鹿連明,程保平,杜丹超,胡秀榮,蒲占湑,陳國(guó)慶*
(1.浙江省柑桔研究所,浙江臺(tái)州318026;2.廣東省農(nóng)業(yè)科學(xué)院植物保護(hù)研究所,廣州510640)
蠟蚧菌的遺傳多樣性及其對(duì)柑橘木虱的致病性
鹿連明1,程保平2,杜丹超1,胡秀榮1,蒲占湑1,陳國(guó)慶1*
(1.浙江省柑桔研究所,浙江臺(tái)州318026;2.廣東省農(nóng)業(yè)科學(xué)院植物保護(hù)研究所,廣州510640)
為探究蠟蚧菌(Lecanicillium lecanii)的遺傳多樣性、對(duì)柑橘木虱的致病性及其影響因素,對(duì)19個(gè)不同寄主種類和地理來源的蠟蚧菌菌株進(jìn)行隨機(jī)引物擴(kuò)增多態(tài)性DNA(randomly amplified polymorphic DNA,RAPD)分析,并對(duì)其ITS1-5.8S rDNA-ITS2和β-tubulin基因進(jìn)行測(cè)序分析及構(gòu)建系統(tǒng)發(fā)育樹,同時(shí)測(cè)定菌株的生長(zhǎng)速度、產(chǎn)孢量、孢子萌發(fā)率等生物學(xué)特性及對(duì)柑橘木虱的致病性.結(jié)果顯示:蠟蚧菌種內(nèi)存在豐富的遺傳多樣性,不同菌株的生長(zhǎng)速度、產(chǎn)孢量和孢子萌發(fā)率等生物學(xué)特性及對(duì)柑橘木虱致病性均表現(xiàn)出明顯的差異,但未發(fā)現(xiàn)彼此之間及其與菌株的寄主種類和地理來源之間具有相關(guān)性.在顯微鏡下觀察菌株ZJVL-A對(duì)柑橘木虱的侵染過程發(fā)現(xiàn),吸附在寄主體表的分生孢子可在接種后16 h萌發(fā)入侵,42 h后菌絲侵入血腔并在其中增殖,54 h后可引起寄主死亡,60 h后菌絲侵染并破壞寄主的內(nèi)部組織器官,最后覆蓋在蟲體表面的菌絲又產(chǎn)生大量的分生孢子.本研究為進(jìn)一步了解蠟蚧菌對(duì)柑橘木虱的致病機(jī)制,為開發(fā)用于柑橘木虱田間防治的生物制劑提供了依據(jù).
蠟蚧菌;遺傳多樣性;柑橘木虱;致病性
SummaryDiaphorina citri may be the most serious pest of citrus worldwide,primarily because it is the vector of huanglongbing(HLB),one of the most destructive citrus diseases,and can damage citrus directly by feeding fresh shoots and cause citrus sooty mold disease.Currently,control of D.citri mainly depends on the chemical pesticides.However,pesticides abuse affects workers and food safety,causes the development of insecticideresistant D.citri populations,and reduces populations of natural enemies in citrus orchards.Therefore,new approaches are needed to complement the existing management strategies against D.citri.
Lecanicillium lecanii,formerly named Verticillium lecanii,is an entomopathogenic fungus with a remarkably wide host range,which can infect aphids,whiteflies,trips,plant hoppers and so on.Infection of L.lecanii against D.citri was firstly reported in 1980s.However,from then on,there is no further research such as biologicalcharacteristic and pathogenicity difference about this fungus.Therefore,in this study,genetic diversities of 19 L.lecanii strains from different hosts and geographical origins as well as their biological characteristics and pathogenicities against D.citri were determined and analyzed.This research aimed to understand the genetic diversity,pathogenicity difference and their relationships with geographical origins,host varieties and biological characteristics.
Firstly,19 L.lecanii strains from different hosts and geographical origins were characterized using randomly amplified polymorphic DNA(RAPD)analysis.Based on the RAPD results,a dendrogram was constructed using unweighted pair group method with arithmetic mean(UPGMA)by software NTSYS-pc version 2.1.Then,the ITS1-5.8S r DNA-ITS2 andβ-tubulin genes of these L.lecanii strains were amplified and sequenced using primer sets ITS5/ITS4 and Bt2a/Bt2b,respectively.These sequences were aligned with software Clustal X 2.0,edited with software BioEdit 7.2.5,and finally a phylogenic tree was constructed using the neighbor-joining method by software MEGA 5.05.Besides,the biological characteristics of these strains such as mycelial growth rates,sporulation quantities,conidial germination rates and conidial sizes were also determined.Furthermore,the pathogenicities of these strains against D.citri were assayed,and the invasion process of strain ZJVL-A was observed under a dissecting microscope,a scanning electron microscope and a light microscope.
The results showed that a total of 96 polymorphic bands were amplified using 7 random primers,and the size of the bands ranged f rom 0.2-3 kb.Al l the 19 L.lecanii st rains were divided into 2 groups in the UPGMA dendrogram.Strain CGVL-11 was located alone in one group,while the other strains were clustered into another group.In the latter group,18 strains were then divided into 2 subgroups.The ITS1-5.8S r DNA-ITS2 andβ-tubulin gene sequences had been deposited in GenBank and their accession numbers were KJ598810-KJ598828 and KJ598829-KJ598847,respectively.The similarities of ITS1-5.8S r DNA-ITS2 andβ-tubulin gene sequences were 98%-100%and 96%-100%with each other,and molecular variations existed within these nucleotide sequences. The phylogenetic tree based on ITS1-5.8S rDNA-ITS2 andβ-tubulin sequences was consistent with the dendrogram generated through RAPD analysis.The mycelial growth rates,sporulation quantities,conidial germination rates and conidial sizes of these strains were remarkably dif ferent.The colony diameter was 4.25-2.85 cm after 10 d incubation,and the sporulation quantity was 0.10×108-9.75×108conidia/m L after 3 d incubation in PDB medium,and the conidial germination rate was 3.55%-68.38% after 8 h incubation at 25℃,and the size of conidia was 4.0-5.0 μm in length and 1.4-1.7μm in width.Conidia of L.lecanii strain ZJVL-A mainly distributed in the intersegmental fold,setal alveolus,anus,genital,and other fold or sunken regions on every tagmata.At 16 h post-inoculation,the conidia began to germinate and penetrated the cuticle of host.At 42 h post-inoculation,the hyphae invaded into haemocoel,proliferated abundantly and filled the entire haemocoel.Diaphorina citri was killed by the fungus after 54 h postinoculation.After 60 h post-inoculation,the internal organs of host such as fat body,muscle tissue,digestive tract and ovary were invaded and progressively degraded.Finally,a large number of newly-developed conidia could be observed on the hyphae which covered the body surface of host.
In conclusion,genetic diversities and pathogenicity differences exist in populations of L.lecanii.Moreover,their biological characteristics also show significant differences.However,they have no relationship with each other and with host varieties or geographical origins.The strain ZJVL-A maybe kill D.citri through secreting some toxins before the hyphae degrade the internal organs of host.This research lays a good foundation for further study on the pathogenic mechanism of L.lecanii against D.citri,and takes an important step towards developing and utilizing these entomopathogenic fungi for their potential to suppress D.citri populations.
柑橘木虱(Diaphorina citri)是柑橘生產(chǎn)上的一種重要害蟲,除作為唯一自然蟲媒傳播柑橘上的毀滅性病害——柑橘黃龍病外,還可直接取食危害新梢嫩葉及產(chǎn)生分泌物誘發(fā)煤煙病等.目前對(duì)柑橘黃龍病尚缺乏有效的防治藥劑和理想的抗病品種,因此加強(qiáng)對(duì)柑橘木虱的防治,無(wú)論對(duì)于控制柑橘黃龍病的流行還是降低蟲體本身對(duì)柑橘的危害都具有重要的意義.目前對(duì)于柑橘木虱的防治多采用化學(xué)防治措施,然而化學(xué)農(nóng)藥的頻繁使用造成了農(nóng)藥殘留、環(huán)境污染、生物多樣性破壞和柑橘木虱產(chǎn)生抗藥性等諸多問題,而生物農(nóng)藥以其高效、低毒、低殘留、無(wú)污染、不易產(chǎn)生抗藥性等特性已逐漸引起人們的重視.已有報(bào)道[1-5]表明,對(duì)柑橘木虱具有致病活性的真菌有檬形被毛孢(Hirsutella citriformis)、宛氏擬青霉(Paecilomyces varioti)、玫煙色擬青霉(P. fumosoroseus)、球孢白僵菌(Beauveria bassiana)、蚜筍頂孢霉(Acrostalagmus aphidium)、黃色鐮刀菌(Fusarium culmorum)等.但目前對(duì)于柑橘木虱生防菌的研究多處于實(shí)驗(yàn)室階段,在農(nóng)業(yè)生產(chǎn)中利用生防菌制劑成功防治柑橘木虱的實(shí)例尚未見報(bào)道.
蠟蚧菌(Lecanicillium lecanii)原命名為蠟蚧輪枝菌(Verticillium lecanii),是一種寄主范圍極為廣泛的昆蟲病原真菌,可寄生介殼蟲、蚜蟲、溫室白粉虱、飛虱、薊馬等多種昆蟲.蠟蚧菌具有侵染柑橘木虱的活性最早由我國(guó)謝佩華等[6]于20世紀(jì)80年代發(fā)現(xiàn),但之后國(guó)內(nèi)外學(xué)者對(duì)該菌的生物學(xué)特性和對(duì)柑橘木虱的致病活性均未再進(jìn)行深入研究.蠟蚧菌或因地理來源和寄主品種的不同,種內(nèi)表現(xiàn)出豐富的遺傳多樣性,且不同菌株對(duì)相同的寄主表現(xiàn)出致病性分化.而關(guān)于蠟蚧菌不同菌株是否對(duì)柑橘木虱存在致病性差異,以及影響菌株致病性的因素,目前尚未見相關(guān)的研究報(bào)道.基于此,本研究對(duì)不同寄主種類和地理來源的蠟蚧菌菌株的遺傳多樣性進(jìn)行分析,以探討蠟蚧菌不同菌株之間的親緣關(guān)系及其與寄主種類和地理來源之間的關(guān)系.同時(shí)測(cè)定菌株對(duì)柑橘木虱的致病活性,了解不同菌株之間的致病性差異及影響因素,為今后篩選或改造用于防治柑橘木虱的優(yōu)良菌株提供依據(jù).
1.1 材料
1.1.1 供試菌株 蠟蚧菌CIVL-1和CIVL-2購(gòu)自中國(guó)工業(yè)微生物菌種保藏管理中心,ACVL-3、ACVL-4、ACVL-5、ACVL-6、ACVL-7、ACVL-8、ACVL-9和ACVL-10購(gòu)自中國(guó)農(nóng)業(yè)微生物菌種保藏管理中心,CGVL-11、CGVL-12和CGVL-13購(gòu)自中國(guó)普通微生物菌種保藏管理中心,AHVL-14、AHVL-15、AHVL-16、AHVL-17和AHVL-18購(gòu)自安徽農(nóng)業(yè)大學(xué),ZJVL-A為本實(shí)驗(yàn)室從浙江臺(tái)州地區(qū)橘園內(nèi)的柑橘木虱上分離純化獲得.以上各菌株的分離基物和地理來源詳見表1.
1.1.2 柑橘木虱 健康柑橘木虱采集于浙江省臺(tái)州市黃巖區(qū)橘園內(nèi),并在溫室條件下人工飼養(yǎng)于九里香植株上.
1.1.3 主要試劑 DNA提取試劑如十六烷基三甲基溴化銨(CTAB)、酚/三氯甲烷/異戊醇、三氯甲烷/異戊醇、異丙醇、聚乙烯基吡咯烷酮(PVP)、β-巰基乙醇等為Amresco公司產(chǎn)品,PCR試劑如Taq酶、d NTP等購(gòu)自大連寶生物公司(Ta KaRa),瓊脂糖為Biowest公司產(chǎn)品,凝膠染料為Biotium公司生產(chǎn)的Gel Red,DNA凝膠回收試劑盒為Axygen公司產(chǎn)品,六胺銀(GMS)染料為Merck公司產(chǎn)品,其余試劑為國(guó)產(chǎn)分析純.
1.1.4 引物 通過預(yù)實(shí)驗(yàn)反復(fù)篩選,從60條隨機(jī)引物中獲得擴(kuò)增多態(tài)性高、擴(kuò)增條帶清晰、重復(fù)效果好的7條隨機(jī)引物對(duì)蠟蚧菌進(jìn)行隨機(jī)擴(kuò)增多態(tài)性DNA(randomly amplified polymorphic DNA,RAPD)分析,所用引物名稱和序列分別為:A04(5′-ATCA GCGCACCA-3′)、OPA02(5′-TGCCGAGCTG-3′)、OPH13(5′-GACGCCACAC-3′)、OPB06(5′-TGCTC TGCCC-3′)、OPD18(5′-GAGAGCCAAC-3′)、OPB12(5′-CCTTGACGCA-3′)、M13(5′-GAGGGTGGCGG TTCT-3′).用于擴(kuò)增蠟蚧菌ITS1-5.8S r DNA-ITS2基因所用引物為真菌通用引物ITS5(5′-GGAAGT AAAAGTCGTAACAAGG-3′)和ITS4(5′-TCCTCCG CTTATTGATATGC-3′),擴(kuò)增β-tubulin基因所用引物為真菌通用引物Bt2a(5′-GGTAACCAAAT CGGTGCTGCTTTC-3′)和Bt2b(5′-ACCCTCAGT GTAGTGACCCTTGGC-3′).以上引物均由上海Invitrogen公司合成.
1.2 方法
1.2.1 樣品總DNA提取 將各菌株分別接種至PDA培養(yǎng)基平板上,置于25℃恒溫培養(yǎng)10 d左右,以無(wú)菌藥匙刮取PDA平板上生長(zhǎng)的真菌菌絲于無(wú)菌研缽中,加入液氮研磨至粉末狀,采用改良的CTAB法[7]提取菌株總DNA.最后將所提取的DNA沉淀溶于10~20μL TE[含核糖核酸酶(Ribonuclease,RNase)50 mg/L]中即得樣品DNA溶液.
1.2.2 RAPD分析 25μL的RAPD反應(yīng)體系:5 ng真菌基因組DNA,1×PCR緩沖液,1.5 mmol/L MgCl2,0.2 mmol/L d NTP,0.6μmol/L引物,1 U Taq酶.反應(yīng)條件:94℃預(yù)變性5 min,然后94℃1 min,37℃1.5 min,72℃2 min,共45個(gè)循環(huán),最后72℃延伸10 min.擴(kuò)增產(chǎn)物上樣于GelRed染料預(yù)染的2%瓊脂糖凝膠電泳,并于凝膠成像系統(tǒng)中觀察拍照.
表1 蠟蚧菌各菌株的分離基物、地理來源和生物學(xué)特性Table 1 Isolation substrates,geographical origins and biological characteristics of L.lecanii strains
對(duì)每一引物RAPD擴(kuò)增帶進(jìn)行樣品間比較,將每條RAPD條帶均看作一個(gè)遺傳位點(diǎn),有帶記為1,無(wú)帶記為0,構(gòu)建二元數(shù)據(jù)矩陣,應(yīng)用UPGMA進(jìn)行聚類分析,以NTSYS-pc 2.1運(yùn)算建立聚類圖.
1.2.3 基因序列分析 分別以真菌通用引物ITS5/ITS4和Bt2a/Bt2b擴(kuò)增蠟蚧菌ITS1-5.8S rDNA-ITS2和β-tubulin基因,PCR反應(yīng)體系和反應(yīng)條件參考鹿連明等[8]的報(bào)道.PCR反應(yīng)結(jié)束后上樣于2%瓊脂糖凝膠電泳,并用Axygen公司的DNA凝膠回收試劑盒回收PCR產(chǎn)物.將純化后的PCR產(chǎn)物送交Invitrogen公司,利用上述引物直接測(cè)序.對(duì)所測(cè)序列整理后,利用Clustal X 2.0軟件進(jìn)行多重序列比對(duì),通過BioEdit 7.2.5軟件進(jìn)行編輯,最后利用軟件MEGA 5.05的鄰接法聯(lián)合基因ITS1-5.8S r DNAITS2和β-tubulin,以L.longisporum作為外群,構(gòu)建系統(tǒng)發(fā)育樹.
1.2.4 生物學(xué)特性測(cè)定 在PDA培養(yǎng)基上培養(yǎng)7 d左右的各菌株菌落周圍,以無(wú)菌打孔器打取5 mm大小的菌餅,然后將菌餅分別置于數(shù)個(gè)新鮮制備的PDA平板中央,在25℃微生物培養(yǎng)箱中倒置暗培養(yǎng).連續(xù)培養(yǎng)14 d,每24 h觀察菌落生長(zhǎng)情況并采用十字交叉法測(cè)量菌落直徑.每個(gè)處理設(shè)3個(gè)重復(fù).
將直徑為9 mm的菌餅接種至150 m L PDB培養(yǎng)液中,置于25℃恒溫?fù)u床中以轉(zhuǎn)速200 r/min振蕩培養(yǎng)3 d.取各菌株的培養(yǎng)液適當(dāng)稀釋后滴加至血球計(jì)數(shù)板中,在光學(xué)顯微鏡下觀察并記錄孢子數(shù)量,然后計(jì)算各培養(yǎng)液的孢子濃度.同時(shí),利用顯微鏡成像軟件測(cè)量并記錄孢子大小.每個(gè)處理設(shè)3個(gè)重復(fù).
分別取30μL上述培養(yǎng)的各菌株的分生孢子懸浮液滴加至無(wú)菌載玻片的中央,然后將玻片放于墊有濾紙的培養(yǎng)皿中的U型管上,以無(wú)菌水濕潤(rùn)濾紙,然后置于25℃培養(yǎng)箱中暗培養(yǎng).培養(yǎng)8 h后在光學(xué)顯微鏡下計(jì)數(shù)400~600個(gè)孢子,以芽管長(zhǎng)度超過孢子長(zhǎng)度1/2為標(biāo)準(zhǔn)視為孢子萌發(fā),統(tǒng)計(jì)孢子萌發(fā)個(gè)數(shù)并計(jì)算孢子萌發(fā)率.每個(gè)處理設(shè)3個(gè)重復(fù).
1.2.2 致病性測(cè)定 以無(wú)菌水調(diào)整各菌株的分生孢子懸浮液使其為1.0×108個(gè)孢子/m L,并向其中加入適量的吐溫-80至終體積分?jǐn)?shù)為0.1%.參考鹿連明等[8]的方法用各分生孢子懸浮液處理柑橘木虱,同時(shí)設(shè)立以含0.1%吐溫-80的無(wú)菌水處理柑橘木虱為對(duì)照.之后放于25℃人工氣候箱中每天14 h光照/10 h黑暗培養(yǎng),以上每個(gè)處理設(shè)3個(gè)重復(fù),每個(gè)重復(fù)處理30頭柑橘木虱.每天觀察病菌對(duì)柑橘木虱的侵染和致死情況,記錄柑橘木虱病死數(shù)目,計(jì)算病死率和校正病死率.
在培養(yǎng)后不同時(shí)間對(duì)菌株ZJVL-A處理的柑橘木虱取樣,在體視顯微鏡下直接觀察柑橘木虱體表的菌絲生長(zhǎng)情況;將柑橘木虱樣品用2.5%戊二醛溶液固定,然后經(jīng)清洗、干燥、噴金等處理[9]后,在掃描電子顯微鏡下觀察菌株ZJVL-A在柑橘木虱體表的侵染情況;將柑橘木虱樣品先于4%的多聚甲醛溶液中固定,再對(duì)其進(jìn)行石蠟包埋和切片,然后將超薄切片放入蘇木精-伊紅(HE)染色液或六胺銀(GMS)染色液中染色處理[10]后,置于光學(xué)顯微鏡下觀察菌株ZJVL-A在柑橘木虱體內(nèi)的侵染情況.
1.2.6 數(shù)據(jù)統(tǒng)計(jì)分析 將蠟蚧菌各菌株的孢子大小、菌落大小、產(chǎn)孢量、孢子萌發(fā)率和對(duì)柑橘木虱的校正病死率等數(shù)據(jù)在Microsoft Excel 2003中進(jìn)行整理,利用SAS 9.1軟件的鄧肯新復(fù)極差法(DMRT)進(jìn)行差異顯著性分析.
2.1 蠟蚧菌的分子特征
利用7條隨機(jī)引物共從19個(gè)蠟蚧菌菌株中擴(kuò)增獲得104個(gè)條帶,擴(kuò)增條帶大小分布在0.2~3 kb范圍內(nèi),其中多態(tài)性條帶為96個(gè),多態(tài)性比率為92.31%,表明供試菌株群體具有較豐富的遺傳多樣性.引物A-04和OPA-02擴(kuò)增產(chǎn)物的電泳結(jié)果如圖1所示.
從供試菌株全基因組擴(kuò)增DNA片段的系統(tǒng)樹狀聚類圖(圖2)可以看出,供試的19個(gè)菌株表現(xiàn)為遺傳多樣性,遺傳相似系數(shù)在0.38~1.0之間.以遺傳相似系數(shù)0.38為閾值,可將所有供試蠟蚧菌菌株劃分為2大遺傳聚類組Ⅰ和Ⅱ.其中Ⅱ組中僅含有CGVL-11菌株,而Ⅰ組則包括CGVL-11之外的所有18個(gè)菌株.在遺傳相似系數(shù)0.73水平上,Ⅰ組的18個(gè)菌株又被劃分到2個(gè)亞組中.其中所有來自中國(guó)的8個(gè)蠟蚧菌菌株都聚類到亞組ⅰ中,另外該亞組還包括2個(gè)來自古巴的菌株和2個(gè)未知地理來源的菌株.而亞組ⅱ則包含有來自歐洲的3個(gè)菌株和來自美洲的3個(gè)菌株.
以引物ITS5/ITS4擴(kuò)增蠟蚧菌各菌株的基因大小為523 bp左右,其序列已在GenBank中登錄,登錄號(hào)按表1從上到下菌株的順序依次為KJ598810~KJ598828.以引物Bt2a/Bt2b擴(kuò)增蠟蚧菌各菌株的基因片段大小為357bp左右,在GenBank中的登錄號(hào)依次為KJ598829~KJ598847.多重序列比對(duì)結(jié)果顯示,蠟蚧菌各菌株的ITS1-5.8S r DNA-ITS2序列相似性為98%~100%,β-tubulin基因片段的序列相似性為96%~100%,不同菌株間基因序列或完全一致,或存在一定的堿基差異,其中尤以菌株CGVL-11與其他各菌株的序列差異最大.聯(lián)合蠟蚧菌ITS1-5.8S r DNA-ITS2和β-tubulin 2個(gè)基因構(gòu)建系統(tǒng)發(fā)育樹(圖3),從中可以看出,基于各菌株基因序列的聚類結(jié)果與基于RAPD的聚類結(jié)果基本一致.
圖1 引物A-04和OPA-02擴(kuò)增蠟蚧菌基因組DNA的RAPD圖譜Fig.1 RAPD fingerprints of L.lecanii genomic DNA amplified by primers A-04 and OPA-02
圖2 基于RAPD的擴(kuò)增結(jié)果通過UPGMA算法構(gòu)建的蠟蚧菌系統(tǒng)樹狀聚類圖Fig.2 Dendrogram of L.lecanii derived from UPGMA cluster analysis based on RAPD-PCR
圖3 基于ITS1-2.8S rDNA-ITS2和β-tubulin基因構(gòu)建的蠟蚧菌的系統(tǒng)發(fā)育樹Fig.3 Phylogenetic tree of L.lecanii constructed based on ITS1-5.8S r DNA-ITS2 andβ-tubulin genes
2.2 蠟蚧菌的生物學(xué)特性
蠟蚧菌各菌株的菌落生長(zhǎng)速度存在明顯差異.在25℃下暗培養(yǎng)10 d后各菌株的菌落直徑在4.25~2.85 cm不等(表1),其中菌株AHVL-14生長(zhǎng)速度最快,菌落直徑可達(dá)4.25 cm;而菌株ACVL-4生長(zhǎng)速度最慢,其菌落直徑僅為2.85 cm.
于25℃恒溫?fù)u床中以轉(zhuǎn)速200 r/min振蕩培養(yǎng)3 d后,蠟蚧菌各菌株的產(chǎn)孢量詳見表1.從中可以看出,蠟蚧菌不同菌株在相同條件下產(chǎn)孢量大小亦明顯不同.其中以菌株ACVL-3的產(chǎn)孢量最大,為9.75×108個(gè)/m L;而菌株CGVL-11的產(chǎn)孢量最小,僅為0.10×108個(gè)/m L.
在光學(xué)顯微鏡下觀察菌株孢子大小,結(jié)果(表1)表明,蠟蚧菌各菌株的孢子大小不等,但多數(shù)菌株的孢子長(zhǎng)度在4.0~5.0μm范圍內(nèi),寬度在1.4~1.7μm范圍內(nèi).菌株CGVL-11孢子最大,長(zhǎng)度約為7.52μm,寬度約為2.35μm;而菌株ACVL-5的孢子長(zhǎng)度最小,約為3.49μm;菌株ACVL-9和AHVL-15的孢子寬度最小,約為1.38μm.
在25℃培養(yǎng)箱中暗培養(yǎng)8 h后,蠟蚧菌各菌株的分生孢子萌發(fā)率詳見表1.從中可以看出,不同菌株的孢子萌發(fā)率存在較大差異.其中菌株CIVL-2的萌發(fā)率最高,約為78.44%;而菌株ACVL-6的孢子萌發(fā)率最低,僅為3.55%.
2.3 蠟蚧菌的致病性
在實(shí)驗(yàn)室條件下,蠟蚧菌不同菌株對(duì)柑橘木虱的致病性表現(xiàn)出明顯差異.在1.0×108個(gè)/m L分生孢子懸浮液接種后第6天,各菌株對(duì)柑橘木虱的校正病死率在70%~90%之間(表1).其中以菌株ZJVL-A、AHVL-18和AHVL-16對(duì)柑橘木虱的致死率為最高,其校正病死率分別為89.84%、88.91%和88.73%;而菌株CGVL-11對(duì)柑橘木虱的校正病死率僅為70.13%.
以菌株ZJVL-A的分生孢子懸浮液接種柑橘木虱后30 h,在體視顯微鏡下可觀察到柑橘木虱腹部末端的肛門、生殖器等部位有白色菌絲長(zhǎng)出,此時(shí)柑橘木虱仍保持較正常的活動(dòng)能力;接種后42 h,蟲體的頭部、胸部背面、翅下和腹部背面等部位均可觀察到菌絲(圖4A),此時(shí)柑橘木虱表現(xiàn)為反應(yīng)遲鈍、行動(dòng)遲緩;之后,菌絲在蟲體上持續(xù)生長(zhǎng),至54 h柑橘木虱出現(xiàn)死亡;接種后108 h,可見大量的白色菌絲將柑橘木虱蟲體完全覆蓋(圖4B).
在掃描電子顯微鏡下可觀察到柑橘木虱頭部的觸角窩、觸角基節(jié)、復(fù)眼與觸角間隙處等部位,胸部的翅腋區(qū)、胸足基節(jié)窩,腹部的肛門、產(chǎn)卵器或交配器等褶皺凹陷部位均分布有較多孢子.在接種后16 h,可觀察到柑橘木虱體表的分生孢子萌發(fā)形成芽管,有些芽管伸長(zhǎng)后向體壁定向生長(zhǎng)直接穿透體壁,有的則在芽管末端形成附著胞吸附在體壁上再侵入,有的芽管生長(zhǎng)形成菌絲沿體表平行生長(zhǎng),尋找到合適部位后再侵入;在接種后30 h,可觀察到菌絲在柑橘木虱體表縱向或橫向分支生長(zhǎng)(圖4C);之后,菌絲在蟲體表面繼續(xù)迅速生長(zhǎng),菌絲相互纏繞交織,形成菌絲體,最后又新形成大量的分生孢子(圖4D).
取菌株ZJVL-A接種后培養(yǎng)不同時(shí)間的柑橘木虱樣品,經(jīng)石蠟包埋切片后于HE或GMS溶液中染色,然后置于光學(xué)顯微鏡下觀察.可以發(fā)現(xiàn)在接種后16 h,在寄主體表的分生孢子萌發(fā)產(chǎn)生的菌絲穿透表皮層或在表皮層橫向生長(zhǎng);之后,菌絲侵染寄主的皮細(xì)胞層,并在其中不斷生長(zhǎng)和繁殖;接種后42 h,菌絲侵入寄主血腔,并在其中不斷增殖至菌絲充滿整個(gè)血腔(圖4E);接種后60 h,可觀察到血腔內(nèi)的菌絲侵染寄主的脂肪體、肌肉組織、消化道、卵巢等組織器官(圖4F);之后,寄主各組織器官逐步被破壞降解,菌絲相互粘連纏繞.
已有研究結(jié)果表明,蠟蚧菌種內(nèi)存在著豐富的遺傳多樣性,但對(duì)于遺傳多樣性的影響因素目前尚沒有確定的結(jié)論.Sugimoto等[11]通過PCR-RFLP和PCR-SSCP對(duì)46個(gè)不同寄主和地理來源的蠟蚧菌分離物進(jìn)行了分析,結(jié)果發(fā)現(xiàn)不同菌株間存在遺傳多樣性,但其與寄主和地理來源無(wú)相關(guān)性;Mor等[12]和Mitina等[13]分別對(duì)不同蠟蚧菌分離物進(jìn)行研究也均未發(fā)現(xiàn)菌株的聚類與寄主或地理來源有相關(guān)性;而邱君志等[14]分析認(rèn)為蠟蚧菌菌株間的遺傳多樣性與地理來源有關(guān).本研究結(jié)果表明蠟蚧菌種內(nèi)存在遺傳多樣性,但其與菌株的寄主種類無(wú)相關(guān)性,盡管所有來自中國(guó)的8個(gè)分離物聚為一組,但該組同時(shí)也包括了來自古巴的2個(gè)菌株,因此也不足以表明與菌株的地理來源具有相關(guān)性.
圖4 在顯微鏡下觀察菌株ZJVL-A對(duì)柑橘木虱的侵染過程Fig.4 Invasion process of strain ZJVL-A against D.citri observed under microscopes
蠟蚧菌不同菌株對(duì)相同的寄主表現(xiàn)出明顯的致病力差異,但關(guān)于菌株的致病力強(qiáng)弱與菌株的寄主種類、地理來源和生物學(xué)特性等之間的關(guān)系,不同的研究結(jié)果不盡相同.Sugimoto等[11]和Mitina等[13]分別研究發(fā)現(xiàn)蠟蚧菌的致病性強(qiáng)弱與菌株的地理來源和生物學(xué)特性無(wú)明顯的相關(guān)性,但從與靶標(biāo)昆蟲種類相同的寄主上分離的菌株往往具有更強(qiáng)的致病性;Mor等[12]和Fatiha等[15]的研究結(jié)果表明蠟蚧菌的致病性強(qiáng)弱與菌株的RAPD多態(tài)性、寄主種類和地理來源均未表現(xiàn)出相關(guān)性,但生長(zhǎng)速率快、產(chǎn)孢量大的菌株對(duì)煙粉虱的致病力更高;Hall[16]發(fā)現(xiàn)蠟蚧菌對(duì)粉虱和蚜蟲的致病力強(qiáng)弱與菌株的產(chǎn)孢能力、孢子的大小和萌發(fā)率具有相關(guān)性,且分生孢子大的菌株具有更高的病害流行潛能;Jackson等[17]發(fā)現(xiàn)蠟蚧菌的致病力與菌株的產(chǎn)孢量和孢子萌發(fā)率有關(guān),但與孢子大小無(wú)關(guān);Mitina等[13]也發(fā)現(xiàn)蠟蚧菌對(duì)白粉虱的致病力與孢子大小之間的相關(guān)性很低.本研究發(fā)現(xiàn)對(duì)柑橘木虱致病力最強(qiáng)的3個(gè)菌株均來自于中國(guó),但不能據(jù)此認(rèn)為蠟蚧菌的致病力與地理來源相關(guān),因?yàn)閬碜杂诠虐偷?個(gè)菌株較中國(guó)的其他菌株具有更強(qiáng)的致病力.除菌株ACVL-3外,在聚類樹狀圖和系統(tǒng)發(fā)育樹中與ZJVL-A聚為一組的菌株普遍較另外一組的菌株具有更強(qiáng)的致病力.因此,相比地理來源,蠟蚧菌對(duì)柑橘木虱的致病力或與菌株的親緣關(guān)系具有更大的相關(guān)性,但這需要通過增加菌株的樣本量進(jìn)一步論證分析.另外,本研究也未發(fā)現(xiàn)蠟蚧菌的生長(zhǎng)速度、產(chǎn)孢量、孢子萌發(fā)率、孢子大小和對(duì)柑橘木虱的致病性彼此之間具有相關(guān)性.因此,想獲得一株同時(shí)具有產(chǎn)孢量大、孢子萌發(fā)率高、菌絲生長(zhǎng)速率快和對(duì)寄主致病性強(qiáng)等優(yōu)良性狀的生防菌株往往較為困難.在進(jìn)行優(yōu)良菌株篩選時(shí),可以致病性和產(chǎn)孢量為首要參考指標(biāo),其次再考慮孢子萌發(fā)率和菌絲生長(zhǎng)速率.或者可通過紫外誘變、基因工程等手段對(duì)菌株改良,使其盡量具備以上各優(yōu)良性狀及更強(qiáng)的抗逆性等.
多數(shù)昆蟲病原真菌侵染寄主通常包括分生孢子附著寄主表皮、分生孢子在昆蟲表皮上萌發(fā)、穿透表皮、菌絲在血腔內(nèi)生長(zhǎng)、毒素產(chǎn)生、寄主死亡、菌絲侵入寄主的所有器官、菌絲穿出表皮、產(chǎn)生侵染單位和侵染單位擴(kuò)散等幾個(gè)階段[18].本研究發(fā)現(xiàn)菌株ZJVL-A的分生孢子多分布在柑橘木虱的褶皺凹陷部位,而胸部孢子數(shù)量較少,分析其原因?yàn)槟臼?5℃爬行時(shí),胸部與寄主植物發(fā)生摩擦導(dǎo)致其上的分生孢子脫落.在接種后16 h即可觀察到寄主體表的孢子萌發(fā)入侵,60 h后血腔中的菌絲侵染并破壞昆蟲的內(nèi)部組織器官.值得注意的是,在菌絲完全侵染破壞寄主內(nèi)部組織器官之前,接種后的柑橘木虱即已開始死亡,由此推測(cè)菌株ZJVL-A或許不是通過菌絲侵染破壞昆蟲組織器官導(dǎo)致昆蟲死亡,而是在菌絲侵入血腔后可能產(chǎn)生了某些毒素而加速了寄主的死亡,這也在一定程度上解釋了以上所述的親緣關(guān)系近的菌株可能具有更相近的致病力,但這需要進(jìn)一步研究確定.
通過對(duì)不同寄主和地理來源的蠟蚧菌的遺傳多樣性、菌絲生長(zhǎng)速度、產(chǎn)孢量、孢子大小和萌發(fā)率等生物學(xué)特性及對(duì)柑橘木虱的致病性的研究,我們更深入地了解了蠟蚧菌的遺傳變異和致病性分化及其與菌株的寄主種類、地理來源和生物學(xué)特性之間的關(guān)系.而對(duì)蠟蚧菌對(duì)柑橘木虱的侵染過程的觀察,則有助于我們進(jìn)一步了解蠟蚧菌對(duì)柑橘木虱的致病機(jī)制.本研究對(duì)于我們今后篩選或改良對(duì)柑橘木虱具強(qiáng)致病力的病原微生物,開發(fā)用于柑橘木虱田間防治的生物制劑提供了依據(jù).
(References):
[1] 杜丹超,鹿連明,張利平,等.柑橘木虱的防治技術(shù)研究進(jìn)展.中國(guó)農(nóng)學(xué)通報(bào),2011,27(25):178-181.
Du D C,Lu L M,Zhang L P,et al.Research progress in control technology of Diaphorina citri.Chinese Agricultural Science Bulletin,2011,27(25):178-181.(in Chinese with English abstract)
[2] 陳祝安,曹光照,許益?zhèn)ィ?柑桔害蟲病原真菌資源的考察和生測(cè).微生物學(xué)通報(bào),1985,12(5):194-198.
Chen Z A,Cao G Z,Xu Y W,et al.Investigation and bioassay of pathogenic fungi resources of citrus pests. Microbiology China,1985,12(5):194-198.(in Chinese)
[3] Meyer J M,Hoy M A,Boucias D G.Isolation and characterization of an Isaria fumosorosea isolate infecting the Asian citrus psyllid in Florida.Journal of Invertebrate Pathology,2008,99(1):96-102.
[4] Meyer J M,Hoy M A,Boucias D G.Morphological and molecular characterization of a Hirsutella species infecting the Asian citrus psyllid,Diaphorina citri Kuwayama(Hemiptera:Psyllidae)in Florida.Journal of Invertebrate Pathology,2007,95(2):101-109.
[5] Aubert B.Trioza erytreae Del Guercio and Diaphorina citri Kuwayama(Homoptera:Psylloidea),the two vectors of citrus greening disease:biological aspects and possible control strategies.Fruits,1987,42(3):149-162.
[6] 謝佩華,蘇朝安,林自國(guó).柑桔木虱寄生菌——蠟蚧頭孢菌初步研究.生物防治通報(bào),1988,4(2):92.
Xie P H,Su C A,Lin Z G.A preliminary study on an entomogenous fungus of Diaphorina citri Kuwayama(Hom. Psyllidae).Chinese Journal of Biological Control,1988,4(2):92.(in Chinese with English abstract)
[7] 鹿連明,范國(guó)成,姚錦愛,等.柑橘黃龍病菌核糖體蛋白基因的多態(tài)性及系統(tǒng)發(fā)育分析.浙江大學(xué)學(xué)報(bào):農(nóng)業(yè)與生命科學(xué)版,2011,37(2):125-132.
Lu L M,F(xiàn)an G C,Yao J A,et al.Polymorphism and phylogenetic analysis of ribosomal protein genes of Candidatus Liberibacter asiaticus.Journal of Zhejiang University:Agriculture&Life Sciences,2011,37(2):125-132.(in Chinese with English abstract)
[8] 鹿連明,杜丹超,胡秀榮,等.一株柑橘木虱蟲生真菌的分離與鑒定.浙江農(nóng)業(yè)科學(xué),2013(10):1319-1322.Lu L M,Du D C,Hu X R,et al.Isolation and identification of an entomopathogenic fungi against Diaphorina citri. Journal of Zhejiang Agricultural Sciences,2013(10):1319-1322.(in Chinese)
[9] Leemon D M,Jonsson N N.Comparative studies on the invasion of cattle ticks(Rhipicephalus(Boophilus)microplus)and sheep blowflies(Lucilia cuprina)by Metarhizium anisopliae(Sorokin).Journal of Invertebrate Pathology,2012,109(2):248-259.
[10] Liu W M,Xie Y P,Xue J L,et al.Histopathological changes of Ceroplastes japonicus infected by Lecanicillium lecanii.Journal of Invertebrate Pathology,2009,101(2):96-105.
[11] Sugimoto M,Koike M,Hiyama N,et al.Genetic,morphological,and virulence characterization of the entomopathogenic fungus Verticillium lecanii.Journal of Invertebrate Pathology,2003,82(3):176-187.
[12] Mor H,Gindin G,Ben-Ze’Ev,et al.Diversity among isolates of Verticillium lecanii as expressed by DNA polymorphism and virulence towards Bemisia tabaci. Phytoparasitica,1996,24(2):111-118.
[13] Mitina G V,Mikhailova L A,Yli-Mattila T.RAPD-PCR,UP-PCR and r DNA sequence analyses of the entomopathogenic fungus Verticillium lecanii and its pathogenicity towards insects and phytopathogenic fungi. Archives of Phytopathology and Plant Protection,2008,41(2):113-128.
[14] 邱君志,黃天培,潘黎,等.蠟蚧輪枝菌種內(nèi)遺傳差異的研究.中國(guó)菌物學(xué)會(huì)第三屆會(huì)員代表大會(huì)暨全國(guó)第六屆菌物學(xué)學(xué)術(shù)討論會(huì)論文集,2003:352-356. Qiu J Z,Huang T P,Pan L,et al.Intraspecific genetic diversity in Verticillium lecanii.Memoir of the 3rd Member Representative Assembly of Mycological Society of China and the 6th National Mycology Symposium,2003:352-356.(in Chinese)
[15] Fatiha L,Ali S,Ren S,et al.Biological characteristics and pathogenicity of Verticillium lecanii against Bemisia tabaci(Homoptera:Aleyrodidae)on eggplant.Pakistan Entomologist,2007,29(2):63-72.
[16] Hall R A.Epizootic potential for aphids of different isolates of the fungus Verticillium lecanii.Entomophaga,1984,29(3):311-321.
[17] Jackson C W,Heale J B,Hall R A.Traits associated with virulence to the aphid Macrosiphoniella sanborni in eighteen isolates of Verticillium lecanii.Annals of Applied Biology,1985,106(1):39-48.
[18] 蒲蟄龍,李增智.昆蟲真菌學(xué).合肥:安徽科學(xué)技術(shù)出版社,1996:94-95. Pu Z L,Li Z Z.Insect Mycology.Hefei:Anhui Science and Technology Press,1996:94-95.(in Chinese)
Genetic diversity of Lecanicillium lecanii and its pathogenicity against Diaphorina citri.Journal of
Zhej iang Universi ty(Agr ic.&Li fe Sci.),2015,41(1):34-43
Lu Lianming1,Cheng Baoping2,Du Danchao1,Hu Xiurong1,Pu Zhanxu1,Chen Guoqing1*(1.Citrus Research Institute of Zhejiang Province,Taizhou 318026,Zhejiang,China;2.Research Institute of Plant Protection, Guangdong Academy of Agricultural Sciences,Guangzhou 510640,China)
Lecanicillium lecanii;genetic diversity;Diaphorina citri;pathogenicity
Q 939.93;S 476.12
A
10.3785/j.issn.1008-9209.2014.06.304
農(nóng)業(yè)部公益性行業(yè)科研專項(xiàng)(201003067-08).
陳國(guó)慶,Tel:+86 576 84117695;E-mail:cgq5373@163.com
聯(lián)系方式:鹿連明,E-mail:minglu79@126.com
2014 06 30;接受日期(Accepted):2014 07 18;
日期(Published online):2015 01 19 URL:http://www.cnki.net/kcms/detail/33.1247.S.20150119.1651.003.html
浙江大學(xué)學(xué)報(bào)(農(nóng)業(yè)與生命科學(xué)版)2015年1期