郝孟楠 梁小麗 張益
摘要:腹側(cè)被蓋區(qū)(VTA)與內(nèi)側(cè)前額葉皮層(mPFC)之間存在相互神經(jīng)投射,并形成環(huán)路,近年來(lái)的研究顯示該環(huán)路在睡眠與全身麻醉的覺(jué)醒調(diào)控中發(fā)揮著重要的作用。本文通過(guò)對(duì)VTA與mPFC的解剖結(jié)構(gòu)、二者中的各種神經(jīng)元及投射通路在覺(jué)醒調(diào)控過(guò)程中的作用進(jìn)行綜述,期望為睡眠覺(jué)醒與全身麻醉機(jī)制研究提供新的思路。
關(guān)鍵詞:中腦腹側(cè)被蓋區(qū);內(nèi)側(cè)前額葉皮層;神經(jīng)環(huán)路;覺(jué)醒
中圖分類號(hào): R614? 文獻(xiàn)標(biāo)識(shí)碼: A? 文章編號(hào):1000-503X(2024)03-0402-07
DOI:10.3881/j.issn.1000-503X.15693
Research Progress in the Role of the Ventral Tegmental Area-Medial Prefrontal Cortex Neural Circuit in the Regulation of Arousal
HAO Mengnan 2,LIANG Xiaoli3,ZHANG Yi 2
1Department of Anesthesiology,The Second Affiliated Hospital of Zunyi Medical University,Zunyi,Guizhou 563000,China
2Guizhou Key Laboratory of Anesthesia and Organ Protection,Zunyi Medical University,Zunyi,Guizhou 563000,China
3School of Anesthesiology,Zunyi Medical University,Zunyi,Guizhou 563000,China
Corresponding author:ZHANG Yi Tel:15329716676,E-mail:cherishher1998@126.com
ABSTRACT:There are mutual neural projections between the ventral tegmental area (VTA) and the medial prefrontal cortex (mPFC),which form a circuit.Recent studies have shown that this circuit is vital in regulating arousal from sleep and general anesthesia.This paper introduces the anatomical structures of VTA and mPFC and the roles of various neurons and projection pathways in the regulation of arousal,aiming to provide new ideas for further research on the mechanism of arousal from sleep and general anesthesia.
Key words:ventral tegmental area;medial prefrontal cortex;neural circuit;arousal
Acta Acad Med Sin,2024,46(3):402-408
腹側(cè)被蓋區(qū)(ventral tegmental area,VTA)是中腦內(nèi)主要的多巴胺能促覺(jué)醒核團(tuán)之一,參與動(dòng)機(jī)與獎(jiǎng)賞、焦慮、記憶、成癮以及睡眠等生理行為過(guò)程[1-4]。內(nèi)側(cè)前額葉皮層(medial prefrontal cortex,mPFC)不僅在情緒調(diào)節(jié)、社交、動(dòng)機(jī)、獎(jiǎng)賞、記憶、決策等行為調(diào)控中發(fā)揮重要的作用,還與睡眠期間的意識(shí)狀態(tài)改變密切相關(guān)[5-9]。mPFC是VTA投射的重要靶區(qū)之一,二者之間通過(guò)不同類型的投射通路相互影響,進(jìn)而調(diào)節(jié)睡眠-覺(jué)醒過(guò)程。近年來(lái),有關(guān)全身麻醉機(jī)制多項(xiàng)研究的結(jié)果顯示,麻醉藥物通過(guò)VTA-mPFC環(huán)路可調(diào)控意識(shí)的消失和恢復(fù)過(guò)程。因此,本文對(duì)VTA和mPFC之間的神經(jīng)環(huán)路及其在睡眠覺(jué)醒與全身麻醉過(guò)程中的作用和機(jī)制研究進(jìn)行綜述。
1 VTA-mPFC環(huán)路的結(jié)構(gòu)解剖
VTA位于中腦腹側(cè)紅核區(qū)中間,是一個(gè)由高度異質(zhì)性細(xì)胞成分組成的腦區(qū),其中50%~60%為多巴胺能神經(jīng)元,約30%為γ-氨基丁酸(gamma-aminobutyric acid,GABA)能神經(jīng)元,約5%為谷氨酸能神經(jīng)元,以及一些釋放一種以上神經(jīng)遞質(zhì)的組合神經(jīng)元。VTA主要分為以下幾個(gè)部分:外側(cè)臂旁色素核、吻側(cè)黑質(zhì)旁核、吻側(cè)線狀核、內(nèi)側(cè)束間核、尾側(cè)線狀核[10]。
VTA接受周圍多個(gè)腦區(qū),如中縫背核、藍(lán)斑、橋腳和背側(cè)被蓋區(qū)、下丘腦等的興奮性和抑制性傳入投射,同時(shí)也發(fā)出兩條主要的傳出通路,一條為中腦邊緣通路,投射至伏隔核、杏仁核和海馬,另一條中腦皮層通路則投射至前額葉皮層[11]。
mPFC位于前額葉皮層的內(nèi)側(cè),靈長(zhǎng)類動(dòng)物的mPFC可分為腹mPFC(ventral-mPFC,vmPFC)和背mPFC(dorsal-mPFC,dmPFC),目前的研究結(jié)果表明嚙齒類動(dòng)物與靈長(zhǎng)類動(dòng)物的mPFC在解剖和功能連接上具有同源性,根據(jù)細(xì)胞構(gòu)筑的不同,將其劃分為邊緣下皮質(zhì)、前邊緣皮質(zhì)和前扣帶回三個(gè)部分[12-14]。mPFC是大腦中重要的整合執(zhí)行中樞,與多個(gè)重要腦區(qū)存在廣泛聯(lián)系,主要依靠其神經(jīng)網(wǎng)絡(luò)中約90%的興奮性谷氨酸能神經(jīng)元和約10%的GABA能神經(jīng)元來(lái)發(fā)揮作用,維持神經(jīng)網(wǎng)絡(luò)興奮-抑制平衡的正常功能[10]。
VTA-mPFC環(huán)路存在多種復(fù)雜的神經(jīng)通路聯(lián)系。隨著病毒示蹤技術(shù)的發(fā)展,將熒光標(biāo)記病毒注入目標(biāo)腦區(qū)后,使用熒光顯微鏡對(duì)目標(biāo)神經(jīng)元及其順向/逆向投射通路進(jìn)行觀察,發(fā)現(xiàn)約30%位于內(nèi)側(cè)的多巴胺能神經(jīng)元(以下簡(jiǎn)稱VTADA)可以投射至mPFC,并激活mPFC內(nèi)的局部中間神經(jīng)元,從而抑制mPFC內(nèi)椎體神經(jīng)元活性[1 15-16]。部分在內(nèi)側(cè)中線結(jié)構(gòu)附近的VTA的GABA能神經(jīng)元(以下簡(jiǎn)稱VTAGABA)及VTA谷氨酸能神經(jīng)元(以下簡(jiǎn)稱VTAGlu)也可以投射至mPFC,但其具體下游神經(jīng)元仍不明確[17]。mPFC在接受來(lái)自VTA神經(jīng)投射的同時(shí),也可以反向調(diào)控VTA內(nèi)的部分神經(jīng)元活性,投射至VTA的mPFC神經(jīng)元有50%~60%位于皮層第5b層,35%~40%位于皮層第6層,也有研究結(jié)果提示VTAGABA和VTADA主要接受mPFC的谷氨酸能神經(jīng)輸入[18-19]。
2 VTA-mPFC環(huán)路與覺(jué)醒
2.1 VTA在自然睡眠覺(jué)醒以及全身麻醉致意識(shí)改變中的作用
VTA是大腦中重要的喚醒核團(tuán)之一,并且VTADA在覺(jué)醒調(diào)控中有著重要的作用,早期臨床研究發(fā)現(xiàn),60%~98%的帕金森病患者會(huì)出現(xiàn)VTADA的變性、丟失,表現(xiàn)為睡眠障礙,而多巴胺能藥物的使用可以改善帕金森病患者的睡眠障礙,并具有劑量依賴性,高劑量藥物可以引起睡眠期間覺(jué)醒,低劑量藥物則會(huì)減少覺(jué)醒改善睡眠,這可能是VTADA調(diào)控作用的結(jié)果[20]。在睡眠-覺(jué)醒過(guò)程中,VTADA鈣信號(hào)活性發(fā)生變化,并通過(guò)化學(xué)遺傳學(xué)可控地抑制其活性,增加小鼠快速眼動(dòng)(rapid eye movement,REM)睡眠和非REM睡眠時(shí)間,從而促進(jìn)睡眠,甚至當(dāng)小鼠處于饑餓且被置于食物香味刺激環(huán)境下的興奮狀態(tài)時(shí),抑制VTADA導(dǎo)致的促眠效應(yīng)仍然明顯[21]。相反,光遺傳學(xué)或化學(xué)遺傳學(xué)激活VTADA則可以使小鼠迅速?gòu)姆荝EM睡眠轉(zhuǎn)換為清醒狀態(tài),并且對(duì)處于睡眠剝奪狀態(tài)的小鼠也同樣有著迅速喚醒作用,還可顯著延長(zhǎng)覺(jué)醒時(shí)間,而在激活前應(yīng)用多巴胺受體拮抗劑可阻斷并消除這種促覺(jué)醒效應(yīng)[21-22]。
VTAGlu大多位于VTA吻側(cè)與中線部分,主要表達(dá)泡狀谷氨酸轉(zhuǎn)運(yùn)蛋白2,有小部分VTAGlu可以共釋放多巴胺[23]?;瘜W(xué)遺傳學(xué)和光遺傳學(xué)可選擇性激活VTAGlu,延長(zhǎng)清醒時(shí)間,即便在激活VTAGlu前應(yīng)用多巴胺受體拮抗劑,也對(duì)其促進(jìn)清醒的作用無(wú)明顯影響,而化學(xué)抑制以及損傷VTAGlu后,則會(huì)減少清醒時(shí)間,增加非REM睡眠。熒光鈣信號(hào)記錄變化結(jié)果顯示VTAGlu活性在清醒和REM時(shí)期較高,在非REM睡眠時(shí)期較低。激活VTAGlu至伏隔核以及下丘腦外側(cè)區(qū)(lateral hypothalamic area,LH)的投射通路,也能達(dá)到促進(jìn)清醒的效果[24]。這些結(jié)果表明VTAGlu具有促覺(jué)醒作用,且這種促覺(jué)醒作用獨(dú)立于VTADA存在。
VTAGABA可根據(jù)表達(dá)不同蛋白區(qū)分為表達(dá)泡狀GABA轉(zhuǎn)運(yùn)蛋白或者表達(dá)谷氨酸脫羧酶異構(gòu)體的兩種神經(jīng)元,雖然兩者在睡眠期間的活性不同,但特異性激活這兩種神經(jīng)元均能夠增加非REM睡眠時(shí)間,促進(jìn)睡眠,而特異性抑制則會(huì)增加非REM和REM睡眠潛伏期,維持小鼠的清醒狀態(tài),還能促使面臨高睡眠壓力的小鼠從非REM睡眠中覺(jué)醒[24-25]。此外,VTAGABA可通過(guò)投射直接抑制LH的食欲素能神經(jīng)元,從而產(chǎn)生促眠效應(yīng),也可通過(guò)局部抑制VTADA和VTAGlu促進(jìn)睡眠[24-26]。
研究也發(fā)現(xiàn)VTA中不同神經(jīng)元在全身麻醉導(dǎo)致意識(shí)的改變中同樣扮演著重要的角色。異氟醚麻醉期間,超聲刺激小鼠VTA區(qū)域,可以促使小鼠從異氟醚麻醉中蘇醒,并且能夠使腦外傷小鼠模型也產(chǎn)生覺(jué)醒反應(yīng);應(yīng)用多巴胺受體拮抗劑抑制多巴胺能神經(jīng)通路作用后,則觀察到這種由超聲刺激引起的喚醒反應(yīng)明顯減弱[27]。七氟醚麻醉后的覺(jué)醒期間會(huì)伴隨著VTADA活性增強(qiáng),光遺傳學(xué)進(jìn)一步激活VTADA,可導(dǎo)致小鼠翻正反射消失時(shí)間延長(zhǎng),翻正反射恢復(fù)時(shí)間縮短,且產(chǎn)生相應(yīng)的喚醒行為以及腦電圖變化[28]。VTADA上存在食欲素受體,在異氟醚麻醉期間向VTA注射食欲素A可以直接激活VTADA,降低腦電圖中的爆發(fā)性抑制率,并且促進(jìn)大鼠從麻醉中覺(jué)醒[29]。此外,最近的研究也發(fā)現(xiàn),通過(guò)基因敲除技術(shù)降低VTA中多巴胺轉(zhuǎn)運(yùn)體,使細(xì)胞外多巴胺累積,能夠促進(jìn)大鼠從丙泊酚麻醉中覺(jué)醒[30]。
除了VTADA外,近年來(lái)有研究發(fā)現(xiàn)VTAGABA也能參與全身麻醉意識(shí)調(diào)控的過(guò)程,激活VTAGABA以及向LH的投射通路,不僅增加了小鼠對(duì)異氟醚麻醉藥物的敏感性,還可促進(jìn)小鼠的麻醉誘導(dǎo),增加麻醉深度并延長(zhǎng)小鼠從麻醉中蘇醒的時(shí)間;抑制VTAGABA則產(chǎn)生相反的效果,抑制VTAGABA-LH通路則通過(guò)延長(zhǎng)麻醉時(shí)間而在麻醉誘導(dǎo)過(guò)程起作用[31]。
2.2 mPFC在自然睡眠覺(jué)醒以及全身麻醉致意識(shí)改變中的作用
mPFC是默認(rèn)模式網(wǎng)絡(luò)中的一個(gè)主要區(qū)域,涉及意識(shí)調(diào)控過(guò)程,如對(duì)mPFC進(jìn)行經(jīng)顱聚焦超聲刺激,可以引起腦電頻譜功率發(fā)生變化[32]。有臨床案例報(bào)告顯示,在低意識(shí)狀態(tài)患者的左側(cè)前額葉應(yīng)用經(jīng)顱直流電刺激療法,能夠一定程度上改善患者意識(shí)障礙癥狀,這可能與丘腦皮層與前額葉皮層連接的增加有關(guān)[33-34]。
mPFC可參與睡眠調(diào)節(jié)過(guò)程,誘導(dǎo)發(fā)生不同的活動(dòng)狀態(tài)變化。有研究顯示,在閉眼休息與睡眠期間恒河猴mPFC中的神經(jīng)元放電率顯著增加,在大鼠主動(dòng)睡眠期間也發(fā)現(xiàn)mPFC神經(jīng)活動(dòng)明顯增加[35-36]。mPFC的損傷可影響睡眠覺(jué)醒過(guò)程,腦損傷導(dǎo)致失眠癥患者常有左側(cè)dmPFC的損傷,而直接損傷大鼠的vmPFC和dmPFC神經(jīng)元可以增加REM睡眠,尤其是vmPFC的損傷可以明顯增加睡眠碎片化和縮短REM睡眠潛伏期[37-38]。mPFC也參與調(diào)節(jié)不同疾病引起的睡眠障礙,創(chuàng)傷后應(yīng)激障礙可以引起的過(guò)度覺(jué)醒和睡眠障礙癥狀,如在創(chuàng)傷后應(yīng)激障礙模型小鼠睡眠期間,非REM中的δ波功率活動(dòng)急性降低,mPFC神經(jīng)元的活性增加;當(dāng)抑制mPFC神經(jīng)元活性后,這種由單次長(zhǎng)時(shí)間應(yīng)激引起的睡眠覺(jué)醒腦電紊亂現(xiàn)象可以被逆轉(zhuǎn)[39]。有臨床研究提示失眠癥患者的mPFC和伏隔核之間的靜態(tài)功能連接增加,可顯著降低睡眠質(zhì)量評(píng)分[40]。
mPFC神經(jīng)活動(dòng)在全身麻醉過(guò)程中也有不同作用,與意識(shí)狀態(tài)變化密切相關(guān),氨基甲酸乙酯麻醉可以抑制大鼠mPFC的神經(jīng)元在睡眠期間的活性,且在麻醉過(guò)程中mPFC的不同亞區(qū)的腦電位快速振蕩的動(dòng)力學(xué)也有差異[36,41]。mPFC的低頻波動(dòng)的分?jǐn)?shù)振幅指數(shù)數(shù)值在清醒時(shí)大腦中的與意識(shí)記憶認(rèn)知相關(guān)腦區(qū)會(huì)較高,但在丙泊酚麻醉的過(guò)程中,mPFC的低頻波動(dòng)的分?jǐn)?shù)振幅指數(shù)數(shù)值與其他腦區(qū)相比會(huì)明顯下降,隨著意識(shí)的恢復(fù)該指數(shù)數(shù)值的下降趨勢(shì)可被逆轉(zhuǎn),進(jìn)一步研究發(fā)現(xiàn)這可能與低劑量丙泊酚對(duì)主mPFC 神經(jīng)元興奮性突觸頻率的抑制作用相關(guān)[42-43]。此外,mPFC神經(jīng)元失活可加速七氟醚麻醉的誘導(dǎo)過(guò)程,并且延長(zhǎng)覺(jué)醒[44]。
不同的神經(jīng)遞質(zhì)系統(tǒng)能直接作用于mPFC,改變睡眠或者麻醉過(guò)程中的意識(shí)狀態(tài),如膽堿能刺激mPFC不僅可以改變大鼠的睡眠覺(jué)醒狀態(tài),還可以促使七氟烷麻醉的大鼠恢復(fù)意識(shí)并逆轉(zhuǎn)麻醉狀態(tài)[45-46]。來(lái)自基底前腦的膽堿能輸入通路,可以通過(guò)作用于mPFC,影響丙泊酚或七氟烷麻醉過(guò)程,激活基底前腦投射至mPFC的膽堿能神經(jīng)元?jiǎng)t可改變小鼠mPFC的局部場(chǎng)電位,逆轉(zhuǎn)丙泊酚麻醉的催眠作用;而在七氟烷麻醉下,向mPFC腦區(qū)顯微注射河豚毒素使mPFC內(nèi)神經(jīng)元失活后,則會(huì)減弱刺激基底前腦后引發(fā)的促醒效應(yīng)[47-48]。多巴胺系統(tǒng)也能通過(guò)mPFC促進(jìn)七氟醚麻醉后的覺(jué)醒過(guò)程,大量多巴胺受體存在于mPFC的興奮性椎體神經(jīng)元上,在七氟醚麻醉期間向大鼠前邊緣皮質(zhì)注射多巴胺受體激動(dòng)劑,可以明顯延長(zhǎng)麻醉誘導(dǎo)時(shí)間,并促進(jìn)覺(jué)醒,而在使用抑制劑后,則會(huì)顯著縮短誘導(dǎo)時(shí)間,并會(huì)延遲覺(jué)醒[49-50]。
2.3 VTA-mPFC環(huán)路在自然覺(jué)醒以及全身麻醉意識(shí)調(diào)控中的作用
VTA-mPFC之間存在多種神經(jīng)投射通路,電刺激小鼠VTA可以同時(shí)引起mPFC內(nèi)平均神經(jīng)元內(nèi)的Ca2+濃度增加,證明VTA對(duì)mPFC的神經(jīng)元有調(diào)節(jié)作用[51]。環(huán)路中各類型的投射系統(tǒng)作用各不相同,VTA至mPFC的多巴胺能通路主要在疼痛、記憶、社會(huì)活動(dòng)、獎(jiǎng)賞與情緒調(diào)節(jié)過(guò)程中發(fā)揮作用,而最近的研究結(jié)果提示多巴胺能通路也參與了覺(jué)醒調(diào)控過(guò)程[6,52-55]。在睡眠過(guò)程中,對(duì)VTA投射到mPFC的多巴胺能神經(jīng)元末梢進(jìn)行光刺激,雖然對(duì)于非REM睡眠時(shí)間無(wú)明顯影響,但能夠減少REM睡眠到覺(jué)醒的時(shí)間,從而產(chǎn)生一定的促覺(jué)醒作用[21]。電刺激VTA區(qū)域會(huì)導(dǎo)致大鼠mPFC的局部場(chǎng)電位從麻醉后引起的非REM慢波活動(dòng)轉(zhuǎn)變?yōu)轭愃芌EM睡眠的低幅快波活動(dòng),注射多巴胺受體拮抗劑則可完全阻斷這種變化,提示激活VTA神經(jīng)元可通過(guò)向mPFC傳遞多巴胺遞質(zhì),進(jìn)而促進(jìn)大鼠從睡眠轉(zhuǎn)向更為活躍的狀態(tài)[56]。進(jìn)一步特異性激活VTADA-mPFC通路,能夠延長(zhǎng)七氟醚麻醉下大鼠的誘導(dǎo)時(shí)間,從而縮短覺(jué)醒時(shí)間,皮層腦電結(jié)果也正好顯示睡眠相關(guān)低頻波段功率減弱,覺(jué)醒高頻波段功率增強(qiáng)[50]。另外,食欲素可以激活VTADA,并促進(jìn)異氟醚麻醉覺(jué)醒過(guò)程,食欲素A同時(shí)增加投射至mPFC的VTADA的放電頻率,也與喚醒正相關(guān)[57]。
谷氨酸能系統(tǒng)在睡眠穩(wěn)態(tài)中起重要作用。內(nèi)側(cè)隔、橋腳被蓋核谷氨酸能神經(jīng)元具有喚醒活性,可直接將小鼠從非REM睡眠中喚醒;而腹外側(cè)髓質(zhì)中谷氨酸能神經(jīng)元?jiǎng)t是在睡眠時(shí)活躍,可促進(jìn)睡眠發(fā)生[58-60]。在異氟醚麻醉過(guò)程中,外側(cè)僵核谷氨酸能神經(jīng)元發(fā)揮促進(jìn)異氟醚麻醉、延緩覺(jué)醒作用,而下丘腦室旁核谷氨酸能神經(jīng)元?jiǎng)t是發(fā)揮促覺(jué)醒作用[61-62]。激活VTAGlu以及其向LH、伏隔核的投射通路也能引發(fā)促覺(jué)醒效應(yīng),提示VTA可以通過(guò)谷氨酸能神經(jīng)元投射至下游靶點(diǎn),進(jìn)而促進(jìn)覺(jué)醒[24]。VTA與mPFC之間也存在中腦皮質(zhì)谷氨酸能通路,但該通路在覺(jué)醒過(guò)程中是否起作用仍有待深入研究[63]。
mPFC谷氨酸能神經(jīng)元(以下簡(jiǎn)稱mPFCGlu)也可以投射至VTA[18,64]。目前研究者發(fā)現(xiàn)mPFCGlu可以通過(guò)投射作用于其他腦內(nèi)核團(tuán),發(fā)揮其覺(jué)醒調(diào)控作用,如光遺傳學(xué)可激活mPFCGlu向藍(lán)斑GABA能以及去甲腎上腺素能神經(jīng)元的投射通路,引起喚醒水平的不同變化[65]。mPFCGlu還可以投射并支配下丘腦背內(nèi)側(cè)區(qū)的谷氨酸能神經(jīng)元,從而產(chǎn)生促進(jìn)覺(jué)醒、抑制睡眠的作用[66]。最近的研究已證實(shí)mPFCGlu-VTA神經(jīng)通路在獎(jiǎng)賞中的作用,表明應(yīng)用嗎啡可導(dǎo)致mPFCGlu向VTADA的谷氨酸能輸入增加,使小鼠的運(yùn)動(dòng)活動(dòng)增加以及條件位置偏好改變[67]。Cao等[68]的研究發(fā)現(xiàn),通過(guò)投射并作用于VTA神經(jīng)元上的N-甲基-D-天冬氨酸受體促進(jìn)小鼠從七氟烷麻醉中覺(jué)醒,這進(jìn)一步明確了mPFCGlu-VTA神經(jīng)通路在全身麻醉覺(jué)醒調(diào)控中的促覺(jué)醒作用。
3 總結(jié)與展望
綜上,VTADA與VTAGlu在睡眠與全身麻醉覺(jué)醒過(guò)程中可發(fā)揮促覺(jué)醒作用,而VTAGABA則表現(xiàn)為促進(jìn)睡眠與增強(qiáng)麻醉效應(yīng)。mPFC神經(jīng)元活性會(huì)隨著睡眠與全身麻醉意識(shí)變化而發(fā)生改變,在麻醉期間對(duì)mPFC特異性操控可影響麻醉誘導(dǎo)與覺(jué)醒進(jìn)程。隨著病毒示蹤以及光/化學(xué)遺傳學(xué)等神經(jīng)環(huán)路操控技術(shù)的發(fā)展,目前研究已明確VTA中各種神經(jīng)元均可投射于mPFC神經(jīng)元上,其中VTADA-mPFC通路有顯著促覺(jué)醒作用。同時(shí),VTADA可接收來(lái)自mPFC的谷氨酸能輸入,mPFCGlu-VTA通路活性與覺(jué)醒呈正相關(guān)聯(lián)。VTA-mPFC環(huán)路中存在雙向投射通路,但環(huán)路中VTAGABA與VTAGlu和mPFC建立的神經(jīng)通路在睡眠與全身麻醉覺(jué)醒調(diào)控中的作用仍然未知,今后可對(duì)這些神經(jīng)通路進(jìn)行特異性調(diào)控,并借助腦電記錄、全細(xì)胞膜片鉗記錄等在體/離體電生理技術(shù)進(jìn)行深入分析,將有助于從神經(jīng)網(wǎng)絡(luò)電活動(dòng)的角度闡明睡眠覺(jué)醒與全身麻醉過(guò)程中意識(shí)改變的機(jī)制。
利益沖突 所有作者聲明無(wú)利益沖突
作者貢獻(xiàn)聲明 所有作者均參與文章選題;郝孟楠:文獻(xiàn)搜集、篩選與整理,文章起草;梁小麗:文章審閱和修訂;郝孟楠、張益:按編輯部的修改意見(jiàn)進(jìn)行核修,對(duì)學(xué)術(shù)問(wèn)題進(jìn)行解答,文章的修訂、質(zhì)量控制及終審和定稿,并同意對(duì)研究工作誠(chéng)信負(fù)責(zé)
參 考 文 獻(xiàn)
[1]Galaj E,Ranaldi R.Neurobiology of reward-related learning[J].Neurosci Biobehav Rev,202 124:224-234.DOI:10.1016/j.neubiorev.2021.02.007.
[2]Douma EH,de Kloet ER.Stress-induced plasticity and functioning of ventral tegmental dopamine neurons[J].Neurosci Biobehav Rev,2020,108:48-77.DOI:10.1016/j.neubiorev.2019.10.015.
[3]Bimpisidis Z,Wallén-Mackenzie .Neurocircuitry of reward and addiction:potential impact of dopamine-glutamate co-release as future target in substance use disorder[J].J Clin Med,2019,8(11):1887.DOI:10.3390/jcm8111887.
[4]Venner A,Todd WD,F(xiàn)raigne J,et al.Newly identified sleep-wake and circadian circuits as potential therapeutic targets[J].Sleep,2019,42(5):zsz023.DOI:10.1093/sleep/zsz023.
[5]Chen YH,Wu JL,Hu NY,et al.Distinct projections from the infralimbic cortex exert opposing effects in modulating anxiety and fear[J].J Clin Invest,202 131(14):e145692.DOI:10.1172/JCI145692.
[6]Gallo FT,Zanoni Saad MB,Silva A,et al.Dopamine modulates adaptive forgetting in medial prefrontal cortex[J].J Neurosci,2022,42(34):6620-6636.DOI:10.1523/JNEUROSCI.0740-21.2022.
[7]Howland JG,Ito R,Lapish CC,et al.The rodent medial prefrontal cortex and associated circuits in orchestrating adaptive behavior under variable demands[J].Neurosci Biobehav Rev,2022,135:104569.DOI:10.1016/j.neubiorev.2022.104569.
[8]Visser E,Matos MR,Mitric′ MM,et al.Extinction of cocaine memory depends on a feed-forward inhibition circuit within the medial prefrontal cortex[J].Biol Psychiatry,2022,91(12):1029-1038.DOI:10.1016/j.biopsych.2021.08.008.
[9]Huang WC,Zucca A,Levy J,et al.Social behavior is modulated by valence-encoding mPFC-amygdala sub-circuitry[J].Cell Rep,2020,32(2):107899.DOI:10.1016/j.celrep.2020.107899.
[10]Trutti AC,Mulder MJ,Hommel B,et al.Functional neuroanatomical review of the ventral tegmental area[J].Neuroimage,2019,191:258-268.DOI:10.1016/j.neuroimage.2019.01.062.
[11]Derdeyn P,Hui M,Macchia D,et al.Uncovering the connectivity logic of the ventral tegmental area[J].Front Neural Circuits,2022,15:799688.DOI:10.3389/fncir.2021.799688.
[12]Preuss TM,Wise SP.Evolution of prefrontal cortex[J].Neuropsychopharmacology,2022,47(1):3-19.DOI:10.1038/s41386-021-01076-5.
[13]Carlén M.What constitutes the prefrontal cortex[J].Science,2017,358(6362):478-482.DOI:10.1126/science.aan8868.
[14]Uylings HB,Groenewegen HJ,Kolb B.Do rats have a prefrontal cortex[J].Behav Brain Res,2003,146(1-2):3-17.DOI:10.1016/j.bbr.2003.09.028.
[15]Kabanova A,Pabst M,Lorkowski M,et al.Function and developmental origin of a mesocortical inhibitory circuit[J].Nat Neurosci,2015,18(6):872-882.DOI:10.1038/nn.4020.
[16]Beier K.Modified viral-genetic mapping reveals local and global connectivity relationships of ventral tegmental area dopamine cells[J].Elife,2022,11:e76886.DOI:10.7554/eLife.76886.
[17]Beier KT,Gao XJ,Xie S,et al.Topological organization of ventral tegmental area connectivity revealed by viral-genetic dissection of input-output relations[J].Cell Rep,2019,26(1):159-167.e6.DOI:10.1016/j.celrep.2018.12.040.
[18]Babiczky ,Matyas F.Molecular characteristics and laminar distribution of prefrontal neurons projecting to the mesolimbic system[J].Elife,2022,11:e78813.DOI:10.7554/eLife.78813.
[19]Morales M,Margolis EB.Ventral tegmental area:cellular heterogeneity,connectivity and behaviour[J].Nat Rev Neurosci,2017,18(2):73-85.DOI:10.1038/nrn.2016.165.
[20]Taximaimaiti R,Luo X,Wang XP.Pharmacological and non-pharmacological treatments of sleep disorders in parkinsons disease[J].Curr Neuropharmacol,202 19(12):2233-2249.DOI:10.2174/1570159X19666210517115706.
[21]Eban-Rothschild A,Rothschild G,Giardino WJ,et al.VTA dopaminergic neurons regulate ethologically relevant sleep-wake behaviors[J].Nat Neurosci,2016,19(10):1356-1366.DOI:10.1038/nn.4377.
[22]Oishi Y,Suzuki Y,Takahashi K,et al.Activation of ventral tegmental area dopamine neurons produces wakefulness through dopamine D2-like receptors in mice[J].Brain Struct Funct,2017,222(6):2907-2915.DOI:10.1007/s00429-017-1365-7.
[23]Cai J,Tong Q.Anatomy and function of ventral tegmental area glutamate neurons[J].Front Neural Circuits,2022,16:867053.DOI:10.3389/fncir.2022.867053.
[24]Yu X,Li W,Ma Y,et al.GABA and glutamate neurons in the VTA regulate sleep and wakefulness[J].Nat Neurosci,2019,22(1):106-119.DOI:10.1038/s41593-018-0288-9.
[25]Chowdhury S,Matsubara T,Miyazaki T,et al.GABA neurons in the ventral tegmental area regulate non-rapid eye movement sleep in mice[J].Elife,2019,8:e44928.DOI:10.7554/eLife.44928.
[26]Eban-Rothschild A,Borniger JC,Rothschild G,et al.Arousal state-dependent alterations in VTA-GABAergic neuronal activity[J].eNeuro,2020,7(2):ENEURO.0356-19.2020.DOI:10.1523/ENEURO.0356-19.2020.
[27]Bian T,Meng W,Qiu M,et al.Noninvasive ultrasound stimulation of ventral tegmental area induces reanimation from general anaesthesia in mice[J].Research (Wash D C),202 2021:2674692.DOI:10.34133/2021/2674692.
[28]Gui H,Liu C,He H,et al.Dopaminergic projections from the ventral tegmental area to the nucleus accumbens modulate sevoflurane anesthesia in mice[J].Front Cell Neurosci,202 15:671473.DOI:10.3389/fncel.2021.671473.
[29]Li J,Li H,Wang D,et al.Orexin activated emergence from isoflurane anaesthesia involves excitation of ventral tegmental area dopaminergic neurones in rats[J].Br J Anaesth,2019,123(4):497-505.DOI:10.1016/j.bja.2019.07.005.
[30]Guo J,Xu K,Yin JW,et al.Dopamine transporter in the ventral tegmental area modulates recovery from propofol anesthesia in rats[J].J Chem Neuroanat,2022,121:102083.DOI:10.1016/j.jchemneu.2022.102083.
[31]Yin L,Li L,Deng J,et al.Optogenetic/chemogenetic activation of GABAergic neurons in the ventral tegmental area facilitates general anesthesia via projections to the lateral hypothalamus in mice[J].Front Neural Circuits,2019,13:73.DOI:10.3389/fncir.2019.00073.
[32]Kim YG,Kim SE,Lee J,et al.Neuromodulation using transcranial focused ultrasound on the bilateral medial prefrontal cortex[J].J Clin Med,2022,11(13):3809.DOI:10.3390/jcm11133809.
[33]Thibaut A,Wannez S,Donneau AF,et al.Controlled clinical trial of repeated prefrontal tDCS in patients with chronic minimally conscious state[J].Brain Inj,2017,31(4):466-474.DOI:10.1080/02699052.2016.1274776.
[34]Jang SH,Seo YS,Lee SJ.Increased thalamocortical connectivity to the medial prefrontal cortex with recovery of impaired consciousness in a stroke patient:a case report[J].Medicine (Baltimore),2020,99(18):e19937.DOI:10.1097/MD.0000000000019937.
[35]Gabbott PL,Rolls ET.Increased neuronal firing in resting and sleep in areas of the macaque medial prefrontal cortex[J].Eur J Neurosci,2013,37(11):1737-1746.DOI:10.1111/ejn.12171.
[36]Gómez LJ,Dooley JC,Blumberg MS.Activity in developing prefrontal cortex is shaped by sleep and sensory experience[J].Elife,2023,12:e82103.DOI:10.7554/eLife.82103.
[37]Koenigs M,Holliday J,Solomon J,et al.Left dorsomedial frontal brain damage is associated with insomnia[J].J Neurosci,2010,30(47):16041-16043.DOI:10.1523/JNEUROSCI.3745-10.2010.
[38]Chang CH,Chen MC,Qiu MH,et al.Ventromedial prefrontal cortex regulates depressive-like behavior and rapid eye movement sleep in the rat[J].Neuropharmacology,2014,86:125-132.DOI:10.1016/j.neuropharm.2014.07.005.
[39]Lou T,Ma J,Wang Z,et al.Hyper-activation of mPFC underlies specific traumatic stress-induced sleep-wake EEG disturbances[J].Front Neurosci,2020,14:883.DOI:10.3389/fnins.2020.00883.
[40]Shao Z,Xu Y,Chen L,et al.Dysfunction of the NAc-mPFC circuit in insomnia disorder[J].Neuroimage Clin,2020,28:102474.DOI:10.1016/j.nicl.2020.102474.
[41]Gretenkord S,Rees A,Whittington MA,et al.Dorsal vs.ventral differences in fast up-state-associated oscillations in the medial prefrontal cortex of the urethane-anesthetized rat[J].J Neurophysiol,2017,117(3):1126-1142.DOI:10.1152/jn.00762.2016.
[42]Liu X,Lauer KK,Douglas Ward B,et al.Propofol attenuates low-frequency fluctuations of resting-state fMRI BOLD signal in the anterior frontal cortex upon loss of consciousness[J].Neuroimage,2017,147:295-301.DOI:10.1016/j.neuroimage.2016.12.043.
[43]Jiang J,Jiao Y,Gao P,et al.Propofol differentially induces unconsciousness and respiratory depression through distinct interactions between GABAA receptor and GABAergic neuron in corresponding nuclei[J].Acta Biochim Biophys Sin (Shanghai),202 53(8):1076-1087.DOI:10.1093/abbs/gmab084.
[44]Huels ER,Groenhout T,F(xiàn)ields CW,et al.Inactivation of prefrontal cortex delays emergence from sevoflurane anesthesia[J].Front Syst Neurosci,202 15:690717.DOI:10.3389/fnsys.2021.690717.
[45]Parkar A,F(xiàn)edrigon DC,Alam F,et al.Carbachol and nicotine in prefrontal cortex have differential effects on sleep-wake states[J].Front Neurosci,2020,14:567849.DOI:10.3389/fnins.2020.567849.
[46]Pal D,Dean JG,Liu T,et al.Differential role of prefrontal and parietal cortices in controlling level of consciousness[J].Curr Biol,2018,28(13):2145-2152.e5.DOI:10.1016/j.cub.2018.05.025.
[47]Wang L,Zhang W,Wu Y,et al.Cholinergic-induced specific oscillations in the medial prefrontal cortex to reverse propofol anesthesia[J].Front Neurosci,202 15:664410.DOI:10.3389/fnins.2021.664410.
[48]Dean JG,F(xiàn)ields CW,Brito MA,et al.Inactivation of prefrontal cortex attenuates behavioral arousal induced by stimulation of basal forebrain during sevoflurane anesthesia[J].Anesth Analg,2022,134(6):1140-1152.DOI:10.1213/ANE.0000000000006011.
[49]Radnikow G,F(xiàn)eldmeyer D.Layer-and Cell type-specific modulation of excitatory neuronal activity in the neocortex[J].Front Neuroanat,2018,12:1.DOI:10.3389/fnana.2018.00001.
[50]Song Y,Chu R,Cao F,et al.Dopaminergic neurons in the ventral tegmental-prelimbic pathway promote the emergence of rats from sevoflurane anesthesia[J].Neurosci Bull,2022,38(4):417-428.DOI:10.1007/s12264-021-00809-2.
[51]Park K,Clare K,Volkow ND,et al.Cocaines effects on the reactivity of the medial prefrontal cortex to ventral tegmental area stimulation:optical imaging study in mice[J].Addiction,2022,117(8):2242-2253.DOI:10.1111/add.15869.
[52]Huang S,Zhang Z,Gambeta E,et al.Dopamine inputs from the ventral tegmental area into the medial prefrontal cortex modulate neuropathic pain-associated behaviors in mice[J].Cell Rep,2020,31(12):107812.DOI:10.1016/j.celrep.2020.107812.
[53]Sotoyama H,Inaba H,Iwakura Y,et al.The dual role of dopamine in the modulation of information processing in the prefrontal cortex underlying social behavior[J].FASEB J,2022,36(2):e22160.DOI:10.1096/fj.202101637R.
[54]Lak A,Okun M,Moss MM,et al.Dopaminergic and prefrontal basis of learning from sensory confidence and reward value[J].Neuron,2020,105(4):700-711.e6.DOI:10.1016/j.neuron.2019.11.018.
[55]Jacobs DS,Allen MC,Park J,et al.Learning of probabilistic punishment as a model of anxiety produces changes in action but not punisher encoding in the dmPFC and VTA[J].Elife,2022,11:e78912.DOI:10.7554/eLife.78912.
[56]Gretenkord S,Olthof BMJ,Stylianou M,et al.Electrical stimulation of the ventral tegmental area evokes sleep-like state transitions under urethane anaesthesia in the rat medial prefrontal cortex via dopamine D1-like receptors[J].Eur J Neurosci,2020,52(2):2915-2930.DOI:10.1111/ejn.14665.
[57]Kalló I,Omrani A,Meye FJ,et al.Characterization of orexin input to dopamine neurons of the ventral tegmental area projecting to the medial prefrontal cortex and shell of nucleus accumbens[J].Brain Struct Funct,2022,227(3):1083-1098.DOI:10.1007/s00429-021-02449-8.
[58]An S,Sun H,Wu M,et al.Medial septum glutamatergic neurons control wakefulness through a septo-hypothalamic circuit[J].Curr Biol,202 31(7):1379-1392.e4.DOI:10.1016/j.cub.2021.01.019.
[59]Kroeger D,Thundercliffe J,Phung A,et al.Glutamatergic pedunculopontine tegmental neurons control wakefulness and locomotion via distinct axonal projections[J].Sleep,2022,45(12):zsac242.DOI:10.1093/sleep/zsac242.
[60]Teng S,Zhen F,Wang L,et al.Control of non-REM sleep by ventrolateral medulla glutamatergic neurons projecting to the preoptic area[J].Nat Commun,2022,13(1):4748.DOI:10.1038/s41467-022-32461-3.
[61]Liu C,Liu J,Zhou L,et al.Lateral habenula glutamatergic neurons modulate isoflurane anesthesia in mice[J].Front Mol Neurosci,202 14:628996.DOI:10.3389/fnmol.2021.628996.
[62]Yin J,Qin J,Lin Z,et al.Glutamatergic neurons in the paraventricular hypothalamic nucleus regulate isoflurane anesthesia in mice[J].FASEB J,2023,37(3):e22762.DOI:10.1096/fj.202200974RR.
[63]Yamaguchi T,Wang HL,Li X,et al.Mesocorticolimbic glutamatergic pathway[J].J Neurosci,201 31(23):8476-8490.DOI:10.1523/JNEUROSCI.1598-11.2011.
[64]Hui M,Beier KT.Defining the interconnectivity of the medial prefrontal cortex and ventral midbrain[J].Front Mol Neurosci,2022,15:971349.DOI:10.3389/fnmol.2022.971349.
[65]Breton-Provencher V,Sur M.Active control of arousal by a locus coeruleus GABAergic circuit[J].Nat Neurosci,2019,22(2):218-228.DOI:10.1038/s41593-018-0305-z.
[66]Zhong H,Xu H,Li X,et al.A role of prefrontal cortico-hypothalamic projections in wake promotion[J].Cereb Cortex,2023,33(6):3026-3042.DOI:10.1093/cercor/bhac258.
[67]Yang L,Chen M,Ma Q,et al.Morphine selectively disinhibits glutamatergic input from mPFC onto dopamine neurons of VTA,inducing reward[J].Neuropharmacology,2020,176:108217.DOI:10.1016/j.neuropharm.2020.108217.
[68]Cao F,Guo Y,Guo S,et al.Prelimbic cortical pyramidal neurons to ventral tegmental area projections promotes arousal from sevoflurane anesthesia[J].CNS Neurosci Ther,2024,30(3):e14675.DOI:10.1111/cns.14675.
(收稿日期:2023-05-26)
中國(guó)醫(yī)學(xué)科學(xué)院學(xué)報(bào)2024年3期