杜瑞卿,林善海,黃思良,張征田,覃麗萍,黎起秦
(1.南陽師范學(xué)院生命科學(xué)與技術(shù)學(xué)院,河南南陽473061;2.廣西農(nóng)業(yè)科學(xué)院甘蔗研究所,南寧530007;3.廣西大學(xué)農(nóng)學(xué)院,南寧530005;4.廣西農(nóng)業(yè)科學(xué)院微生物研究所,南寧530007)
對(duì)影響香蕉葉斑病菌喙突臍蠕孢生長(zhǎng)和產(chǎn)孢碳、氮源的統(tǒng)計(jì)學(xué)分析
杜瑞卿1?,林善海2,3?,黃思良1*,張征田1,覃麗萍4,黎起秦3
(1.南陽師范學(xué)院生命科學(xué)與技術(shù)學(xué)院,河南南陽473061;2.廣西農(nóng)業(yè)科學(xué)院甘蔗研究所,南寧530007;3.廣西大學(xué)農(nóng)學(xué)院,南寧530005;4.廣西農(nóng)業(yè)科學(xué)院微生物研究所,南寧530007)
為了解不同碳源和氮源對(duì)香蕉葉斑病菌喙突臍蠕孢不同菌株的生長(zhǎng)和產(chǎn)孢影響存在的共性與個(gè)性差異,該文利用聚類分析、判別分析和相關(guān)分析等多種統(tǒng)計(jì)分析法對(duì)實(shí)驗(yàn)數(shù)據(jù)進(jìn)行深度解析.分析結(jié)果顯示,碳源對(duì)菌株CLER09、D087與JL05的生長(zhǎng)和產(chǎn)孢量有顯著影響,其中乳糖是供試3菌株最適生長(zhǎng)和產(chǎn)孢的碳源;在不同碳源中供試3菌株的菌落直徑和產(chǎn)孢量之間呈極顯著相關(guān).氮源對(duì)菌株CLER09、D087與JL05的產(chǎn)孢量有顯著影響,對(duì)菌落直徑無顯著影響,其中L-半胱氨酸與L-苯丙氨酸是供試3菌株生長(zhǎng)和產(chǎn)孢的最適宜氮源.同時(shí),各菌株對(duì)碳源和氮源又表現(xiàn)出各自的特性.因此,對(duì)于適宜香蕉葉斑病菌喙突臍蠕孢生長(zhǎng)和產(chǎn)孢的碳源和氮源的選取,多菌株主要考慮其共性碳源和氮源,單菌株則應(yīng)考慮菌株的各自特性碳源和氮源.
喙突臍蠕孢;碳源;氮源;聚類分析;判別分析;相關(guān)分析
SummaryExserohilum rostratum is one of the important pathogens causing banana leaf spots,which has a wide host range.The effects of carbon and nitrogen sources on colony diameters and sporulation among different isolates of E.rostratum have been analyzed using conventional variance analysis method;however,this method was impossible to differentiate the common carbon and nitrogen sources from the species and the isolate-specific ones for growth and sporulation.
In-depth difference analyses of various carbon and nitrogen sources were performed to determine the nutritional characteristics of E.rostratum causing banana leaf spot disease,and to provide a basis for disease management.
Three isolates(CLER09,D087 and JL05)of the pathogen were used as the experimental ones.The Czapek’s medium was used as a basal medium for nutritional tests on carbon and nitrogen sources.The sucrose in the basal medium was substituted with an equal amount of each of the 20 carbon sources tested.The potassium nitrate in the basal medium was substituted with an equal amount of each of the 26 nitrogen sources tested.The basal medium lacking sucrose and that lacking potassium nitrate were used as the controls for carbon and nitrogen utilization tests,respectively.The three isolates were inoculated on the basal media containing different carbon and nitrogen sources at 28℃for 4 days.The colony diameters and the numbers of conidia produced were separately investigated.The data obtained were evaluated using multiple statistical methods including cluster analysis,discriminatory analysis and comprehensive correlation analysis.
The results indicated that the carbon sources had significant effect on growth and sporulation of isolates CLER09,D087 and JL05.Of the carbon sources tested,lactose was identified as the most suitable general carbon source for growth and sporulation of the three isolates.Maltose,sucrose,glucose,α-lactose,xylitol,D-mannose,D-galactose,soluble starch,xylose,L-arabinose,inositol,dextrin and glycerin were identified as the suitable carbon sources for growth and sporulation.Significant correlation was observed between the mean colony diameters and the numbers of conidia produced among the three isolates.Nitrogen sources had significant effects on the numbers of conidia produced,not on the colony diameters.L-cysteine and L-phenylalanine were the most suitable nitrogen sources for growth and sporulation of the three isolates.L-proline and potassium nitrate were identified as the suitable nitrogen sources for growth and sporulation of the three isolates.The isolate CLER09 had the following nutritional characteristics:maltose,α-lactose,D-mannose and dextrin as the carbon sources were suitable for growth and sporulation followed by L-histidine;sucrose as a carbon source was unsuitable for growth and sporulation;significantly positive correlation was observed between the colony diameters and the numbers of conidia produced with reference to the carbon sources;no significantly positive correlation was observed between the colony diameters and the numbers of conidia produced with reference to the nitrogen sources.The isolate D087 had the following nutritional characteristics:D-mannose as a carbon source was unsuitable for growth and sporulation;asparagines,thymine,glutamic acid and vitamin B1 had the secondary suitability as the carbon sources for growth and sporulation;significantly positive correlation was observed between the colony diameters and the numbers of conidia produced with reference to the carbon sources;no significantly positive correlation was observed between the colony diameters and the numbers of conidia produced with reference to the nitrogen sources.Isolate JL05 had the following nutritional characteristics:glucose and trehalose were the most suitable carbon sources for growth and sporulation followed by mannitol;no significantly positive correlation was observed between the colony diameters and the numbers of conidia produced with reference to both carbon and nitrogen sources.
In conclusion,general and individual carbon and nitrogen requirements existed among isolates of E.rostratum for growth and sporulation.
香蕉葉斑病是由多種病原真菌引起的一類世界性病害,由多種真菌侵染引起[1-4].林善海等[5-6]研究表明,喙突臍蠕孢[Exserohilum rostratum(Drechsler)K.J.Leonard&Suggs]是廣西香蕉葉斑病病原菌中重要的一種,研究該菌的生活環(huán)境和生物學(xué)特性,是防治香蕉葉斑病的重要基礎(chǔ).同時(shí),喙突臍蠕孢寄主廣泛,多種重要糧食、經(jīng)濟(jì)作物和園林植物等受其侵害,生長(zhǎng)和產(chǎn)量受到較大影響,有時(shí)可造成嚴(yán)重的經(jīng)濟(jì)損失.例如,喙突臍蠕孢侵染玉米嚴(yán)重時(shí),種子侵染率達(dá)到85%,病葉率達(dá)到18%[7-8].同時(shí),該菌還是多種雜草的生防菌[9-10],顯示出廣泛的遺傳多樣性和環(huán)境適應(yīng)性.深入了解該菌生長(zhǎng)與產(chǎn)孢的營(yíng)養(yǎng)需求,對(duì)病害防控有指導(dǎo)意義.喙突臍蠕孢生長(zhǎng)與產(chǎn)孢受多種環(huán)境因素的影響,國(guó)內(nèi)外學(xué)者對(duì)來源于不同寄主植物上的喙突臍蠕孢的生物學(xué)特性做了部分研究,包括溫度、寄主范圍、分生孢子在土壤中的存活狀況等[6,11-13],其中碳源和氮源是重要影響因素.林善海等[14]測(cè)試了20種不同的碳源和26種不同的氮源對(duì)3株喙突臍蠕孢營(yíng)養(yǎng)生長(zhǎng)和產(chǎn)孢的影響,從表觀上說明了3菌株對(duì)碳、氮源的利用情況,但因?qū)?shù)據(jù)的分析僅采用常規(guī)方差分析方法,未能很好地區(qū)分碳源和氮源在種水平及菌株個(gè)體水平上的差異.由于喙突臍蠕孢菌株間遺傳多樣性的存在,要求我們不僅要了解菌株的共性營(yíng)養(yǎng)要求,還要研究了解菌株水平的個(gè)性營(yíng)養(yǎng)要求.另一方面,被感染作物所包含的碳源和氮源也是多種多樣的,不可能是單一成分,這就要求不僅要研究單一碳源或氮源成分對(duì)喙突臍蠕孢的影響,還要分析多種成分對(duì)喙突臍蠕孢的共性影響.對(duì)各種碳源(或氮源)對(duì)多種菌株的影響,僅靠單指標(biāo)方差分析和多重比較還不夠,不能綜合全面地反映它們之間的復(fù)雜關(guān)系.因此,本研究采用聚類分析、判別分析和相關(guān)分析等綜合統(tǒng)計(jì)分析法,對(duì)碳源和氮源的單一性和共性、喙突臍蠕孢3菌株的特性和共性以及菌落直徑和產(chǎn)孢量之間的相關(guān)性進(jìn)行分析研究,以便為更好地防治喙突臍蠕孢對(duì)作物和植物的侵害提供參考.通過對(duì)林善海等的原始數(shù)據(jù)[15]進(jìn)行深度分析,找出不同碳、氮源對(duì)喙突臍蠕孢種水平和菌株個(gè)體水平生長(zhǎng)與產(chǎn)孢的影響,為從營(yíng)養(yǎng)學(xué)角度研究病害的防控打下基礎(chǔ).
1.1 供試菌株
供試菌為喙突臍蠕孢(Exserohilum rostratum)菌株CLER09、D087和JL05.3株供試菌均由Lin等[6]從香蕉喙突臍蠕孢葉斑病病斑上分離獲得,保存在廣西農(nóng)業(yè)科學(xué)院微生物研究所,同時(shí)寄存于中國(guó)普通微生物菌種保藏管理中心(CGMCC),收藏號(hào)分別為CGMCC3.14160、CGMCC3.14161和CGMCC3.13461.將供試菌株分別接種于馬鈴薯葡萄糖瓊脂(PDA)培養(yǎng)基平板上,28℃培養(yǎng)5 d,用打孔器取直徑為6 mm菌碟備用[14].
1.2 實(shí)驗(yàn)方法
碳、氮源對(duì)菌株?duì)I養(yǎng)生長(zhǎng)及產(chǎn)孢量的影響:以查氏培養(yǎng)基(KNO32 g,KH2PO40.5 g,KCl 0.5 g,MgSO40.05 g,F(xiàn)eSO4·7 H2O 0.5 g,蔗糖30 g,瓊脂17 g,蒸餾水1 000 m L)為碳、氮源測(cè)試的基礎(chǔ)培養(yǎng)基.測(cè)定碳源利用時(shí),以等質(zhì)量的乳糖、木糖、木糖醇等碳源分別置換基礎(chǔ)培養(yǎng)基中的蔗糖;測(cè)定氮源利用時(shí),以等質(zhì)量的苯丙氨酸、甲硫氨酸、L-脯氨酸等氮源分別置換KNO3;以不加蔗糖的基礎(chǔ)培養(yǎng)基為碳源對(duì)照,不加KNO3的基礎(chǔ)培養(yǎng)基為氮源對(duì)照.將以上培養(yǎng)基分裝,高溫滅菌后倒平板,每個(gè)處理3皿(每皿約10 m L).將菌碟單點(diǎn)接種于測(cè)試培養(yǎng)基平板中央,28℃培養(yǎng)4 d,用十字交叉法測(cè)量菌落直徑,以2次測(cè)量的平均值代表該皿的菌落直徑;在每皿的菌落中加入10 m L無菌水,潔凈三角玻棒刮取菌落,制作分生孢子懸浮液,懸浮液濃度較高時(shí)適當(dāng)用無菌水稀釋,用血球計(jì)測(cè)定產(chǎn)孢量[14].
1.3 統(tǒng)計(jì)分析方法
1.3.1 聚類分析 聚類分析就是按照樣本的指標(biāo)值將樣本進(jìn)行分類,本研究就是依據(jù)3株供試菌的菌落直徑和產(chǎn)孢量2種指標(biāo)(共6個(gè)指標(biāo)),對(duì)21種不同碳源樣本(或27種不同氮源樣本)分別聚類.本研究采用的是快速聚類分析,即K-Mean聚類.由于碳源只有21種,所以開始確定分為3類.氮源有27種,比較多,所以開始確定為4類,2樣本距離采用歐氏距離公式:
式中:dij為i樣本與j樣本間的距離;k為每個(gè)樣本的觀察指標(biāo)個(gè)數(shù);xit,xjt分別為i樣本和j樣本的第t個(gè)指標(biāo)值.然后依據(jù)dij大小對(duì)樣本聚類.i=1,2,…,21(或1,2,…,27);j=1,2,…,21(或1,2,…,27);t=1,2,…,6.
1.3.2 判別分析 先根據(jù)已知類別的事物的性質(zhì)(自變量或觀察指標(biāo)變量),建立函數(shù)式(自變量或觀察指標(biāo)變量的線性組合,即判別函數(shù),本研究采用Fisher判別法),然后對(duì)未知類別的新事物進(jìn)行判斷以將之歸入已知的類別中,或根據(jù)判別結(jié)果對(duì)已分類別的正確與否做出判斷.利用SPSS 19.0軟件可建立Fisher線性判別函數(shù):
式中:t為類別個(gè)數(shù);k為觀察指標(biāo)變量個(gè)數(shù)(3株供試菌的綜合判別分析k=6.單個(gè)菌株的判別分析k=3).將每個(gè)樣本(無論是已知分類或未知分類)的k個(gè)指標(biāo)值分別代入t個(gè)判別函數(shù)中,哪個(gè)函數(shù)值最大,就說明該樣本屬于該函數(shù)對(duì)應(yīng)的類別.
本研究根據(jù)聚類結(jié)果對(duì)3株供試菌(2個(gè)指標(biāo)變量)綜合判別分析和單個(gè)菌株的判別分析,分析3株供試菌的共性和各自的特性.
1.3.3 相關(guān)分析 相關(guān)分析是研究2個(gè)或多個(gè)變量之間相互變化影響的關(guān)系,分析的方法比較多,本文僅對(duì)本研究涉及的方法簡(jiǎn)單介紹.
直接相關(guān)分析:對(duì)菌落直徑和產(chǎn)孢量在所有碳源和氮源上的直接相關(guān)分析,采用Pearson簡(jiǎn)單相關(guān)系數(shù):
式中:n為樣本個(gè)數(shù),在所有碳源上n=21,在所有氮源上n=27;X為菌落直徑;Y為產(chǎn)孢量;和分別表示X和Y的平均數(shù).
以上分析利用SPSS 17.0和Matlab 7.0進(jìn)行運(yùn)算.
2.1 碳源對(duì)菌株?duì)I養(yǎng)生長(zhǎng)及產(chǎn)孢量的影響
2.1.1 實(shí)驗(yàn)結(jié)果 表1中的數(shù)據(jù)來自文獻(xiàn)[14],碳源按序號(hào)從小到大排列,這里與聚類分析結(jié)果共表.在菌落直徑上,3菌株間在依碳源排序上,大小變化不同步,存在變化差異的不一致性.3菌株的產(chǎn)孢量排序是沒有規(guī)律的,三者之間的差異更明顯,菌株CLER09產(chǎn)孢量最大,其次是菌株D087,菌株JL05最小.
2.1.2 聚類分析 對(duì)實(shí)驗(yàn)結(jié)果進(jìn)行聚類分析,分類結(jié)果見表1.菌株CLER09、D087和JL05具有共同性質(zhì)的碳源分為3類(依據(jù)聚類結(jié)果圖,基本分為3大類):第一類為最適宜生長(zhǎng)碳源,僅有乳糖,3菌株的菌落直徑、產(chǎn)孢量都很高.第二類為適宜生長(zhǎng)碳源,3菌株的菌落直徑、產(chǎn)孢量較第一類稍小,包括麥芽糖、蔗糖、葡萄糖、α-乳糖、木糖醇、D-甘露糖、D-半乳糖、可溶性淀粉、木糖、L-阿拉伯糖、肌醇、糊精、甘油、對(duì)照.第三類為不適宜生長(zhǎng)的碳源,3菌株的菌落直徑、產(chǎn)孢量明顯減小,包括甘露醇、海藻糖、α-甲基-D葡萄糖苷、D-果糖、膽固醇、菊糖,其中3株測(cè)試菌株均不能在菊糖上生長(zhǎng).
各指標(biāo)在不同類別間的顯著性檢驗(yàn)見表2.除產(chǎn)孢量3(JL05的產(chǎn)孢量)在3個(gè)類別上不具有顯著性外,其他5個(gè)指標(biāo)在3個(gè)類別上都具有顯著性.
表1 碳源對(duì)喙突臍蠕孢不同菌株?duì)I養(yǎng)生長(zhǎng)及產(chǎn)孢影響的分類Table 1 Grouping of carbon sources influencing vegetative growth and sporulation of different E.rostratum isolates
續(xù)表1 碳源對(duì)喙突臍蠕孢不同菌株?duì)I養(yǎng)生長(zhǎng)及產(chǎn)孢影響的分類Continuation of Table 1 Grouping of carbon sources influencing vegetative growth and sporulation of different E.rostratum isolates
表2 碳源對(duì)喙突臍蠕孢菌落直徑與產(chǎn)孢量影響的相等性檢驗(yàn)Table 2 Equality tests of the effects of carbon sources on the colony diameters formed and the numbers of conidia produced by E.rostratum
2.1.3 判別分析 根據(jù)表1的分類結(jié)果進(jìn)行判別分析,判別函數(shù)極顯著(P<0.01,判別函數(shù)省略,下同).3個(gè)類別的正確判別率為100%.判別結(jié)果見圖1,3個(gè)碳源類別都以類別中心分布集中,類別之間分界清楚,距離較遠(yuǎn).
依據(jù)分類,對(duì)菌株CLER09、D087和JL05各自的21種不同碳源分別進(jìn)行判別分析.
對(duì)菌株CLER09判別分析的結(jié)果見表3.判別函數(shù)極顯著(P<0.01).3個(gè)類別的正確判別率如下:第一類為100%,第二類為64.3%,第三類為100%.誤判為第一類的是麥芽糖、α-乳糖、D-甘露糖、糊精,它們的菌落直徑和產(chǎn)孢量都接近或超過了第一類碳源乳糖,為該菌株最適宜生長(zhǎng)碳源.誤判為第三類的是蔗糖,它的產(chǎn)孢量很低,為該菌株不宜生長(zhǎng)處理.以上誤判的碳源,對(duì)菌株CLER09而言,反映了該菌株對(duì)碳源需求的特性.
圖1 碳源判別分析散點(diǎn)圖Fig.1 Discriminatory analysis of carbon sources
表3 對(duì)3株供試菌碳源的判別分析Table 3 Discriminatory analysis of carbon sources of the three experimental isolates
對(duì)菌株D087進(jìn)行判別分析,結(jié)果見表3.判別函數(shù)極顯著(P<0.01).3個(gè)類別的正確判別率如下:第一類為100%,第二類為85.7%,第三類為100%.誤判為第三類的是:D-甘露糖、對(duì)照,它們的菌落直徑和產(chǎn)孢量都接近或低于第三類碳源,對(duì)菌株D087而言,D-甘露糖就是不適宜生長(zhǎng)碳源,反映了該菌株對(duì)碳源需求的特性.
對(duì)菌株JL05進(jìn)行判別分析的結(jié)果見表3.判別函數(shù)極顯著(P<0.01).3個(gè)類別的正確判別率如下:第一類為100%,第二類為85.7%,第三類為66.7%.誤判為第一類的是葡萄糖、海藻糖,它們的菌落直徑和產(chǎn)孢量都接近或超過了第一類碳源乳糖,是該菌株最適宜生長(zhǎng)碳源.誤判為第二類的是甘露醇,它的菌落直徑和產(chǎn)孢量都接近或超過了第二類碳源,是該菌株適宜生長(zhǎng)碳源.誤判為第三類的是對(duì)照,它的菌落直徑和產(chǎn)孢量都接近或低于第三類碳源,為菌株不宜生長(zhǎng)處理.以上誤判的碳源,對(duì)菌株JL05而言,反映了該菌株對(duì)碳源需求的特性.
2.1.4 相關(guān)分析 表4數(shù)據(jù)表明,菌株LCER09的菌落直徑和產(chǎn)孢量在各個(gè)類別上沒有顯著相關(guān)性,但在所有碳源上表現(xiàn)出顯著相關(guān)性.菌株D087的菌落直徑和產(chǎn)孢量在第二類別和所有碳源上表現(xiàn)出顯著相關(guān)性.菌株JL05的菌落直徑和產(chǎn)孢量在各個(gè)類別和所有碳源上都沒有顯著相關(guān)性.
表4 反映碳源對(duì)喙突臍蠕孢不同菌株的菌落直徑和產(chǎn)孢量影響的相關(guān)系數(shù)Table 4 Correlation coefficients reflecting the effects of carbon sources on the colony diameters formed and the numbers of spores produced by E.rostratum
2.2 氮源對(duì)菌株?duì)I養(yǎng)生長(zhǎng)及產(chǎn)孢量的影響
2.2.1 實(shí)驗(yàn)結(jié)果 表5的數(shù)據(jù)來自文獻(xiàn)[14],碳源按序號(hào)從小到大排列,這里與聚類分析結(jié)果共表. 3菌株的菌落直徑表現(xiàn)出從大到小的變化趨勢(shì),但它們之間存在變化的不一致性.3菌株的產(chǎn)孢量排序沒有規(guī)律,三者之間的差異更明顯,菌株CLER09產(chǎn)量最大,其次是菌株D087,菌株JL05最小.
2.2.2 聚類分析 將實(shí)驗(yàn)結(jié)果進(jìn)行聚類分析,可分為4類(表5).
表5 氮源對(duì)喙突臍蠕孢不同菌株生長(zhǎng)及產(chǎn)孢影響的分類Table 5 Grouping of nitrogen sources influencing growth and sporulation of different E.rostratum isolates
續(xù)表5 氮源對(duì)喙突臍蠕孢不同菌株生長(zhǎng)及產(chǎn)孢影響的分類Continuation of Table 5 Grouping of nitrogen sources influencing growth and sporulation of different E.rostratum isolates
對(duì)菌株CLER09、D087與JL05具有共性的氮源分為4類(表5):第一類為最適宜生長(zhǎng)氮源,為L(zhǎng)-半胱氨酸乳糖和L-苯丙氨酸,3菌株的菌落直徑、產(chǎn)孢量都很高;第二類為適宜生長(zhǎng)氮源,包括L-脯氨酸、KNO3,3菌株的菌落直徑、產(chǎn)孢量較第一類稍小;第三類為次適宜生長(zhǎng)氮源,包括dl-丙氨酸、L-絲氨酸、葉酸、L-白氨酸、L-異亮氨酸、對(duì)照、L-賴氨酸,3菌株的菌落直徑、產(chǎn)孢量較第一類明顯減??;第四類為不適宜生長(zhǎng)氮源,包括L-組氨酸、氨基乙酸等16種氮源,3菌株的菌落直徑、產(chǎn)孢量較第三類更小.
各指標(biāo)在不同類別間的顯著性檢驗(yàn)見表6.結(jié)果表明,3菌株的菌落直徑在4個(gè)類別上不具有顯著性,然而它們的產(chǎn)孢量在4個(gè)類別上都具有顯著性.
表6 氮源對(duì)喙突臍蠕孢不同菌株菌落直徑與產(chǎn)孢量影響的相等性檢驗(yàn)Table 6 Equality tests of the effects of nitrogen sources on the colony diameters formed and the numbers of spores produced by E.rostratum
2.2.3 判別分析 根據(jù)表5的分類結(jié)果進(jìn)行判別分析,結(jié)果見表6.判別函數(shù)顯著(P<0.001).4個(gè)類別的正確判別率均為100%.判別結(jié)果見圖2,4個(gè)氮源類別都圍繞類別中心分布,類別之間分界清楚,類別中心之間距離相對(duì)較遠(yuǎn),第二類和第三類分布相對(duì)分散,第一類和第四類分布比較集中.
依據(jù)分類,對(duì)菌株CLER09、D087和JL05各自的27個(gè)氮源分別進(jìn)行判別分析.
對(duì)菌株CLER09判別分析的結(jié)果見表7.判別函數(shù)極顯著(P<0.01).4個(gè)類別的正確判別率如下:第一、二、三類均為100%,第四類為93.8%,誤判為三類的是L-組氨酸,它的菌落直徑和產(chǎn)孢量都接近第三類氮源,對(duì)菌株CLER09而言,就是次適宜生長(zhǎng)氮源,反映了該菌株對(duì)氮源需求的特性.
圖2 氮源判別分析散點(diǎn)圖Fig.2 Discriminatory analysis of nitrogen sources
表7 對(duì)3株喙突臍蠕孢菌株氮源的判別分析Table 7 Discriminatory analysis of nitrogen sources of the three E. rostratum isolates
對(duì)菌株D087進(jìn)行判別分析的結(jié)果見表7.判別函數(shù)極顯著(P<0.01).4個(gè)類別的正確判別率如下:第一和第二類為100%,第三類為57.1%,第四類為68.8%.第三類誤判為第四類的是L-白氨酸、對(duì)照、L-賴氨酸,它們的菌落直徑和產(chǎn)孢量都接近第四類氮源,對(duì)菌株D087而言,就是不適宜生長(zhǎng)氮源.第四類誤判為第三類的是天冬素、胸腺嘧啶、谷氨酸、維生素B1,它們的菌落直徑和產(chǎn)孢量都接近或大于第三類類氮源,是該菌株次適宜生長(zhǎng)氮源.第四類誤判為第二類的是L-胱氨酸,它的菌落直徑和產(chǎn)孢量都接近或大于第二類氮源.以上誤判氮源反映了菌株D087對(duì)氮源需求的特性.
對(duì)菌株JL05進(jìn)行判別分析的結(jié)果見表7.判別函數(shù)極顯著(P<0.01).4個(gè)類別的正確判別率如下:第一、二、四類為100%,第三類為71.4%.第三類誤判為第四類的是L-異亮氨酸,它的菌落直徑和產(chǎn)孢量都接近第四類氮源,對(duì)D087菌株而言,就是不適宜生長(zhǎng)氮源.第三類誤判為第二類的是對(duì)照,它的菌落直徑和產(chǎn)孢量都接近或大于第二類氮源.以上誤判氮源反映了菌株JL05對(duì)氮源需求的特性.
2.2.4 相關(guān)分析 表8數(shù)據(jù)表明,菌株CLER09的菌落直徑和產(chǎn)孢量在第一類、第二類和第四類上存在顯著相關(guān)性,在所有氮源上沒有顯著相關(guān)性.菌株D087的菌落直徑和產(chǎn)孢量只在第一類別存在顯著相關(guān)性,在其他類別和所有氮源上沒有顯著相關(guān)性.菌株JL05的菌落直徑和產(chǎn)孢量只在第一類別存在顯著相關(guān)性,在其他類別和所有氮源上沒有顯著相關(guān)性.3菌株表現(xiàn)出在第一類上存在極顯著負(fù)相關(guān),在所有氮源上沒有顯著相關(guān)性的一致共性.
表8 反映氮源對(duì)喙突臍蠕孢不同菌株菌落直徑和產(chǎn)孢量影響的相關(guān)系數(shù)Table 8 Correlation coefficients reflecting the effects of nitrogen sources on the colony diameters formed and the numbers of spores produced by E.rostratum
3.1 碳源對(duì)香蕉葉斑病菌喙突臍蠕孢3株供試菌(CLER09、D087、JL05)的生長(zhǎng)和產(chǎn)孢量有顯著影響,其中乳糖是3菌株的最適宜生長(zhǎng)和產(chǎn)孢的碳源;麥芽糖、蔗糖、葡萄糖、α-乳糖、木糖醇、D-甘露糖、D-半乳糖、可溶性淀粉、木糖、L-阿拉伯糖、肌醇、糊精、甘油是適宜生長(zhǎng)和有利于產(chǎn)孢的碳源.該結(jié)果反映了3菌株對(duì)碳源需求或依賴的共性.
3.2 氮源對(duì)香蕉葉斑病菌喙突臍蠕孢3株供試菌(CLER09、D087和JL05)的產(chǎn)孢量有顯著影響,對(duì)菌落直徑無顯著影響,其中L-半胱氨酸乳糖、L-苯丙氨酸是3菌株生長(zhǎng)和產(chǎn)孢的最適宜氮源;L-脯氨酸、KNO3是3菌株生長(zhǎng)和產(chǎn)孢的適宜氮源.該結(jié)果也反映了3菌株對(duì)氮源需求或依賴的共性.
3.3 菌株CLER09的特性:麥芽糖、α-乳糖、D-甘露糖、糊精是最適宜生長(zhǎng)和產(chǎn)孢的碳源;蔗糖是不適宜生長(zhǎng)碳源;L-組氨酸是次適宜生長(zhǎng)和產(chǎn)孢氮源;碳源使菌落直徑與產(chǎn)孢量有顯著正相關(guān)性,氮源使菌落直徑與產(chǎn)孢量無顯著正相關(guān)性.菌株D087的特性:D-甘露糖和對(duì)照(無碳源)是不適宜生長(zhǎng)碳源;天冬素、胸腺嘧啶、谷氨酸、維生素B1是次適宜生長(zhǎng)氮源;碳源使菌落直徑與產(chǎn)孢量有顯著正相關(guān)性;氮源使菌落直徑與產(chǎn)孢量無顯著正相關(guān)性.菌株JL05的特性:葡萄糖、海藻糖是最適宜生長(zhǎng)和產(chǎn)孢的碳源;甘露醇是適宜生長(zhǎng)和產(chǎn)孢碳源;碳源使菌落直徑與產(chǎn)孢量無顯著正相關(guān)性;氮源使菌落直徑與產(chǎn)孢量無顯著正相關(guān)性.
低聚糖(單糖和寡糖)易被多種真菌利用于營(yíng)養(yǎng)生長(zhǎng).本研究結(jié)果表明,供試菌株能較好地利用單糖及衍生物(如葡萄糖、L-阿拉伯糖、D-甘露糖、D-半乳糖)、雙糖(如乳糖、麥芽糖、蔗糖).少數(shù)多糖(如可溶性淀粉和糊精)也可很好地用于營(yíng)養(yǎng)生長(zhǎng). Kapoor等[11]測(cè)試了E.rostratum對(duì)D-葡萄糖、D-果糖、蔗糖和淀粉4種碳源的利用情況,結(jié)果表明,該菌均能較好利用4種碳源,并通過層析法明確了該菌對(duì)淀粉的水解過程:淀粉 →糊精 →麥芽糖 →D-葡萄糖,與本研究結(jié)果基本相同.同時(shí)各菌株又表現(xiàn)出各自的特性,如麥芽糖、α-乳糖、D-甘露糖、糊精也是菌株CLER09最適宜生長(zhǎng)和產(chǎn)孢的碳源;葡萄糖、海藻糖是菌株JL05最適宜生長(zhǎng)和產(chǎn)孢的碳源.
目前未見有從統(tǒng)計(jì)學(xué)上關(guān)于E.rostratum對(duì)不同氮源利用上的個(gè)性與共性的比較報(bào)道.本研究表明氮源對(duì)E.rostratum的產(chǎn)孢量有顯著影響,對(duì)菌落生長(zhǎng)(菌落直徑)無顯著影響.有機(jī)氮L-半胱氨酸、L-苯丙氨酸、L-脯氨酸都是最適宜或適宜生長(zhǎng)和產(chǎn)孢的氮源.總的來看,有機(jī)氮比無機(jī)氮更有利于E.rostratum的生長(zhǎng),但KNO3仍是E.rostratum適宜生長(zhǎng)氮源.E.rostratum對(duì)氮源的利用,各菌株又表現(xiàn)出各自特性,如L-組氨酸是菌株CLER09的次適宜生長(zhǎng)和產(chǎn)孢的氮源,天冬素、胸腺嘧啶、谷氨酸和維生素B1是菌株D087的次適宜生長(zhǎng)氮源.
本研究與林善海等[14]報(bào)道的結(jié)果既有相同點(diǎn),也有不同點(diǎn).林善海等僅是對(duì)單個(gè)菌株每個(gè)指標(biāo)的直觀分析,也沒有統(tǒng)籌分析碳源或氮源對(duì)菌落直徑與產(chǎn)孢量的綜合影響,沒有分析菌落直徑與產(chǎn)孢量之間的相關(guān)性問題,缺少全面性和綜合性.本研究既考慮了碳源或氮源對(duì)3菌株菌落直徑與產(chǎn)孢量的綜合影響,也分析了3菌株各自受影響的特性,分析了碳源或氮源對(duì)菌落直徑與產(chǎn)孢量之間相關(guān)性的影響.
碳源(或氮源)對(duì)E.rostratum的影響是復(fù)雜的,既有多種碳源(或氮源)的組合問題,也有每種碳源(或氮源)的含量(或濃度)問題,還有碳源和氮源組合交互影響問題,此外還與溫度、水分、光照等其他環(huán)境因素有關(guān)的問題[15-16].這些環(huán)境要素單獨(dú)或組合的交互影響有待進(jìn)一步深入研究.
(References):
[1] Grous P W,Groenewald J Z,Aptroot A,et al.Integrating morphological and molecular data sets on Mycosphaerella,with specific reference to species occurring on Musa//Jacom L,Lepoivre P,Marin D,et al.Mycosphaerella Leaf Spot Diseases of Banana,Present Status and Outlook-Proceedings of the 2nd International Workshop on Mycosphaerella Leaf Spot Diseases.Montpellier,F(xiàn)rance:INIBAP,2003:43-57.
[2] 桑利偉,鄭服叢.我國(guó)香蕉的主要病害及防治.安徽農(nóng)業(yè)科學(xué),2006,34(39):1841-1845.
Sang L W,Zheng F C.Main diseases of banana in China and its control.Journal of Anhui Agricultural Sciences,2006,34(39):1841-1845.(in Chinese with English abstract)
[3] Surridge A K J.Fungi associated with banana leaf diseases in South Africa.Pretoria:University of Pretoria,2006.
[4] Huang S L,Yan B,Wei J G,et al.First report of plantainzonate leaf spot caused by Pestalotiopsis menezesiana in China.Australasian Plant Disease Notes,2007,2(1):61-62.
[5] 林善海,黃思良,覃麗萍,等.廣西香蕉真菌性葉斑病病原菌種群結(jié)構(gòu)分析.植物保護(hù),2011,37(5):181-183.
Lin S H,Huang S L,Qin L P,et al.Investigations on the fungal populations associated with banana leaf spot diseases in Guangxi.Plant Protection,2011,37(5):181-183.(in Chinese with English abstract)
[6] Lin S H,Huang S L,Li Q Q,et al.Characterization of Exserohilumrostratum,a new causal agent of banana leaf spot disease in China.Australasian Plant Pathology,2011,40(3):246-259.
[7] Leonard K J,Thakur R P,Leath S.Incidence of Bipolaris and Exserohilum species in corn leaves in North Carolina. Plant Disease,1988,72:1034-1038.
[8] McGee D C.Seed borne and seed-transmitted diseases of maize in rice-based cropping systems//International Rice Research Institute.Rice Seed Health,Proceedings of the International Workshop on Rice Seed Health.Manila,Philippines:IRRI,1987:203-213.
[9] Cardona R,González M S.First report of Exserohilum rostratum associated with rice seed in Venezuela.Plant Disease,2007,91:226.
[10] Peng G,Boyetchko S M.Effect of variable dew temperatures on infection of green foxtail by Pyricularia setariae,Drechslera gigantea,and Exserohilum rostratum. Biological Control,2006,39:539-546.
[11] Kapoor I J,Tandon R N.Utilization of carbohydrates by Helminthosporium rostratum Drechs.and Deightoniella torulosa(Syd).Ell.(Syn.Helminthosporium torulosum Syd.).Mycopathologia,1966,39(3/4):265-271.
[12] Pratt R G.Comparative survival of conidia of eight species of Bipolaris,Curvularia,and Exserohilum in soil and influences of swine waste amendments on survival.Applied Soil Ecology,2006,31:159-168.
[13] Pratt R G.Enhancement of sporulation in species of Bipolaris,Curvularia,Drechslera,and Exserohilum by growth on cellulose-containing substrates.Mycopathologia,2006,162:133-140.
[14] 林善海,黃思良,岑貞陸,等.環(huán)境因素對(duì)香蕉葉斑病菌喙突臍蠕孢生長(zhǎng)和產(chǎn)孢的影響,菌物學(xué)報(bào),2013,32(2):226-238.
Lin S H,Huang S L,Cen Z L,et al.Effects of environmental factors on growth and sporulation of Exserohilum rostratum causing banana leaf spot disease. Mycosystema,2013,32(2):226-238.(in Chinese with English abstract)
[15] 范永山,曹志艷,谷守芹,等.不同誘導(dǎo)因素對(duì)玉米大斑病菌附著胞產(chǎn)生的影響.中國(guó)農(nóng)業(yè)科學(xué),2004,37(5):769-772.
Fan Y S,Cao Z Y,Gu S Q,et al.Effect of different induction factors on appressorium of Setosphaeria turcica. Scientia Agricultura Sinica,2004,37(5):769-772.(in Chinese with English abstract)
[16] 林福呈,李德葆.植物病原真菌附著胞形成及其基因表達(dá)調(diào)節(jié).植物病理學(xué)報(bào),1997,27(3):193-197.
Lin F C,Li D B.Plant pathogenic fungi appressorium formation and regulation of gene expression.Acta Phytopathologica Sinica,1997,27(3):193-197.(in Chinese with English abstract)
Statistical analysis of carbon and nitrogen sources for growth and sporulation of Exserohilum rostratum causing banana leaf spot disease.Journal of Zhejiang University(Agric.&Life Sci.),2015,41(1):64-74
Du Ruiqing1?,Lin Shanhai2,3?,Huang Siliang1*,Zhang Zhengtian1,Qin Liping4,Li Qiqin3(1.School of Life Science and Technology,Nanyang Normal University,Nanyang 473061,Henan,China;2.Sugarcane Research Institute,Guangxi Academy of Agricultural Sciences,Nanning 530007,China;3.College of Agriculture, Guangxi University,Nanning 530005,China;4.Microbiology Research Institute,Guangxi Academy of Agricultural Sciences,Nanning 530007,China)
Exserohilum rostratum;carbon source;nitrogen source;cluster analysis;discriminatory analysis;comprehensive correlation analysis
S 432.4
A
10.3785/j.issn.1008-9209.2014.02.241
河南省高校科技創(chuàng)新團(tuán)隊(duì)支持計(jì)劃項(xiàng)目(2010JRTSTHNO12);廣西自然科學(xué)基金資助項(xiàng)目(桂科青2013jjBA30044);廣西農(nóng)業(yè)科學(xué)院科技發(fā)展基金重點(diǎn)項(xiàng)目(桂農(nóng)科2013JZ12).
黃思良,E-mail:silianghuang@126.com
聯(lián)系方式:杜瑞卿,E-mail:duruiqing8@163.com;林善海,E-mail:shanhailin79@163.com.?為共同第一作者
2014 02 24;接受日期(Accepted):2014 10 14;
日期(Published online):2015 01 19
URL:http://www.cnki.net/kcms/detail/33.1247.S.20150119.1656.006.html