis of histidine kinase autophosphorylation deduced by integrating genomics,molecular dynamics,and mutagenesis. Proceedings of the National Academy of Sciences of the United States of America,2012,109(26):1733-1742.
[21] Laub M T,Goulian M.Specificity in two-component signal transduction pathways.Annual Review of Genetics,2007,41:121-145.
[22] Hoch J A,Varughese K I.Keeping signals straight in phosphorelay signal transduction.Journal of Bacteriology,2001,183(17):4941-4949.
[23] Janiak-Spens F,Sparling D P,West A H.Novel role for an HPT domain in stablizing the phosphorylated state of a response regulator domain.Journal of Bacteriology,2000,182(23):6673-6678.
[24] Chavez R G,Alvarez A F,Romeo T,et al.The physiological stimulus for the Bar A sensor kinase.Journal of Bacteriology,2010,192(7):2009-2012.
[25] Mondragón V,F(xiàn)ranco B,Jonas K,et al.p H-dependent activation of the Bar A-Uvr Y two-component system in Escherichia coli.Journal of Bacteriology,2006,188(23):8303-8306.
[26] Déziel E,Comeau Y,Xillemur R.Initiation of biofilm formation by Pseudomonas aeruginosa 57RP correlates with emergence of hyperpiliated and highly adherent phenotypic variants deficient in swimming,swarming and twitching motilities.Journal of Bacteriology,2001,183(4):1195-1204.
Regulatory function of histidine kinase sensor encoding gene barA in bio-control effect of Rahnella aquatilis.Journal of Zhejiang University(Agric.&Life Sci.),2015,41(1):56-63
Xiao Fenghu1,Zhang Lei2,Xie Zhen1,Guo Yanbin3,Chen Minwen1,Wang Yongjun1,4*(1.School of Forestry and Bio-technology,Zhejiang Agricultural and Forestry University,Lin’an 311300,Zhejiang,China;2.Zhejiang University of Science and Technology,Hangzhou 310023,China;3.College of Resources and Environmental Sciences, China Agricultural University,Beijing 100094,China;4.National and Provincial Joint Engineering Laboratory of Bio-pesticide Preparation,Zhejiang Agricultural and Forestry University,Lin’an 311300,Zhejiang,China)
Rahnella aquatilis;histidine kinase sensor encoding gene barA;two-component regulatory system;biocontrol
Q 754
A
10.3785/j.issn.1008-9209.2014.03.122
國家自然科學基金資助項目(31200386);浙江省自然科學基金資助項目(LY12C14006);浙江省大學生科技創(chuàng)新活動計劃(新苗人才計劃)資助項目(2012R412030).
王勇軍,Tel:+86 571 63742763;E-mail:wangyj@zafu.edu.cn
聯(lián)系方式:肖鳳虎,E-mail:xiaofh126@126.com
2014 03 12;接受日期(Accepted):2014 06 09;
日期(Published online):2015 01 19
URL:http://www.cnki.net/kcms/detail/33.1247.S.20150119.1654.005.html