田永峰,侯宏衛(wèi),張小濤,劉勇,胡清源,王安
1 中國科學(xué)院安徽光學(xué)精密機(jī) 械研究所,合肥 230031;
2 國家煙草質(zhì)量監(jiān)督檢驗中心,鄭州高新區(qū)楓楊街2號 450001
綜述
DNA烷基化損傷及其修復(fù)研究進(jìn)展
田永峰1,2,侯宏衛(wèi)2,張小濤1,2,劉勇1,胡清源2,王安1
1 中國科學(xué)院安徽光學(xué)精密機(jī) 械研究所,合肥 230031;
2 國家煙草質(zhì)量監(jiān)督檢驗中心,鄭州高新區(qū)楓楊街2號 450001
DNA的烷基化損傷可導(dǎo)致復(fù)制過程中的錯配,被認(rèn)為是引起基因突變及相關(guān)疾病的原因。烷基化DNA加合物是重要的DNA烷基化損傷產(chǎn)物。本文介紹了DNA烷基化損傷的修復(fù)機(jī)制以及產(chǎn)物;綜述了烷化類損傷試劑,及其作用于細(xì)胞產(chǎn)生烷基化DNA加合物的機(jī)理;討論了烷化類DNA加合 物與吸煙之間的關(guān)系;綜述了烷化類D NA加合物的檢測方法;展望了烷基化DNA加合物的研究方向及作為烷基化損傷標(biāo)志物的研究前景。
DNA烷基化損傷;烷基化DNA加合物;DNA烷基化損傷修復(fù)
DNA是生命的遺傳物質(zhì)。環(huán)境中存在的輻射,內(nèi)源物質(zhì)和外源物質(zhì)這些都可以導(dǎo)致DNA的烷基化損傷(DNA中引入烷基的反應(yīng),如甲基、乙基等),如環(huán)境中的亞硝酸鹽(亞硝基脲,亞硝基胍,煙草中特有的亞硝胺),抗癌藥物鏈脲霉素、替莫唑胺等[1]。烷化劑與DNA堿基主要的反應(yīng)位點有鳥嘌呤的N3、O6、N7位,腺嘌呤的N1、N3、N7位,胸腺嘧啶 /尿嘧啶的 O2、O4、N3位和胞嘧啶的O2、N3位,分別形成烷基化鳥嘌呤(N3-alkylguanines;N7-alkylguanines;O6-alkylguanines)、烷基化腺嘌呤(N1-alkyladenines;N3-alkyladenines;N7-alkyladenines)、烷基化胸腺嘧啶(O2-alkylthymines;O4-alkylthymines;N3-alkylthymines)和烷基化胞嘧啶(O2-alkylcytosines;N3-alkylcytosines)[2-4](圖1)。這些烷基化的堿基在DNA復(fù)制的過程中可使基因所攜帶的遺傳信息發(fā)生改變,這可能是引起相關(guān)疾病的原因。
圖1 烷化類DNA加合物[5]Fig.1 Alkylation DNA adducts
環(huán)境中存在大量的烷化劑,有代謝過程中產(chǎn)生的體內(nèi)烷化劑,也有環(huán)境、食物、飲用水等中存在的外部烷化劑。烷化類試劑在生物體內(nèi)活化同時產(chǎn)生烷基自由基,烷基自由基可以和DNA堿基的氧原子和氮原子發(fā)生反應(yīng)生成烷基化DNA加合物。DNA的烷基化過程是由烷化劑、DNA/RNA的空間結(jié)構(gòu)以及堿基在DNA/RNA的雙鏈、單鏈中的位置等因素共同作用決定的[6-9]。烷化劑的誘變機(jī)制分為單分子的SN1機(jī)制和雙分子作用的SN2機(jī)制,典型SN1機(jī)制烷化劑為N-甲基-N-亞硝基脲(N-methyl-N-nitrosourea, MNU),SN2機(jī)制的代表烷化劑為甲烷磺酸甲酯(methyl methanesulfonate,MMS)。SN1機(jī)制作用下的烷化類試劑在誘導(dǎo)DNA堿基發(fā)生烷基化的過程 中作用于堿基中的氮原子和氧原子,形成O-烷基化加合物(O-alkylations)和N-烷基化加合物(N-alkylations)。SN2作用機(jī)制的烷基化類試劑則作用于堿基上的氮原子,生成N-alkylations。堿基中氧原子位置形成的烷基化堿基既有基因毒性又有突變性。如O-alkylations具有很強(qiáng)的致突變性和基因毒性。而氮原子位置形成的N-alkylations則具有很強(qiáng)的細(xì)胞毒性,但是致突變性較低。如細(xì)胞發(fā)生烷化類的DNA損傷時,可檢測到N7-烷化鳥嘌呤(N7-alkylguanine),其本身是無毒害作用的,但是由于在DNA的序列中鳥嘌呤發(fā)生了烷基化,在脫烷基化修復(fù)的過程中,則產(chǎn)生了很多具有細(xì)胞毒性的位點[10-12]。
卷煙煙氣中特有亞硝胺NNK等可以通過主流煙氣進(jìn)入吸煙者體內(nèi)。在細(xì)胞色素酶P450參與下,NNK會發(fā)生α位的羥基化,羥基化會導(dǎo)致NNK中的甲基亞硝基成為活性基團(tuán)并釋放出烷基自由基。吸煙者接觸的烷基自由基包括:卷煙主流煙氣中的烷基自由基、NNK在生物體內(nèi)代謝活化產(chǎn)生的烷基自由基、日常飲食及環(huán)境中包含的烷基自由基。這些烷基自由基可與DNA堿基發(fā)生反應(yīng)生成烷化類的DNA加合物。卷煙煙氣中NNK與吸煙者體內(nèi)的烷基化DNA加合物關(guān)系如圖2所示[13-15]。為評估煙氣中烷化類試劑暴露導(dǎo)致的烷化類損傷風(fēng)險,烷化類的DNA加合物就成為了潛在的很好的生物標(biāo)志物。此外,烷基化DNA加合物與烷化劑的關(guān)系也需要更進(jìn)一步研究,特別是卷煙煙氣中存在的特有亞硝胺以復(fù)雜體系的形式與生物體接觸。對于復(fù)雜體系中的烷化劑對于細(xì)胞的作用目前還存在爭議,需深入研究。同時在烷基化DNA加合物參與的DNA復(fù)制中產(chǎn)生的無嘌呤位點,以及DNA糖基化酶修復(fù)烷基化DNA加合物后產(chǎn)生的無嘌呤位點的致突變性和細(xì)胞毒性也需要深入研究。
圖2 卷煙煙氣中NNK誘導(dǎo)DNA烷基化Fig.2 NNK-induced DNA alkylation in the smoke
DNA烷基化損傷的主要產(chǎn)物是O6-甲基鳥嘌呤(O6-MeG),N3-甲基腺嘌呤(N3-MeA),N7-甲基鳥嘌呤(N7-MeG)。O6-MeG具有致突變性和細(xì)胞毒性,又是烷基化損傷中產(chǎn)生的主要加合物,因此得到廣泛研究[16]。N3-MeA的體內(nèi)含量低于O6-MeG,每天大約會產(chǎn)生600個[17]。N3-MeA的致突變性較低,但是可以阻止DNA的復(fù)制,因此具有較強(qiáng)的細(xì)胞毒性[18]。鳥嘌呤的N7原子是所有的堿基中最容易發(fā)生化學(xué)反應(yīng)的位點,極易與烷化劑發(fā)生反應(yīng)生成N7-MeG[19]。當(dāng)DNA暴露于環(huán)境中烷化劑時,SN1機(jī)制試劑有67%的幾率;SN2機(jī)制試劑有82%的幾率與鳥嘌呤的N7位發(fā)生反應(yīng)生成N7-MeG[20]。人類DNA每天大約可以產(chǎn)生4000個N7-MeG[17]。N7-MeG沒有明顯的致突變性和細(xì)胞毒性。但是N7-MeG會影響DNA復(fù)制過程中的N7原子位置的氫鍵形成,從而在復(fù)制過程中造成了無嘌呤位點[21]。
Loechler等在研究單鏈DNA M13mp8中的O6-MeG發(fā)現(xiàn)其主要的致突變性是在DNA復(fù)制過程中可導(dǎo)致G-A的突變[22]。在對M13mp7基因的研究中發(fā)現(xiàn),不同的修復(fù)機(jī)制作用下,O6-MeG可導(dǎo)致大腸桿菌發(fā)生10%-100%的突變[23]。Ziegel等利用NNK對人類原癌基因K-ras進(jìn)行暴露,檢測到烷基化DNA加合物7-甲基鳥嘌呤(N7-MeG);O6-甲基脫氧鳥嘌呤(O6-MedG);O6-吡啶基脫氧鳥嘌呤(O6-POBdG)。并發(fā)現(xiàn)在K-ras基因鳥嘌呤的G3-G8位點上均可以發(fā)生烷基化,G5位點發(fā)生烷基化的概率要遠(yuǎn)遠(yuǎn)高于理論值。為研究DNA烷化類損傷與癌癥的關(guān)系提供支持[24]。Cloutier 等利用煙氣中特有亞硝胺4-(甲基亞硝胺基)-1-(3-吡啶)-1-丁酮(NNK)的前體物質(zhì)4-(乙?;u基甲酯)-1-(3-吡啶)-1-丁酮(NNKOAc)對大腸桿菌進(jìn)行暴露,檢測到五種烷基化鳥嘌呤,但未檢測到3-烷化腺嘌呤[25]。Hu等對吸煙者和非吸煙者體內(nèi)白細(xì)胞中的N3-MeA,N7-MeG,8-羥基脫氧鳥苷,5-甲基胞嘧啶等標(biāo)志物進(jìn)行檢測分析,發(fā)現(xiàn)N3-MeA和吸煙的生物標(biāo)志物可替寧具有較強(qiáng)相關(guān)(r= 0.49),而對于N7-MeG的研究中卻未發(fā)現(xiàn)與可替寧有強(qiáng)相關(guān)(r= 0.16)[26]。Mitchell 等利用亞硝基胍對人類TK6細(xì)胞進(jìn)行暴露,對提取的DNA進(jìn)行檢測,發(fā)現(xiàn)含有N3-MeA,N7-MeG[11]。Thorne等將培養(yǎng)的NCI-H292人肺癌細(xì)胞暴露于主流煙氣,利用彗星實驗檢測到大量的細(xì)胞的損傷和氧化損傷的DNA,但是未檢測到烷化類損傷的DNA[27]。
Kopplin 等利用同位素內(nèi)標(biāo)結(jié)合高效液相色譜法(HPLC-UV),研究了5名吸煙者和5名非吸煙者尿液中3-甲基腺嘌呤(N3-MeA)和3-乙基腺嘌呤(N3-EtA),發(fā)現(xiàn)吸煙可導(dǎo)致尿液中的N3-MeA升高(吸煙者:13.6-14.8 μg/24 h,非吸煙者:4.7-6.2μg/24 h,P< 0.01);尿液中的N3-EtA吸煙者比非吸煙者高5倍(吸煙者:119.3-138.5 ng/24 h,非吸煙者13.7-32.8 ng/24 h)。通過進(jìn)一步考察吸煙者的飲食,發(fā)現(xiàn)飲食對于志愿者體內(nèi)N3-MeA影響較大,結(jié)論認(rèn)為吸煙對體內(nèi)N3-EtA含量有影響。但是對于中國男性吸煙者的調(diào)查中卻沒有發(fā)現(xiàn)這個規(guī)律[28]。英國國際癌癥研究中心的Prevost 等對4名吸煙者尿液中N3-MeA、N 3-EtA、N3-羥乙基腺嘌呤(N3-HOEtA)進(jìn)行了研究,發(fā)現(xiàn)尿液中的N3-EtA釋放量與抽吸卷煙數(shù)量和尿液中的可替寧含量高度相關(guān)(抽吸卷煙數(shù)量:r= 0.86,P< 0.01; 尿液中的可替寧含量:r=0.60,P< 0.01);而輕度吸煙者(<17 支/天)尿液中的N3-MeA區(qū)別不大,但中等吸煙者(10-32 支/天)尿液中的N3-MeA吸煙期間比不吸煙期間顯著高,然而對于飲食控制人群,即使是低水平(< 11 支/天)的抽吸卷煙數(shù)量尿液中的3-烷化腺嘌呤也是隨著卷煙數(shù)量的增加而增加的。得出結(jié)論吸煙可以導(dǎo)致體內(nèi)N3-MeA和N3-EtA升高。但是未發(fā)現(xiàn)對N3-HOEtA有影響[29]。2006年,菲利浦莫里斯(Philip Morris Companies Inc.)美國研究中心,F(xiàn)eng 等利用LC-MSMS法對吸煙者尿液中1-羥基芘,N3-MeA,N3-EtA,8-羥基脫氧鳥苷等進(jìn)行檢測。結(jié)論認(rèn)為N3-MeA只是在傳統(tǒng)卷煙和不吸煙者之間有差別,而低焦卷煙中并未發(fā)現(xiàn)差別,N3-EtA的檢測結(jié)果則出現(xiàn)了矛盾性,吸煙后尿液中的N3-EtA比吸煙前還要低[30],其可能的原因是N3-EtA的生物半減期較短,導(dǎo)致了吸煙者體內(nèi)的N3-EeA水平較低。2011年,Hu等利用LC-MSMS法對成年(40歲)吸煙者尿液中N3-MeA,N7-MeG進(jìn)行檢測。結(jié)果發(fā)現(xiàn)N3-MeA/肌酐比值與可替寧/肌酐比值存在相關(guān)性,相關(guān)系數(shù)0.69,而N7-MeG相關(guān)性不明顯,由此認(rèn)為N3-MeA是與吸煙相關(guān)的標(biāo)志物[31]。
可見,烷化類DNA加合物是煙氣暴露引起DNA烷基化損傷的重要生物標(biāo)志物,但是體內(nèi)的烷基化DNA加合物水平同樣受飲食、環(huán)境接觸等影響,所以有必要對烷基化腺嘌呤進(jìn)行深入研究,系統(tǒng)建立評估生物體內(nèi)烷化類DNA加合物的方法,用來評估環(huán)境中烷化劑暴露,尤其是煙氣中的烷化劑對吸煙者體內(nèi)烷化類腺嘌呤種類及含量水平產(chǎn)生的影響。
烷基化DNA加合物在3-甲基DNA烷基糖基化酶(AAG);3-甲基腺嘌呤DNA糖基化酶Ι(TAG);N-甲基嘌呤DNA糖基化酶(MPG)等的作用下,通過堿基切除修復(fù)(BER)機(jī)制和核酸切除修復(fù)機(jī)制(NER)進(jìn)行修復(fù),通過機(jī)體自身的脫堿基作用或者在糖基酶的作用下通過堿基切除修復(fù)機(jī)制從核苷酸鏈上切除并隨尿液排出體外[32-34]。細(xì)胞內(nèi)每天會發(fā)生20000個DNA片段的損傷,這些損傷都需要靠體內(nèi)的修復(fù)機(jī)制進(jìn)行修復(fù)。對于烷化類DNA加合物修復(fù)機(jī)制的研究表明,體內(nèi)對于烷化類DNA加合物的低修復(fù)水平可導(dǎo)致患癌癥的風(fēng)險增加[35]。
因此檢測吸煙人群尿液中烷基化DNA加合物作為研究卷煙煙氣暴露導(dǎo)致的吸煙者體內(nèi)烷化類損傷的非創(chuàng)傷性目標(biāo)物,可用來評估體內(nèi)DNA受到的烷基化損傷程度及可能的癌癥風(fēng)險。
尿液中3-alkAde檢測方法通常采用GC-MS法,如Prevost等人利用GC-MS法檢測了尿液中3-烷化腺嘌呤[36]和吸煙者體內(nèi)N3-MeA、N3-EtA[29]。該方法具有分離效率高、分析速度快等特點,但前處理繁瑣,需要化學(xué)衍生化,靈敏度低,不能對3-烷化腺嘌呤直接定量分析等缺點。檢測前需要對烷基化DNA加合物進(jìn)行化學(xué)衍生化,增加了分析結(jié)果的不準(zhǔn)確性。衍生化是利用特定的衍生化試劑與化合物之間發(fā)生化學(xué)反應(yīng)使反應(yīng)后的化合物與原化合物結(jié)構(gòu)類似[37],目的是要把難于分析的物質(zhì)轉(zhuǎn)化為與其化學(xué)結(jié)構(gòu)相似易于分析的物質(zhì)[38-40],由于溶解度、沸點、熔點、聚集態(tài)或化學(xué)成分與原化合物不同[41],衍生化過程中帶來的樣品損失難以準(zhǔn)確定量,因此應(yīng)用此法同時分析兩種或以上烷基化DNA加合物并不理想。
32P標(biāo)記法—免疫親和性層析色譜搭配32P后標(biāo)記技術(shù)(immunoaf finity chromatography/32P-postlabelling technique,IC-32P)是現(xiàn)今檢測DNA加合物最為靈敏的方法,可以檢測到1010分子中含有的一個DNA加合物,而且檢測時只需要30-40μg的DNA樣品。此方法是利用放射性同位素32P標(biāo)記的三磷酸腺苷(ATP)與免疫親和層析柱(immunoaf finity column)純化后的DNA水解產(chǎn)物結(jié)合,產(chǎn)生32P標(biāo)記的DNA加合物。32P標(biāo)記的DNA加和物再經(jīng)過聚乙烯亞胺纖維膜(polyethyleneimine cellulose)純化,通過計算32P放射強(qiáng)度,可以得到DNA加合產(chǎn)物的含量[42-46]。
1982年,Gupta等[47]首次應(yīng)用此法檢測DNA中的多環(huán)芳烴,芳基胺和無放射性芳基胺,此法在當(dāng)時用于檢測大量的DNA加合物中的少量致癌物,并且這些致癌物既無放射性也沒有特異性抗體。此后IC-32P就成為研究者研究有機(jī)體DNA損傷,檢測致癌物的最靈敏方法。其檢測的靈敏度可達(dá)到從109的數(shù)量級的分子中檢測0-27個標(biāo)志物[48]。1999年,Plan 等利用32P標(biāo)記法,N7-MeG,1-羥丙基腺嘌呤等標(biāo)志物,檢出限達(dá)到0.3mol/109mol,檢測所需樣品10μg DNA[49]。
32P標(biāo)記法雖然十分靈敏,且儀器簡單,但步驟繁瑣,在免疫親和層析柱富集純化樣品的過程中會有微量的DNA樣品的損失,并且缺乏適當(dāng)?shù)膬?nèi)標(biāo)準(zhǔn)物來準(zhǔn)確定量。采用的不是標(biāo)準(zhǔn)化的儀器分析,在分析大量的生物樣品的時候,人工操作對檢測結(jié)果的影響不能忽視,并且在使用不同親和性小柱的回收率會影響方法回收率。
為了提高靈敏度和專一性,Tavazzi等[50]采用HPLC-UV檢測尿液中的N3-MeA,檢出限為0.05μM。隨著儀器的發(fā)展,由于液相色譜-串聯(lián)質(zhì)譜法(LC-MS/MS)高選擇性與靈敏度,前處理過程簡單,可同時檢測多種目標(biāo)物等優(yōu)點在烷基化DNA加合物的檢測分析過程中得到應(yīng)用。LC-MS/MS用于同時測定尿液中的N3-MeA和N3-EtA,方法的檢出限為 2.0 pg/mL,但所需樣品體積大(50mL)[30]; Hu等[26]采用柱轉(zhuǎn)換方法伴隨在線固相萃取LC-MS/MS方法對尿液中的N3-MeA進(jìn)行了測定,減少了樣品的用量,進(jìn)樣量只需20 μL尿液,運(yùn)行時間12 min,檢出限為0.035 ng/mL。
綜上所述,建立LC-MS/MS法同時檢測多種烷基化DNA加合物的方法是當(dāng)前研究烷基化DNA加合物的難點。由于烷基化DNA加合物種類繁多,體液基質(zhì)復(fù)雜,烷基化DNA加合物含量低,生物半減期短,且具有較強(qiáng)的親水性。因此目前商品化的C18柱對烷基化DNA加合物的分析并不是很適合。選擇合適的極性色譜柱,配合分析靈敏度高且快速準(zhǔn)確定量的三重四級桿質(zhì)譜系統(tǒng),建立同時分析多種烷基化DNA加合物的方法需要進(jìn)行深入研究。
烷基化DNA加合物在體內(nèi)的含量很低,所以研究準(zhǔn)確定量烷基化DNA加合物的檢測方法將是今后發(fā)展的重要方向。一方面,隨著近年來串聯(lián)質(zhì)譜與高效液相色譜技術(shù)聯(lián)用技術(shù)的突破,利用LC-MS/MS技術(shù)同時檢測多個烷基化DNA加合物的研究必將成為研究熱點。另一方面,外源物質(zhì)導(dǎo)致體內(nèi)烷基化DNA加合物的產(chǎn)生的關(guān)聯(lián)性以及產(chǎn)生烷基化DNA加合物的種類還需要深入地研究,目前外源物質(zhì)導(dǎo)致的DNA烷基化損傷機(jī)理的研究不夠全面,因此找到可以很好的評價DNA烷基化損傷程度的烷基化DNA標(biāo)志物具有重要意義。目前的研究由于樣本量小,結(jié)論存在分歧。另外,由于烷基化DNA加合物在尿液中的含量低,并且受到環(huán)境飲食等因素干擾,目前亟需建立一種簡便、富集效率高、選擇性好的可以同時測定尿液中烷化類加合物的方法,同時需要進(jìn)行細(xì)胞,體液等全面研究,從而找出準(zhǔn)確評價DNA烷基化損傷程度的DNA加合物。
[1]Chadt J,Sykora D,Nilsson R,et al.Monitoring of dimethyl sulphate-induced N3-methyladenine,N7-methylguanine and O6-methylguanine DNA adducts using reversed-phase high performance liquid chromatography and mass spectrometry[J].Journal of Chromatography B,2008,867(1):43-48.
[2]Shooter K V,Howse R,Shah S A,et al.The molecular basis for biological inactivation of nucleic acids.The action of methylating agents on the ribonucleic acid-containing bacteriophage R17 [J].Biochem J,1974,137(2):303-312.
[3]Beranek D T.Distribution of methyl and ethyl adducts following alkylation with monofunctional alkylating agents[J].Mutat Res,1990,231(1):11-30.
[4]Engelward B P,Allan J M,Dreslin A J,et al.chemical and genetic approach together define the biological consequences of 3-methyladenine lesions in the mammalian genome [J].J Biol Chem,1998,273(9):5412-5418.
[5]Shrivastav N,Essigmann J M.Chemical biology of mutagenesis and DNA repair:cellular responses to DNA alkylation [J].Carcinogenesis,2010,31(1):59-70.
[6]Margison G P,Santiba?ez-Koref M F,Povey A C.Mechanisms of carcinogenicity/chemotherapy by O6-methylguanine [J].Mutagenesis,2002,17(6):483-487.
[7]Christmann M,Tomicic M T,Roos W P,et al.Mechanisms of human DNA repair:an update[J].Toxicology,2003,193(1):3-34.
[8]Wyatt M D,Allan J M,Lau A Y,et al.3-Methyladenine DNA glycosylases:structure,function,and biological importance [J].Bioessays,1999,21:668-676.
[9]Krokan H E,Standal R,Slupphaug G.DNA glycosylases in the base excision repair of DNA [J].Biochem J,1997,325(1):1-16.
[10]Drablos F,Feyzi E,Aas P A,et al.Alkylation damage in DNA and RNA-repair mechanisms and medical signi ficance[J].DNA Repair.2004,3(11):1389-1407.
[11]Mitchell AT,Ling L L,et al.The Mutational Spectrum of the HPRT Gene from Human T Cells in Vivo Shares a Significant Concordant Set of Hot Spots with MNNG-treated Human Cells [J].Cancer Research,2003,63:5793-5798.
[12]Chaudhuri I,Essigmann J M.3-Methyladenine mutagenesis under conditions of SOS induction in Escherichia coli [J].Carcinogenesis,1991,12:2283-2289.
[13]Wang M,Cheng G,Sturla S J,et al.Identification of adducts formed by pyridyloxobutylation of deoxyguanosine and DNA by 4-(acetoxymethylnitrosamino)-1-(3-pyridyl)-1-butanone,a chemi-cally activated form of tobacco speci fic carcinogens [J].Chem Res Toxicol,2003,16:616-626.
[14]Hecht S S,Villalta P W,Sturla S J,et al.Identi fication of O2-substituted pyrimidineadducts formed in reactions of 4-(acetoxymethylnitrosamino)-1-(3-pyridyl)-1-butanone and 4-(acetoxymethylnitros- amino)-1-(3-pyridyl)-1-butanol with DNA [J].Chem Res Toxicol,2004,17(5):588-597.
[15]Sturla S J,Scott J,Lao Y.Mass spectrometric analysis of relative levels of pyridyloxobutyla-tion adducts formed in the reaction of DNA with a chem-ically activated form of the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone [J].Chem Res Toxicol,2005,18:1048-1055.
[16]Lindahl T,Sedgwick B,Sekiguchi M.Regulation and Expression of the Adaptive Response to Alkylating Agents[J].Biochemistry,1988,57:133-157.
[17]Rydberg B,Lindahl T.Nonenzymatic methylation of DNAby the intracellular methyl group donor S-adenosyl-L-methionine is a potentially mutagenicreaction [J].The EMBO Journal,1982,1(2):211-216.
[18]Fronza G,Gold B.The biological effects of N3-methyladenine [J].J Cell Biochem,2004,91(2):250-257.
[19]Pullman A,Pullman B.Molecular electrostatic potential of the nucleic acids [J].Q Rev Biophys,1981,14(3):289-380.
[20]Beranek D T.Distribution of methyl and ethyl adducts following alkylation with monofunctional alkylating agents[J].Mutat Res,1990,231(1):11-30.
[21]Saffhill R,Margison G P,O’conner P J.Mechanisms of carcinogenesis induced by alky-lating agents [J].Biochim Biophys Acta,1985,823(2):111-145.
[22]Loechler E L,Green C L,Essigmann J M.In vivo mutagenesis by O6-methylguanine built into a unique site in a viral genome [J].Proc Natl A cad Sci,USA,1984,81(20):6271-6275.
[23]Delaney J C,Essigmann J M.Effect of sequence context on O6-methylgua-nine repair and replication in vivo [J].Biochemistry,2001,40(49):14968-14975.
[24]Ziegel R,Shallop A,Jones R,et al.K-ras gene sequence effects on the formation of 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-DNA adducts [J].Chem.Res.Toxicol.,2003,16(4):541-550.
[25]Cloutier J F,Drouin R,Weinfeld M,et al.Characterization and mapping of DNA damage induced by reactive metabolites of 4-(methylnitrosamino) -1-(3-pyridyl)-1-butanone at Nucleotide Resolution in Human Genomic DNA [J].J Mol Biol,2001,313:539-557.
[26]Hu W C,Liu H H,et al.Direct analysis of 5-Methylcytosine and 5-Methyl-2’ -deoxycytidine in human urine by Isotope Dilution LC-MS/MS:correlations with N-Methylated purines and oxidized DNA lesions [J].Chemical Research in Toxicology,2012,25:462-470.
[27]Thorne D,Wilson J,Kumaravel T S,et al.Measurement of oxidative DNA damage induced by mainstream cigarette smoke in cultured NCI-H292 human pulmonary carcinoma cells [J].Mutation Research,2009,673(1):3-8.
[28]Kopplin A,Eberle-Adamkiewicz G,Gliisenkamp K H,et al.Urinary excretion of 3-methyladenine and 3-ethyladenine after controlled exposure to tobacco smoke[J].Cardnogenesis,1995,16(11):2637-2641.
[29]Prevost V,Shuker D G.Cigatette smoking and urinary 3-Alkyladenine excertion in man [J].Chen Res Toxicol,1996,9(2):439-444.
[30]Feng S,Roethig H J,Liang Q,et al.Evaluation of urinary 1-hydroxypyrene,S-phenylmercapturic acid,trans,transmuconic acid,3-methyladenine,3-ethyladenine,8-hydroxy-2’-deoxyguanosine and thioethers biomarkers of exposure to cigarette smoke [J].Biomarkers,2006,11(1):28-52.
[31]Hu C W,Lin B H,Chao M R.Quantitative determination of urinary N3-methyladenine by isotope-dilution LC-MS/MS with automated solid-phase extraction [J].International Journal of Mass Spectrometry,2011,304(2):68-73.
[32]Hecht S S,Progress and challenges in selected areas of tobacco carcinogenesis [J].Chem Res Toxicol,2008,21(1):160-171.
[33]Metz A H,Hollis T,Eichman B F.DNA damage recognition and repair by 3-methyladenine DNA glycosylase I (TAG)[J].The EMBO Journal,2007,26:2411-2420.
[34]Yong L C,Schulte P A,Kao C Y,et al.DNA adducts in granulocytes of hospital workers exposed to ethylene oxide[J].American Journal of Industrial Medicine,2007,50(4):293-302.
[35]Wei Q Y,Cheng L,Amos C I,et al.Repair of tobacco carcinogen-induced DNA adducts and lung cancer risk:a molecular epidemiologic study [J].Journal of The National Cancer Institute,2000,92(21):1764-1772
[36]Prevost V,Shuker D G,Friesen M D,et al.Immunoaf finity purification and gas chromatography-mass spectrometric quantification of 3-alkyladenines in urine:metabolism studies and basal excretion levels in man [J].Carcinogenesis,1993,14(2):199-204.
[37]Glowachi R,Borowczyk K,et al.On-column derivatization with o-phthaldialdehyde for fast determination of homocysteine in human urine [J].Analytical and Bioanalytical Chemistry,2007,396:2363-2366.
[38]Fattiahi N,Assadi Y,Hosseini M R.Determination of chlorophenols in water samples using simultaneous dispersive liquid-liquid microextraction and derivatization followed by gas chromatography-electron-capture detection[J].Journal of Chromatography A,2007,1157(1):23-29.
[39]Leo F,Asakuma S,Fukuda K.Determination of sialyl and neutral oligosaccharide levels in transition and mature milks of samoan women,using anthranilic derivatization followed by reverse phase high performance liquid chromatography[J].Bioscience,Biotechnology,and Biochemistry,2010,74(2):298-303.
[40]Chiang J S,Huang S D.Simultaneous derivatization and extraction of anilines in waste water with dispersive liquidliquid microextraction followed by gas chromatographymass spectrometric detection [J].Talanta,2008,75(1):70-75.
[41]Mahmoud A M,Bergren A J,McCreery R L.Derivatization of optically transparent materials with diazonium reagents for spectroscopy of buried interfaces [J].Analytical chemistry,2009,81(16):6972-6980.
[42]Nair J,Barbin A,Guichard Y,et al.1,N6-Ethenodeoxyadenosine and 3,N4-ethenodeoxy- cytidine in liver DNA from humans and untreated rodents detected by immunoaffinity/32P-postlabelling [J].Carcinogenesis,1995,16:613-617.
[43]Sun X,karlsson A,bartsch H,et al.New ultrasensitive 32P-postlabelling method for the analysis of 3,N4-etheno-2′-deoxycytidine in human urine [J].Biomarkers,2006,11:329-340.
[44]Winter C,Segall H,Haddon W.Formation of Cyclic Adducts of Deoxyguanosine with the Aldehydes trans-4-Hydroxy-2-hexenal and trans-4-Hydroxy-2-nonenal in vivo[J].Cancer Research,1986,46:56-82.
[45]Nair J,Gansauge F,beger H,et al.Increased etheno-DNA adducts in affected tissues of patients suffering from Crohn’s Disease,Ulcerative Colitis,and Chronic Pancreatitis [J].Antioxidants and Redox Signaling,2006,8(5):1003-1010.
[46]Fernando R C,Nair J,Barbin A,et al.Detection of 1,N6-ethenodeoxyadenosine and 3,N4-ethenodeoxycytidine by immunoaffinity/32P-post-labelling in liver and lung DNA of mice treated with ethylcarbamate (urethane) or its metabolites [J].Carcinogenesis,1996,17(8):1711-1718.
[47]Gupta R,Reddy M.32P-postlabeling analysis of nonradioactive aromatic carcinogen — DNA adducts [J].Carcinogenesis,1982,3 (9):1081-1092.
[48]Oesch F,Adler S,Rettelbach R,et al.Repair of etheno DNA adducts by N-glycosylases [J].IARC Sci Publ,1986,70:373-379.
[49]Plan K,Nilsson R,et al.32P-postlabelling of propylene oxide 1- and N6-substituted adenine and 3-substituted cytosine/uracil:formation and persistence in vitro and in vivo [J].Carcinogenesis,1999,(20)10:2025-2032.
[50]Tavazzi B,Lazzarino G,Leone P,et al.Simultaneous high performance liquid chromatographic separation of purines,pyrimidines,N-acetylated amino acids,and dicarboxylic acids for the chemical diagnosis of inborn errors of metabolism [J].Clinical Biochemistry,2005,38(11):997-1008.
Research advances in DNA alkylation damage and repair
TIAN Yongfeng1,2,HOU Hongwei2,ZHANG Xiaotao1,2,LIU Yong1,HU Qingyuan2,WANG An1
1 Anhui Institutes of Optics and Fine Mechanics,Chinese Academy of Science,Hefei 230031,China;
2 China National Tobacco Quality Supervision and Test Center,Zhengzhou 450001,China
The fact that DNA alkylation damage might lead to mismatch in replication was considered as cause of g ene mutation and other relevant disease.The variety of DNA alkylation damage,repair mec hanisms and its products,the generative mechanism in vivo and analytical method of alkylation DNA adducts were reviewed.Current analytical methods of alkylation DNA adducts include Immunoaf finity Chromatography/32P-postlabelling technique (IC-32P),Gas Chromatogeraph-Mass Spectrometer (GC-MS) and Liquid Chromatography-tandem Mass Spectrometer (LC-MS/MS).IC-32P had excellent performance on sensibility,but it took many complicated steps in determining alkylation DNA adducts.The sample usually cost more in the method of GC-MS during pre-handling process as derivatization is needed; LC-MS/MS method offered many practical advantages in pre-handling such as stability,selectivity and sensibility,which can enhance the ef ficiency of sample analysis.As biomarkers of DNA alkylation damage,alkylation DNA adducts played a signi ficant role in risk evaluation of alkylation reagents.
DNA alkylation damage; DNA adducts; repair of DNA alkylation damage
10.3969/j.issn.1004-5708.2014.01.018
TS416
A
1004-5708(2014)01-0096-07
田永峰(1982—),博士研究生,研究方向為煙草化學(xué)和生物標(biāo)志物,Email:yongfengtian@126.com
胡清源,研究員,研究方向為煙草化學(xué)和生物標(biāo)志物,Email:huqy@ztri.com.cn王安,研究員,研究方向為環(huán)境監(jiān)測光纖傳感技術(shù),Email:wangan@aiofm.ac.cn
2012-07-03