馮琢,王晟,白娜玲,趙宇華
(浙江大學(xué)生命科學(xué)學(xué)院微生物研究所,杭州310058)
二苯醚降解菌鞘氨醇單胞菌DZ-3的分離及其降解特性
馮琢,王晟,白娜玲,趙宇華*
(浙江大學(xué)生命科學(xué)學(xué)院微生物研究所,杭州310058)
通過(guò)選擇性富集從浙江上虞污水處理廠的活性污泥中分離獲得2株細(xì)菌DZ-3和CZ-3.DZ-3能夠以二苯醚為唯一碳源進(jìn)行生長(zhǎng),CZ-3不能對(duì)二苯醚進(jìn)行降解,但CZ-3和DZ-3的混合培養(yǎng)物能極大地提高對(duì)二苯醚的降解效率.對(duì)這2株菌進(jìn)行16S r DNA鑒定,分別隸屬于鞘氨醇單胞菌屬(Sphingomonas sp.)以及蒼白桿菌屬(Ochrobactrum sp.).無(wú)機(jī)鹽降解實(shí)驗(yàn)表明,DZ-3在6 d內(nèi)對(duì)初始質(zhì)量濃度為835 mg/L的二苯醚的降解率為71%,而混合細(xì)菌以2∶3比例接種在4 d內(nèi)的降解率為90%.通過(guò)人工神經(jīng)網(wǎng)絡(luò)的方法分析無(wú)機(jī)鹽中金屬離子對(duì)二苯醚降解效率的影響表明,Mg2+對(duì)降解的影響最大.在土壤中的降解實(shí)驗(yàn)表明,混合細(xì)菌在6 d內(nèi)對(duì)土壤中二苯醚的降解率能夠達(dá)到98%.
二苯醚;降解細(xì)菌;降解率;土壤修復(fù)
SummaryPolybrominated diphenyl ethers(PBDEs)are man-made flame-retardant chemicals that are widely used to decrease the flammability of plastics,electronic appliances,textiles and polyurethanes.Annually,more than 67 400 tons of PBDEs including penta-,octa-,and deca-BDE were produced.PBDEs can be incorporated into polymers without any covalent bonds to adjacent materials.Because of the widespread production and improper disposal of these polymers,PBDEs have been accumulated in the environment.The toxicity of PBDEs is variable for different congeners.Some of them show neurotoxic toxicity in mice and dioxin-like endocrine disruption.In spite of the accumulation of PBDEs in the environment,few remediation technologies have been investigated sufficiently.A few works of biological degradation of PBDEs have been done in recent years.
An efficient diphenyl ether degrading bacterium strain DZ-3,which was able to utilize diphenyl ether as a sole source of carbon and energy under aerobic condition,was isolated from activated sludge of a wastewater treatment plant.The growth and degradation character of the strain were studied in order to offer some useful informations for the remediation of contamination.
In addition to the diphenyl ether degrading bacterium DZ-3,the other bacterium strain CZ-3 was also isolated,which can’t degrade biphenyl ether.But the mixed cultures of the two strains could enhance the degradation ofdiphenyl ether compared with DZ-3 cultivation.Based on 16S r DNA gene sequencing,the strains DZ-3 and CZ-3 were identified as Sphingomonas sp.DZ-3 and Ochrobactrum sp.CZ-3.Mixture design was used to adjust the proportion of each strain and the optimal ratio of inoculation size was DZ-3∶CZ-3=2∶3.Diphenyl ether degradation experiments using high performance liquid chromatograph(HPLC)showed that the strain DZ-3 could degrade 71%of diphenyl ether(initial concentration of 835 mg/L)within 6 days,while the mixture of DZ-3 and CZ-3 could degrade 90%within 4 days.To further investigate the degree of metal ions affecting the biodegradation of Sphingomonas sp.DZ-3,a background propagation artificial neural network(ANN)was used to conduct a sensitive analysis on the individual variables.The ANN model showed satisfactory fits for the experimental data. The results indicated that Mg2+appeared to be the most important metal ion for the biodegradation of DZ-3 with a relative importance of 31.01%,followed by Co2+(25.45%),Ni2+(15.12%),in which Mg2+had a positive effect on the degradation,while Co2+and Ni2+had negative ones.In addition,the strain DZ-3 even catabolized biphenyl and monobrominated diphenyl ether.Meanwhile,the degradation of biphenyl ether in the polluted soil added with the exterior microorganism was studied by lab simulation.In lab simulation,the degradation percentage of diphenyl ether by Ochrobactrum sp.CZ-3 and Sphingomonas sp.DZ-3 was 71%within 3 days and 98%within 6 days.The degradation effect was significant,indicating that the mixed culture had great potential for remediation of contaminated soil.
In conclusion,the research on the characteristics of the diphenyl ether biodegradation can provide theoritical basis and experience about engineering application for bioremediation of diphenyl ether and PBDEs polluted sites.
多溴聯(lián)苯醚(polybrominated diphenyl ethers,PBDEs)作為一種主要的溴代阻燃劑,其阻燃效率高,熱穩(wěn)定性好,添加量少,因此被廣泛應(yīng)用于各種工業(yè)產(chǎn)品中,包括紡織品、電子電氣設(shè)備、建筑裝飾材料等[12].3種主要的PBDEs混合物商品有:deca-BDEs,octa-BDEs和penta-BDEs.PBDEs的年產(chǎn)量已達(dá)67 400 t[3].不同于其他溴代阻燃劑如四溴雙酚A,PBDEs是直接添加到高分子聚合物中,不通過(guò)任何化學(xué)鍵與其相連,因此這些化學(xué)物質(zhì)更容易擴(kuò)散到環(huán)境中[4].由于PBDEs在環(huán)境中穩(wěn)定,不會(huì)被分解,它們會(huì)長(zhǎng)期積累在環(huán)境中.從20世紀(jì)90年代開(kāi)始,科學(xué)家就開(kāi)始了PBDEs對(duì)環(huán)境以及動(dòng)物毒性的研究.發(fā)現(xiàn)動(dòng)物在長(zhǎng)期接觸溴代阻燃劑的環(huán)境下大腦發(fā)育會(huì)變得不正常,并影響其記憶、學(xué)習(xí)能力及行為表現(xiàn),部分溴代阻燃劑會(huì)干擾甲狀腺及女性荷爾蒙的分泌[56].不同PBDE同系物毒性差別很大,研究表明高溴代PBDEs溶解在有機(jī)溶劑中時(shí),在紫外光照射下會(huì)發(fā)生脫溴反應(yīng),產(chǎn)生毒性更強(qiáng)的低溴代PBDEs[79].而且PBDEs在制備、燃燒以及高溫分解時(shí)會(huì)產(chǎn)生劇毒致癌物多溴二苯并二噁英及多溴二苯并呋喃(PBDD/Fs)[10].2009年,聯(lián)合國(guó)環(huán)境規(guī)劃署發(fā)表聲明,將四溴聯(lián)苯醚、五溴聯(lián)苯醚、六溴聯(lián)苯醚和七溴聯(lián)苯醚等9種有毒物質(zhì)列入《關(guān)于持久性有機(jī)污染物的斯德哥爾摩公約》.含有PBDEs的產(chǎn)品在生產(chǎn)、使用以及廢物處置階段都會(huì)不同程度地釋放出PBDEs,污染環(huán)境.
微生物修復(fù)技術(shù)是一種綠色、經(jīng)濟(jì)、環(huán)保的修復(fù)技術(shù).因此,培養(yǎng)篩選出對(duì)二苯醚以及多溴聯(lián)苯醚具有高效降解能力的菌株使之應(yīng)用于含多溴聯(lián)苯醚土壤的處理具有非常重要的意義[11].1992年,Schmidt等首次分離出了能夠以二苯醚為唯一碳源和能源生長(zhǎng)的菌株鞘氨醇單胞菌Sphingomonas sp.SS3[1213].2007年,Kim等[14]從污水處理廠的污泥中分離到一株Sphingomonas sp.PH-07,發(fā)現(xiàn)該菌能夠以二苯醚為唯一碳源和能源生長(zhǎng),在6 d內(nèi)能將質(zhì)量濃度為1 g/L二苯醚降解完全,并且能夠共代謝4-溴二苯醚、2,4-二溴聯(lián)苯醚.在被報(bào)道的菌株中,大部分都只能以二苯醚為生長(zhǎng)底物對(duì)PBDEs進(jìn)行共代謝降解,不能以含有2個(gè)溴以上的PBDEs為唯一碳源和能源生長(zhǎng),其中溴原子取代位置極大地影響微生物對(duì)其的代謝[1517].在本文中我們分離到1株能夠以二苯醚為唯一碳源進(jìn)行生長(zhǎng)的細(xì)菌,并對(duì)其降解特性進(jìn)行了研究.
1.1 材料
1.1.1 樣品來(lái)源 用于進(jìn)行降解菌篩選的污泥來(lái)自浙江上虞污水處理廠曝氣池池底污泥.
1.1.2 主要試劑和儀器 二苯醚、4-溴二苯醚購(gòu)自阿拉丁試劑公司;二甲亞砜購(gòu)自美國(guó)Sigma公司;其他試劑均為色譜純或分析純國(guó)產(chǎn)試劑;用于PCR擴(kuò)增的全套試劑均購(gòu)自日本TaKaRa公司,引物合成以及測(cè)序由生工生物工程(上海)股份有限公司完成. PCR儀(美國(guó)Bio-Rad公司),KQ5200DE數(shù)控超聲清洗器(江蘇省昆山市超聲儀器有限公司),Agilent 1200高效液相色譜儀(安捷倫科技有限公司).
1.1.3 培養(yǎng)基 LB培養(yǎng)基:蛋白胨10 g/L、酵母粉5 g/L、NaCl 10 g/L、蒸餾水,p H 7.0,2%瓊脂粉,121℃、20 min滅菌.
無(wú)機(jī)鹽培養(yǎng)基:Na2HPO4·12H2O 7.036 5 g/L、KH2PO41 g/L、(NH4)2SO40.5 g/L、MgCl2·6H2O 0.1 g/L、Ca(NO3)2·4H2O 0.02 g/L,千分之一微量元素母液,加水至1 L,p H 7.0,115℃、30 min滅菌.其中,微量元素母液:FeSO4·7H2O 2.138 5 g/L、H3BO30.3 g/L、ZnSO4·7H2O 0.1 g/L、MnCl2·4H2O 0.03 g/L、CoCl2·6H2O 0.286 8 g/L、NiCl2·6H2O 0.02 g/L、Na2MoO4·2H2O 0.03 g/L,加水定容至1 L,調(diào)節(jié)p H 3.0~4.0.
分離培養(yǎng)基:無(wú)機(jī)鹽溶液加2%瓊脂粉溶解,115℃、30 min滅菌,冷卻到一定溫度后倒入滅菌的培養(yǎng)皿中冷卻,因?yàn)槎矫巡蝗苡谂囵B(yǎng)基,因此將培養(yǎng)皿倒置,在培養(yǎng)皿蓋中加入一定量的液體二苯醚.
1.2 二苯醚含量的測(cè)定
培養(yǎng)液中的二苯醚采用超聲波輔助萃取方法進(jìn)行,以三氯甲烷為萃取劑,萃取3次后,旋轉(zhuǎn)蒸發(fā),用10 m L甲醇溶解殘留在底部的二苯醚,用高效液相色譜法(high performance liquid chromatograph,HPLC)進(jìn)行檢測(cè),色譜柱為Agilent公司C18反向柱,流動(dòng)相為V(甲醇)∶V(水)=85∶15,流速1 m L/min,進(jìn)樣量10μL,檢測(cè)波長(zhǎng)235 nm,測(cè)定時(shí)間10 min.
1.3 二苯醚降解菌的分離與鑒定
在二苯醚質(zhì)量濃度為100 mg/L的200 m L無(wú)機(jī)鹽培養(yǎng)液中加入10 g活性污泥,置于30℃、200 r/min的搖床中振蕩培養(yǎng)1周,吸取5 m L轉(zhuǎn)接至新的培養(yǎng)基中,逐漸提高二苯醚濃度,連續(xù)馴化、富集、轉(zhuǎn)接10次.將菌液梯度稀釋并涂布到分離培養(yǎng)基上,挑取單菌分離純化,并保存.從傳代得到的穩(wěn)定富集液中分離得到2株細(xì)菌DZ-3和CZ-3,其中DZ-3能以二苯醚為唯一碳源生長(zhǎng),CZ-3不能降解二苯醚,但能提高DZ-3對(duì)二苯醚的降解效率.以通用引物27F和1492R對(duì)2株菌的16S r DNA進(jìn)行PCR擴(kuò)增,割膠回收PCR產(chǎn)物并送至生工生物工程(上海)股份有限公司進(jìn)行測(cè)序.
1.4 菌株DZ-3與CZ-3的最佳混合比例
在100 m L的錐形瓶中加入20 m L無(wú)機(jī)鹽培養(yǎng)基,121℃滅菌20 min,加入過(guò)濾除菌的二苯醚使其終質(zhì)量濃度為835 mg/L.設(shè)置5組實(shí)驗(yàn),其中第1組到第5組DZ-3與CZ-3的比例分別為1∶4,2∶3,1∶1,3∶2,4∶1,每組設(shè)置3個(gè)重復(fù).培養(yǎng)3 d后測(cè)定二苯醚降解率.
1.2 菌株DZ-3以及混合細(xì)菌對(duì)二苯醚的降解測(cè)定
在100 m L的錐形瓶中加入20 m L無(wú)機(jī)鹽培養(yǎng)基,121℃滅菌20 min,加入過(guò)濾除菌的二苯醚使其終質(zhì)量濃度為835 mg/L.將DZ-3及CZ-3均培養(yǎng)至D(600 nm)為0.8,準(zhǔn)備接種.其中一組按1%的接種量接種DZ-3,另一組按照最佳比例接種DZ-3和CZ-3,使DZ-3和CZ-3的總接種量為1%,分別在第1、2、3、4、5和6天取樣測(cè)定二苯醚降解情況,每組設(shè)置3個(gè)重復(fù).
1.6 金屬離子對(duì)菌株DZ-3降解二苯醚速率的影響
根據(jù)正交設(shè)計(jì)分別配制18組不同離子濃度的無(wú)機(jī)鹽培養(yǎng)液(表1),加入二苯醚使其質(zhì)量濃度為800 mg/L,按1%接種量接種D(600 nm)為0.8的細(xì)菌DZ-3菌液,5 d后測(cè)定二苯醚降解率,每組設(shè)置3個(gè)重復(fù).
表1 每組實(shí)驗(yàn)中金屬離子的質(zhì)量濃度Table 1 Concentration of metal ions in each treatment mg/L
續(xù)表1 每組實(shí)驗(yàn)中金屬離子的質(zhì)量濃度Continuation of Table 1 Concentration of metal ions in each treatment mg/L
1.7 菌株DZ-3對(duì)聯(lián)苯以及4-溴二苯醚的降解
在無(wú)機(jī)鹽培養(yǎng)基中分別加入聯(lián)苯以及4-溴二苯醚,使其質(zhì)量濃度分別達(dá)到100 mg/L,接種DZ-3菌懸液,放入搖床,30℃、180 r/min培養(yǎng),測(cè)定降解率.
1.8 混合細(xì)菌對(duì)模擬二苯醚污染土壤的修復(fù)作用
將取自浙江大學(xué)紫金港校區(qū)內(nèi)的河邊泥土,除去石塊等雜物,放入烘箱中烘干,研磨過(guò)20目篩;取20 g土壤加入100 m L錐形瓶中,121℃滅菌20 min,烘干,分別加入二苯醚、聯(lián)苯以及四溴二苯醚,使其終質(zhì)量分?jǐn)?shù)分別為720、100、100 mg/kg,混合均勻.分成2組,一組只在土壤中添加2.24 g麩皮,另一組添加2.24 g麩皮以及5 m L混合細(xì)菌培養(yǎng)物,室溫靜置培養(yǎng),測(cè)定污染物的降解情況.
2.1 二苯醚降解菌的篩選與鑒定
通過(guò)富集、篩選分離得到了1株能夠以二苯醚為唯一碳源和能源進(jìn)行生長(zhǎng)的細(xì)菌DZ-3.多次傳代得到的富集液中除了DZ-3,還有另一株細(xì)菌穩(wěn)定存在,命名為CZ-3,該菌株既不能以二苯醚為唯一碳源生長(zhǎng),也不能共代謝二苯醚,但是能提高DZ-3對(duì)二苯醚的降解效率.將2株菌的16S rDNA序列進(jìn)行BLAST比對(duì),DZ-3為鞘氨醇單胞菌屬(Sphingomonas sp.),CZ-3為蒼白桿菌屬(Ochrobactrum sp.).根據(jù)比對(duì)結(jié)果用鄰接法構(gòu)建DZ-3的進(jìn)化樹(shù)(圖1).
2.2 菌株DZ-3以及混合細(xì)菌對(duì)二苯醚的降解
在混合菌對(duì)二苯醚的降解實(shí)驗(yàn)中,DZ-3與CZ-3的接種比例對(duì)二苯醚降解率的影響如圖2所示,其中第2組對(duì)二苯醚的降解率最高,為49%,因此確定混合降解體系中DZ-3與CZ-3的最佳比例為2∶3.在無(wú)機(jī)鹽培養(yǎng)基中,DZ-3在4 d內(nèi)對(duì)初始質(zhì)量濃度為835 mg/L的二苯醚降解率為52%,6 d內(nèi)為71%;而DZ-3與CZ-3以2∶3的比例接種后,在4 d內(nèi)對(duì)二苯醚的降解率高達(dá)90%(圖3).生長(zhǎng)曲線表明:DZ-3在以二苯醚為唯一碳源的無(wú)機(jī)鹽液體培養(yǎng)基中經(jīng)過(guò)一段時(shí)間的遲滯期后就進(jìn)入了對(duì)數(shù)生長(zhǎng)期,培養(yǎng)液的D(600 nm)快速增長(zhǎng),菌體大量繁殖,溶液變得渾濁;混合菌降解體系進(jìn)入對(duì)數(shù)期較早.
圖1 基于16S rDNA序列同源性構(gòu)建的菌株DZ-3與其他相關(guān)菌株的系統(tǒng)發(fā)育樹(shù)Fig.1 Phylogenetic tree of strain DZ-3 and other relative bacterial species based on 16S r DNA sequence
圖2 DZ-3與CZ-3的接種比例對(duì)降解率的影響Fig.2 Effect of the ratio of DZ-3 to CZ-3 on the degradation percentage
圖3 單菌DZ-3和混菌的生長(zhǎng)曲線以及對(duì)二苯醚的降解Fig.3 Growth curves of pure culture of DZ-3 and mixed culture and degradation of diphenyl ether
2.3 金屬離子對(duì)Sphingomonas sp.DZ-3降解二苯醚效率的影響
在本研究中54個(gè)測(cè)試集用于人工神經(jīng)網(wǎng)絡(luò)[18]結(jié)構(gòu)構(gòu)建.表1為每個(gè)變量的設(shè)置.54個(gè)數(shù)據(jù)集被分為訓(xùn)練集、驗(yàn)證集和測(cè)試集3種.在最優(yōu)的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)確定后,用遺傳算法優(yōu)化神經(jīng)網(wǎng)絡(luò)的權(quán)值.經(jīng)過(guò)計(jì)算發(fā)現(xiàn),就DZ-3對(duì)二苯醚的降解效果而言,最優(yōu)的隱含層數(shù)目為5,經(jīng)過(guò)ANN-GA模型預(yù)測(cè)的二苯醚降解效率與真實(shí)值的線性回歸系數(shù)為0.948(圖4). Mg2+對(duì)降解的影響最大,相對(duì)重要性為31.01%,其后分別是Co2+(25.45%)、Ni2+(15.12%)、Mn2+(10.59%)、Zn2+(8.63%)、Fe2+(4.68%)、Ca2+(4.52%).結(jié)果顯示,Mg2+對(duì)二苯醚降解具有極大的促進(jìn)作用,而Ni2+和Co2+對(duì)二苯醚的降解具有極大的抑制作用.
圖4 ANN-GA模型預(yù)測(cè)結(jié)果與實(shí)際降解率的比較Fig.4 Comparison between the experimental values and the predicted values using ANN-GA model
2.4 菌株DZ-3對(duì)聯(lián)苯以及4-溴二苯醚的降解
實(shí)驗(yàn)證明DZ-3能夠以聯(lián)苯為唯一碳源進(jìn)行生長(zhǎng),也能以4-溴二苯醚為唯一碳源進(jìn)行生長(zhǎng).DZ-3能夠在24 h內(nèi)將100 mg/L聯(lián)苯降解完全,在36 h內(nèi)將100 mg/L 4-溴二苯醚降解完全,降解曲線如圖5所示.
圖5 菌株DZ-3對(duì)聯(lián)苯以及4-溴二苯醚的降解Fig.5 Degradation of biphenyl and 4-Br-diphenyl ether by DZ-3
2.2 混合細(xì)菌對(duì)模擬二苯醚污染土壤的修復(fù)作用
實(shí)驗(yàn)表明,受污染土壤中二苯醚的回收效率達(dá)到92.7%,當(dāng)添加的菌體量超過(guò)5 m L、麩皮的量大于2 g時(shí),均能取得較好的降解效果.土壤中二苯醚(初始質(zhì)量分?jǐn)?shù)為0.725 mg/kg)、聯(lián)苯以及4-溴二苯醚的降解情況如圖6所示,土壤中的混合細(xì)菌在6 d內(nèi)能將二苯醚降解完全,在3 d內(nèi)能將聯(lián)苯以及4-溴二苯醚降解完全.
圖6 混合菌對(duì)土壤中二苯醚、聯(lián)苯以及4-溴二苯醚的降解率Fig.6 Degradation percentage of diphenyl ether,biphenyl and 4-Br-diphenyl ether in soil by mixed culture
利用微生物修復(fù)技術(shù)進(jìn)行環(huán)境污染物的治理是非常有效的方法,本文篩選到了2株細(xì)菌DZ-3和CZ-3.其中,DZ-3能夠以二苯醚為唯一碳源進(jìn)行生長(zhǎng),CZ-3不能降解二苯醚,但是能極大地提高DZ-3對(duì)二苯醚的降解效率.對(duì)其在無(wú)機(jī)鹽培養(yǎng)基中的降解特性進(jìn)行研究表明,單菌DZ-3在4 d內(nèi)對(duì)初始質(zhì)量濃度為835 mg/L的二苯醚降解效率為52%,而混合細(xì)菌極大地提高了對(duì)二苯醚的降解效率,在4 d內(nèi)的降解率達(dá)到90%,與其他研究者篩選出的二苯醚降解菌相比,其降解效率有了較大的提高,并且混合細(xì)菌在實(shí)際應(yīng)用中的穩(wěn)定性更高.用人工神經(jīng)網(wǎng)絡(luò)的方法分析無(wú)機(jī)鹽中金屬離子對(duì)二苯醚降解效率的影響表明,Mg2+對(duì)降解的影響最大,相對(duì)重要性為31.01%.在實(shí)驗(yàn)室中模擬了二苯醚污染土壤,將篩選到的降解菌應(yīng)用于土壤中二苯醚的降解,不添加細(xì)菌的對(duì)照組在6 d內(nèi)對(duì)二苯醚的降解率為25%,而混合細(xì)菌在6 d內(nèi)對(duì)土壤中二苯醚的降解率能夠達(dá)到98%.說(shuō)明混合細(xì)菌的加入極大地提高了對(duì)土壤中二苯醚的降解效率.本研究結(jié)果為實(shí)際環(huán)境污染物的微生物室外原位修復(fù)提供了實(shí)驗(yàn)基礎(chǔ).
(References):
[1] Keum Y S,Li Q X.Reductive debromination of polybrominated diphenyl ethers by zerovalent iron. Environmental Science&Technology,2005,39:2280-2286.
[2] Richardson S D.Environmental mass spectrometry:Emerging contaminants and current issues.Analytical Chemistry,2004,76:3337-3364.
[3] Birnbaum L S,Staskal D F.Brominated flame retardants:Cause for concern?Environmental Health Perspectives,2004,112:9-17.
[4] Segev O,Kushmaro A,Brenner A.Environmental impact of flame retardants(persistence and biodegradability). International Journal of Environmental Research and Public Health,2009,6:478-491.
[5] Branchi I,Alleva E,Costa L G.Effects of perinatal exposure to a polybrominated diphenyl ether(PBDE 99)on mouse neurobehavioral development.Neurotoxicology,2002,23(3):375-384.
[6] Napoli E,Hung C,Wong S,et al.Toxicity of the flameretardant BDE-49 on brain mitochondria and neuronal progenitor striatal cells enhanced by a PTEN-deficient background.Toxicological Sciences,2013,132(1):196-210.
[7] Christiansson A,Eriksson J,Teclechiel D,et al. Identification and quantification of products formed via photolysis of decabromodiphenyl ether.Environmental Science and Pollution Research,2009,16:312-321.
[8] Hagberg J,Olsman H,Bavel B V,et al.Chemical and toxicological characterisation of PBDFs from photolytic decomposition of decaBDE in toluene.Environment International,2006,32:851-857.
[9] Soderstrom G,Sellstrom U,de Wit C A,et al,Photolytic debromination of decabromodiphenyl ether(BDE 209). Environmental Science&Technology,2004,38:127-132.
[10] Rosenfelder N,Bending P,Vetter W.Stable carbon isotope analysis(б13C values)of polybrominated diphenyl ethers and their UV-transformation products.Environmental Pollution,2011,159:2706-2712.
[11] Vonderheide A P,Mueller-Spitz S R,Meija J,et al.Rapid breakdown of brominated flame retardants by soil microorganisms.Journal of Analytical Atomic Spectrometry,2006,21:1232-1239.
[12] Schmidt S,Wittich R M,Erdmann D,et al.Biodegradation of diphenyl ether and its monohalogenated derivatives by Sphingomonas sp.strain SS3.Applied and Environmental Microbiology,1992,58:2744-2750.
[13] Schmidt S,F(xiàn)ortnagel P,Wittich R M.Biodegradation and transformation of 4,4′-and 2,4-dihalodiphenyl ethers by Sphingomonas sp.strain SS3.Applied and Environmental Microbiology,1993,59:3931-3933.
[14] Kim Y M,Nam I H,Murugesan K,et al.Biodegradation of diphenyl ether and transformation of selected brominated congeners by Sphingomonas sp.PH-07.Applied Microbiology and Biotechnology,2007,77:187-194.
[15] Luo S,Yang S G,Xue Y G,et al.Two-stage reduction/ subsequent oxidation treatment of 2,2′,4,4′-tetrabromodiphenyl ether in aqueous solutions:Kinetic,pathway and toxicity. Journal of Hazardous Materials,2011,192:1795-1803.
[16] Huang H W,Chang B W,Cheng C H.Biodegradation of dibromodiphenyl ether in river sediment.International Biodeterioration&Biodegradation,2012,68:1-6.
[17] Zhang S W,Xia X H,Xia N,et al.Identification and biodegradation efficiency of a newly isolated 2,2′,4,4′-tetrabromodiphenyl ether(BDE-47)aerobic degrading bacterial strain.International Biodeterioration&Biodegradation,2013,76:24-31.
[18] Yang Y Y,Li Z L,Wang G,et al.Computational identification and analysis of the key biosorbent characteristics for the biosorption process of reactive black 5 onto fungal biomass.PLoS ONE,2012,7(3):33551.
Isolation and characterization of diphenyl ether degrading bacterium Sphingomonas sp.DZ-3. Journal of Zhejiang University(Agric.&Life Sci.),2015,41(1):1 6
Feng Zhuo,Wang Sheng,Bai Naling,Zhao Yuhua*(Institute of Microbiology,College of Life Sciences, Zhejiang University,Hangzhou 310058,China)
diphenyl ether;degradation bacterium;degradation percentage;soil remediation
10.3785/j.issn.1008-9209.2014.02.191
國(guó)家自然科學(xué)基金資助項(xiàng)目(31070079).
趙宇華,E-mail:yhzhao225@zju.edu.cn
聯(lián)系方式:馮琢,E-mail:fengzhuo2007@163.com
2014 02 19;接受日期(Accepted):2014 03 14;
日期(Published online):2015 01 19 URL:http://www.cnki.net/kcms/detail/33.1247.S.20150119.1647.001.html
Q 939.99
A
浙江大學(xué)學(xué)報(bào)(農(nóng)業(yè)與生命科學(xué)版)2015年1期