姬欣欣 張軍翔 高宇
摘 要:釀酒葡萄細(xì)胞壁成熟涉及果膠、纖維素、半纖維素等一系列多糖大分子組分的結(jié)構(gòu)調(diào)控,同時釀酒葡萄品種、栽培處理與氣候等因素也會影響果實(shí)成熟過程中細(xì)胞壁多糖的結(jié)構(gòu)演化。釀酒葡萄成熟過程及釀造過程中細(xì)胞壁多糖組分的結(jié)構(gòu)變化會影響葡萄酒的品質(zhì)。本文結(jié)合國內(nèi)外研究進(jìn)展,簡要闡述了釀酒葡萄果實(shí)結(jié)構(gòu)及其成熟過程中細(xì)胞壁多糖組分的微觀修飾機(jī)制,同時討論了葡萄品種、氣候、栽培處理對釀酒葡萄果實(shí)細(xì)胞壁多糖的影響。此外,歸納了釀造過程中不同工藝處理下細(xì)胞壁多糖的降解機(jī)制,以期為釀酒葡萄細(xì)胞壁多糖的進(jìn)一步研究提供理論參考。
關(guān)鍵詞:釀酒葡萄;果實(shí)細(xì)胞壁;成熟;多糖
Research Progress on Polysaccharide Components of Wine Grape Cell Wall
JI Xinxin1, ZHANG Junxiang2, GAO Yu2*
(1.College of Food Science and Engineering, Ningxia University, Yinchuan 750021, China;
2.Faculty of Wine and Horticulture, Ningxia University, Yinchuan 750021, China)
Abstract: Wine grape cell wall ripening involves the structural regulation of a number of polysaccharide macromolecules, such as pectin, cellulose, hemicellulose, etc. Meanwhile, wine grape varieties, cultivation treatments and climatic factors also affect the structural evolution of cell wall polysaccharides during the fruit ripening process. The structural changes of cell wall polysaccharide components during wine grape ripening and vinification will affect the quality of wine. This paper summarizes the structural micro-modification mechanism of cell wall polysaccharide components during the ripening process of wine grape berries, discusses the effects of grape variety, climate, and cultivation treatments on wine grape berry cell wall polysaccharides, and summarizes the degradation mechanism of cell wall polysaccharides under different technological treatments in the vinification process in order to provide theoretical references for further study of wine grape berry cell wall polysaccharides.
Keywords: wine grape; fruit cell wall; ripely; polysaccharides
釀酒葡萄果實(shí)成熟是一個非常復(fù)雜的動態(tài)過程,涉及一系列生理和生化變化。在常規(guī)的品質(zhì)成分之外,釀酒葡萄細(xì)胞壁多糖的復(fù)雜結(jié)構(gòu)在果實(shí)發(fā)育成熟過程中不斷修飾演化,并最終影響葡萄果實(shí)及葡萄酒品質(zhì)[1]。為了進(jìn)一步提升釀酒葡萄果實(shí)及葡萄酒品質(zhì),有必要逐步探索釀酒葡萄果實(shí)細(xì)胞壁成熟相關(guān)的關(guān)鍵結(jié)構(gòu)大分子演變機(jī)制,并不斷明晰釀酒葡萄品種、栽培方式、氣候等因素對細(xì)胞壁的影響機(jī)制[2-3]。
1 釀酒葡萄果實(shí)組成及結(jié)構(gòu)
釀酒葡萄主要由果皮、果肉、籽和蠟質(zhì)層構(gòu)成。蠟質(zhì)層是釀酒葡萄果實(shí)的天然保護(hù)膜,可以起到防曬、保濕、抵御病蟲害和減少水分流失的作用[4]。位于蠟質(zhì)層之下的是對紅葡萄酒中多糖、多酚、花色苷等有積極貢獻(xiàn)且對機(jī)械破碎具有高耐受力的葡萄果皮[5]。釀酒葡萄果皮占葡萄漿果總干重的5%~10%,細(xì)胞壁多糖約占果皮物質(zhì)的一半,其主要由果膠、纖維素、半纖維素等組成,被認(rèn)為是釀酒葡萄多糖的主要來源[6-8]。釀酒葡萄果肉占果重的近70%,是游離糖和有機(jī)酸的主要儲存組織。相較于果皮與果肉,葡萄籽含有高濃度的粗糙、苦澀的單寧和酚類物質(zhì)[4]。
植物細(xì)胞壁主要分為初生細(xì)胞壁、胞間層和次生細(xì)胞壁,三者具有不同的化學(xué)組成和結(jié)構(gòu)[9]。釀酒葡萄、番茄、草莓、藍(lán)莓等成熟期的肉質(zhì)果實(shí)只發(fā)育到初生細(xì)胞壁和胞間層,很少發(fā)育成次生細(xì)胞壁[10]。葡萄初生細(xì)胞壁結(jié)構(gòu)中,纖維素微纖絲被半纖維素包覆,并通過糖苷鍵和氫鍵相互交織,形成多糖骨架作為細(xì)胞壁的支撐結(jié)構(gòu),鈣離子與果膠通過共價鍵形成鈣橋,介導(dǎo)細(xì)胞間的黏附,增強(qiáng)細(xì)胞壁強(qiáng)度,提高果實(shí)硬度[11-12]。果膠、半纖維素和糖蛋白組成的基質(zhì)多糖嵌入骨架中,各組分間相互聯(lián)系,使葡萄細(xì)胞壁成為一個非常復(fù)雜的動態(tài)復(fù)合體[13]。
1.1 釀酒葡萄果實(shí)細(xì)胞壁果膠組分及結(jié)構(gòu)
果膠是初生細(xì)胞壁和胞間層的主要成分之一,占細(xì)胞壁干重的30%~35%,是細(xì)胞壁網(wǎng)絡(luò)骨架之間的交聯(lián)物,有助于增強(qiáng)細(xì)胞間的黏附和機(jī)械強(qiáng)度、控制細(xì)胞壁對酶的滲透性、決定細(xì)胞壁的持水性。此外,果膠對病原微生物和果皮創(chuàng)傷的防御機(jī)制起著重要作用[14-16]。目前,普遍認(rèn)可釀酒葡萄細(xì)胞壁果膠結(jié)構(gòu)是“平滑區(qū)與毛發(fā)區(qū)”,平滑區(qū)是由無支鏈的半乳糖醛酸聚糖(Homogalacturonan,HG)結(jié)構(gòu)域組成,而具有高分支側(cè)鏈的鼠李糖半乳糖醛酸聚糖I型(Rhamnogalacturonan I,RG I)和鼠李糖半乳糖醛酸聚糖Ⅱ型(Rhamnogalacturonan Ⅱ,RG Ⅱ)構(gòu)成毛發(fā)區(qū)。該模型的果膠結(jié)構(gòu)具有一條主鏈,并含單條或多條支鏈,主鏈的骨架由HG、RG I、RG Ⅱ這3個主要的結(jié)構(gòu)域交替連接而成[16]。HG是果膠的主要成分,約占果膠總量的65%,是由半乳糖醛酸(Galacturonic Acid,GalUA)通過α-1,4-糖苷鍵連接的聚合物,可以在C-6處甲酯化,在O-2或O-3處乙?;痆17]。RG I占果膠總量的20%~35%,是一類高度保守且具有多樣化側(cè)鏈的結(jié)構(gòu)域,其主鏈由[α-(1→2)-D-GalpA-α-(1→4)-L-Rhap]n(n>100)的重復(fù)單元和側(cè)鏈?zhǔn)罄钐菤埢鶚?gòu)成,這些側(cè)鏈被阿拉伯糖(Arabinan,Ara)、半乳糖(Galactose,Gal)等中性糖在O-4處取代[18-20],RG I的側(cè)鏈還可與蛋白質(zhì)連接,這使得果膠結(jié)構(gòu)非常復(fù)雜[21]。RG Ⅱ同樣是高度保守的結(jié)構(gòu),其主鏈骨架由1,4-α-D-半乳糖醛酸殘基組成[19]。
1.2 釀酒葡萄果實(shí)細(xì)胞壁纖維素、半纖維素組分及結(jié)構(gòu)
纖維素作為釀酒葡萄細(xì)胞壁基本骨架的主要大分子,其結(jié)構(gòu)穩(wěn)定,不易被細(xì)胞內(nèi)的水解酶降解[22]。纖維素是由幾千個β-葡萄糖分子以β-1,4糖苷鍵連接而成的直鏈,30~100個纖維素分子通過鏈間氫鍵平行排列組成一個微纖絲,再通過纖維素微纖絲-木葡聚糖構(gòu)成細(xì)胞壁的網(wǎng)絡(luò)骨架[23-24]。纖維素微纖絲之間的空間通常由果膠、半纖維素、細(xì)胞壁蛋白填充,纖維素微纖絲具有規(guī)則分布的親水性和疏水性表面,能夠與半纖維素等其他多糖相互作用[25]。形成半纖維素的主要多糖為木葡聚糖,研究表明木葡聚糖可通過離子鍵和共價鍵作用與纖維素、木質(zhì)素及結(jié)構(gòu)蛋白結(jié)合,從而構(gòu)成葡萄細(xì)胞壁的骨架網(wǎng)絡(luò),維持細(xì)胞壁的完整性與機(jī)械強(qiáng)度[26]。
2 釀酒葡萄果實(shí)成熟過程中細(xì)胞壁多糖結(jié)構(gòu)微觀修飾
釀酒葡萄果實(shí)成熟過程伴隨著果皮細(xì)胞壁胞間層溶解,貫穿細(xì)胞壁的纖維素基質(zhì)也逐漸降解,導(dǎo)致細(xì)胞黏附減少,細(xì)胞間隙增加[27-29]。果膠甲酯酶、纖維素酶為主的多種酶共同作用會導(dǎo)致果膠、纖維素、半纖維素的結(jié)構(gòu)和含量發(fā)生變化[30]。
2.1 釀酒葡萄果實(shí)細(xì)胞壁成熟過程中果膠組分及結(jié)構(gòu)變化
釀酒葡萄果實(shí)成熟過程中果膠多糖含量和甲基酯化程度會逐漸變化。研究表明,隨著釀酒葡萄果實(shí)細(xì)胞壁成熟,果膠多糖中Ara與Gal組成的中性多糖阿拉伯半乳聚糖I(Arabinogalactan Proteins,AGP I)含量下降[31]。這是由于β-半乳糖苷酶的作用使Gal的溶解度增加,降低了(1-4)β-與吡喃半乳糖殘基的連接,使AGP I減少,果實(shí)開始軟化。隨著釀酒葡萄果實(shí)細(xì)胞壁的成熟,HG含量顯著下降[32-33],這與多聚半乳糖醛酸酶(Polygalacturonase,PG)、α-半乳糖苷酶、β-半乳糖苷酶以及果膠甲酯酶(Pectin Methyl Esterases,PME)的活性增加有關(guān)[33-34]。CHYLINSKA等[9]發(fā)現(xiàn)PG活性增加會導(dǎo)致GalUA、HG在番茄果實(shí)成熟過程中減少。GIL等[35]研究發(fā)現(xiàn),在‘赤霞珠果實(shí)細(xì)胞壁成熟過程中,甘露糖(Mannoprotein,Man)的含量略有下降。
根據(jù)甲基酯化程度,果膠可分為高甲酯化果膠和低甲酯化果膠[18]。釀酒葡萄果實(shí)中果膠成分在細(xì)胞壁初始合成時被高度甲酯化,且主要發(fā)生在HG主鏈上。在果實(shí)成熟過程中,在PME的作用下HG主鏈的甲酯化程度逐漸降低,去甲酯化的“光滑”果膠可進(jìn)一步被PG降解。PME通過對HG主鏈進(jìn)行脫酯處理,暴露出可被PG和果膠裂解酶進(jìn)一步降解的部位,使果膠多糖在成熟過程中出現(xiàn)解聚現(xiàn)象[34]。此外,β-半乳糖苷酶編碼基因的mRNA在果實(shí)中的積累從轉(zhuǎn)色前一直持續(xù)到轉(zhuǎn)色后,這與釀酒葡萄細(xì)胞壁成熟過程中AGP I含量的下降一致[36]。
2.2 釀酒葡萄果實(shí)細(xì)胞壁成熟過程中纖維素、半纖維素組分及結(jié)構(gòu)變化
纖維素、半纖維素的降解也是釀酒葡萄細(xì)胞壁成熟的關(guān)鍵因素[30]。ZIETSMAN等[37]發(fā)現(xiàn)‘比諾塔吉葡萄細(xì)胞壁成熟過程中木葡聚糖的含量下降,MOORE等[38]在‘赤霞珠果實(shí)細(xì)胞壁成熟過程中也得出了這一結(jié)論。YAKUSHIJI等[39]發(fā)現(xiàn)‘巨峰葡萄在轉(zhuǎn)色期間其果皮細(xì)胞壁纖維素含量降低、木葡聚糖和果膠多糖解聚。VICENS等[40]報(bào)道了‘西拉葡萄細(xì)胞壁在成熟過程中木糖與木葡聚糖同時減少,纖維素與半纖維素發(fā)生解聚。GUILLAUMIE等[41]發(fā)現(xiàn)‘霞多麗葡萄果實(shí)成熟期果皮細(xì)胞壁中4種木葡聚糖水解酶增加,半纖維素中木葡聚糖降解。另有研究發(fā)現(xiàn)草莓成熟過程中半纖維素也會降解[42]。
2.3 擴(kuò)展蛋白在釀酒葡萄果實(shí)細(xì)胞壁成熟過程中的作用機(jī)制
擴(kuò)展蛋白(Expansin,EXPs)是一種非酶促細(xì)胞壁蛋白,其能夠通過與葡聚糖包被的纖維素結(jié)合而打破葡聚糖-微纖絲之間的化學(xué)鍵,使纖維素表面的葡聚糖易受纖維素酶的影響導(dǎo)致果實(shí)細(xì)胞壁疏松[25,43]。SCHLOSSER等[44]發(fā)現(xiàn)‘赤霞珠葡萄轉(zhuǎn)色期擴(kuò)展蛋白基因(EXP3、EXPL)表達(dá)量增加導(dǎo)致果皮細(xì)胞壁擴(kuò)張,表明EXPs加快了果實(shí)細(xì)胞壁成熟。ISHIMARU等[45]從‘巨峰葡萄果實(shí)中分離出Vlexp1、Vlexp2、Vlexp3共3種擴(kuò)展蛋白,發(fā)現(xiàn)Vlexp3在轉(zhuǎn)色期表達(dá)量明顯增加,且在果實(shí)成熟過程中Vlexp1和Vlexp2的表達(dá)量也有增加,表明這3個擴(kuò)展蛋白基因與細(xì)胞分裂或擴(kuò)展以及漿果成熟軟化有關(guān),其表達(dá)上調(diào)可能有助于裂解細(xì)胞壁的纖維素-木葡聚糖網(wǎng)絡(luò)。EXPs在不同植物果實(shí)中作用有差異,BRUMMELL等[46]發(fā)現(xiàn)番茄中的LeEXP1可以增強(qiáng)果實(shí)硬度并延長其貨架期,且LeEXP1和LePG的共同作用可以進(jìn)一步抑制番茄果實(shí)的軟化。
3 品種、氣候、栽培處理對釀酒葡萄果實(shí)細(xì)胞壁的影響
3.1 品種對釀酒葡萄果實(shí)細(xì)胞壁的影響
不同品種的釀酒葡萄在成熟過程中細(xì)胞壁多糖結(jié)構(gòu)和含量存在差異[47]。ORTEGA-REGULES等[48]發(fā)現(xiàn)在‘慕合懷特‘美樂‘赤霞珠葡萄細(xì)胞壁成熟過程中Gal含量、果膠的甲酯化與乙酰化程度均呈現(xiàn)下降趨勢,相對而言,‘西拉葡萄細(xì)胞壁成熟中未發(fā)現(xiàn)這些變化。另有研究表明,與‘赤霞珠‘美樂‘西拉葡萄相比,‘慕合懷特葡萄細(xì)胞壁中Gal和纖維素含量更高,推測‘慕合懷特的細(xì)胞壁結(jié)構(gòu)可能更緊密,因此該品種在浸漬釀造過程中萃取率可能更低、釋放多糖更困難[47]。釀酒葡萄細(xì)胞壁的差異會影響后續(xù)浸漬釀造的效果,例如‘西拉葡萄細(xì)胞壁比‘赤霞珠與‘慕合懷特葡萄細(xì)胞壁更容易降解,因此其酒液中含有更多的RG Ⅱ與富含阿拉伯糖和半乳糖的多糖[49]。張雯等[50]研究了5種鮮食葡萄成熟過程中果實(shí)細(xì)胞壁結(jié)構(gòu)及組分差異,發(fā)現(xiàn)在成熟過程中‘紅地球葡萄的果膠含量增幅最高且PG活性最低。
3.2 氣候?qū)︶劸破咸压麑?shí)細(xì)胞壁的影響
受全球變暖的影響,釀酒葡萄面臨生長期縮短、成熟期提前的問題[51-52],這種現(xiàn)象會導(dǎo)致細(xì)胞壁果膠溶解度增加、酚類物質(zhì)積累不足、果實(shí)酸度降低,從而降低果實(shí)品質(zhì)[53]。GAO等[1]發(fā)現(xiàn)過熟‘西拉葡萄細(xì)胞壁中的Gal、GalUA、Rha含量下降,Ara與半纖維素含量升高,果膠發(fā)生嚴(yán)重降解。GARRIDO-BANUELOS等[33]對比了不同年份不同溫度采收的‘西拉葡萄細(xì)胞壁多糖組分差異,其結(jié)果與GAO等[1]的結(jié)論一致,發(fā)現(xiàn)低溫環(huán)境采收的葡萄其細(xì)胞壁在釀造浸漬中釋放到葡萄汁中的酚類物質(zhì)和多糖類含量較高。APOLINA-VALIENTE等[54]研究發(fā)現(xiàn)不同的氣候條件會影響‘慕合懷特葡萄細(xì)胞壁中RG Ⅱ的濃度。
3.3 栽培處理對釀酒葡萄果實(shí)細(xì)胞壁的影響
栽培處理可以減輕溫度升高對釀酒葡萄細(xì)胞壁的不利影響。MARTINS等[55]研究發(fā)現(xiàn)在葡萄園中噴灑鈣補(bǔ)充劑可以抑制細(xì)胞壁中PG及PME的活性,使擴(kuò)展蛋白基因EXP6的表達(dá)量下調(diào),緩解果膠降解。BANNA等[56]采用‘火焰無核葡萄接穗嫁接于4種砧木,發(fā)現(xiàn)‘1103 P砧木使葡萄果實(shí)細(xì)胞壁中PG、木聚糖酶和纖維素酶的活性降低,延長了葡萄果實(shí)的成熟軟化。修剪枝條也可以緩解葡萄早熟給果實(shí)帶來的不良影響,KISHIMOTO等[57]發(fā)現(xiàn)對‘赤霞珠‘丹魄和‘紅馬圖拉納的葡萄枝條進(jìn)行主梢修剪可以使果實(shí)成熟期延遲1~2月,并且“側(cè)引枝”和“次生誘導(dǎo)梢”兩種葡萄藤修剪方式均會使‘美樂葡萄果實(shí)成熟期推遲一個月。另有研究表明,適量去除葡萄花簇也能夠延長釀酒葡萄果實(shí)成熟[58]。此外,APOLINAR-VALIENTE等[47]發(fā)現(xiàn)‘慕合懷特與‘赤霞珠的雜交品種可以適應(yīng)西班牙東部高溫干旱條件。
4 葡萄酒釀造過程中果實(shí)細(xì)胞壁的降解機(jī)制
葡萄酒釀造過程中,將果皮細(xì)胞壁有效降解是釀造工藝的重中之重,這是因?yàn)橛绊懫咸丫破焚|(zhì)的物質(zhì)(多糖、花青素、單寧等)主要富集在果皮中[59]。為提高釀造過程中葡萄細(xì)胞壁的降解效率,研究人員嘗試了多種方法,包括加酶、控溫、延長浸漬時間以及使用各種現(xiàn)代浸漬技術(shù)(如脈沖電場、超聲波輔助浸漬),可以在很大程度上改變葡萄酒中多糖的組分和含量,進(jìn)而提高葡萄酒的整體品質(zhì)。
4.1 釀酒葡萄果實(shí)細(xì)胞壁多糖在釀造過程中的演變
壓榨、浸漬、發(fā)酵、發(fā)酵后浸漬、蘋果酸-乳酸發(fā)酵及陳釀等不同的葡萄酒加工階段,細(xì)胞壁多糖的結(jié)構(gòu)和含量都會發(fā)生變化。葡萄漿果破碎入罐時,細(xì)胞壁被物理破碎導(dǎo)致果膠分解,極大地促進(jìn)了可溶性多糖的釋放,約有80%的AGP(主要是AGP Ⅱ)可以釋放到酒體中,占紅葡萄酒總多糖的40%~50%[60]。白葡萄酒和桃紅葡萄酒在酒精發(fā)酵過程中Ara、Gal和HG的含量顯著降低,紅葡萄酒在酒精發(fā)酵過程中富含阿拉伯糖和半乳糖的多糖及RG Ⅱ的含量增加。在酒精發(fā)酵結(jié)束后葡萄酒中Man的含量最高,推測是因?yàn)獒勗爝^程中酵母及葡萄細(xì)胞壁中Man的釋放導(dǎo)致其含量不斷增加[61]。后浸漬期間大部分多糖含量都有所減少,尤其是AGP大量減少,可能是因?yàn)樗鼈兣c多酚產(chǎn)生的不穩(wěn)定復(fù)合物相互作用形成沉淀[61]。研究表明,進(jìn)行蘋果酸-乳酸發(fā)酵的乳酸菌種類也決定著該過程中多糖濃度的變化[62]。另有研究表明,葡萄酒陳釀6個月后各種多糖含量會趨于穩(wěn)定[63]。在葡萄酒裝瓶前,離心、過濾和澄清劑等澄清手段可以使葡萄酒多糖含量下降,部分多糖的結(jié)構(gòu)和性質(zhì)會發(fā)生改變。
4.2 釀造工藝對葡萄酒多糖的影響
不同的釀造工藝(加酶、控溫、延長浸漬時間等)可以在很大程度上改變葡萄酒中多糖的組分和含量。在釀造過程中,葡萄果實(shí)細(xì)胞壁中的內(nèi)源酶可以使部分多糖解聚,例如果膠分解酶有助于果膠降解從而釋放HG、AGP、RG Ⅱ等大分子量多糖[64]。研究表明,冷浸漬可以延長內(nèi)源酶與釀酒葡萄果皮的接觸時間,以增加葡萄細(xì)胞壁中AGP、RG Ⅱ等多糖的釋放和溶解[65]。熱浸漬有助于增加葡萄酒中RG Ⅱ、富含阿拉伯糖和半乳糖的多糖等可溶性多糖的含量[66]。超聲處理和脈沖電場不僅能抑制葡萄酒中雜菌生長,還可以調(diào)節(jié)釀酒葡萄品質(zhì)成分的萃取率、提高葡萄酒穩(wěn)定性和感官品質(zhì)。超聲處理能通過激發(fā)PME和PG的活性來降低果實(shí)細(xì)胞壁中果膠和半纖維素結(jié)構(gòu)域之間的交聯(lián),進(jìn)而增加葡萄酒
中RG Ⅱ、Man等多糖的含量[67]。脈沖電場對葡萄果實(shí)細(xì)胞壁品質(zhì)成分的提取效果取決于脈沖場強(qiáng)、脈寬、脈沖數(shù)、持續(xù)時間和提取介質(zhì)特性及物料性質(zhì)等。CHOLET等[68]通過中等強(qiáng)度(4 kV·cm-1)、持續(xù)時間短(1 ms)和低強(qiáng)度(0.7 kV·cm-1)、持續(xù)時間長
(200 ms)兩種脈沖電場處理‘赤霞珠葡萄果皮,發(fā)現(xiàn)不同脈沖強(qiáng)度及持續(xù)時間對果膠結(jié)構(gòu)的影響不同。
5 結(jié)語
綜上所述,釀酒葡萄果實(shí)的成熟軟化以及葡萄酒的發(fā)酵浸皮過程均涉及細(xì)胞壁中多種多糖的修飾及降解,且葡萄品種、風(fēng)土條件、釀造技術(shù)等多種因素的相互作用均會影響葡萄成熟期乃至后續(xù)釀造過程中細(xì)胞壁多糖的演化,因此通過各種分析手段明晰細(xì)胞壁多糖的演化對于葡萄酒的生產(chǎn)控制具有重要意義。但由于多糖的結(jié)構(gòu)極其復(fù)雜,如何準(zhǔn)確研究多糖的演變是一個重大的挑戰(zhàn)。近年來,高通量多糖抗體芯片技術(shù)的建立,使從大分子層面探索釀酒葡萄細(xì)胞壁多糖結(jié)構(gòu)組分的變化規(guī)律成為可能,為未來根據(jù)采收期細(xì)胞壁狀態(tài)制定“定向”釀造葡萄酒提供了理論支持。
參考文獻(xiàn)
[1]GAO Y,F(xiàn)ANGEL J U,WILLATS W J T,et al.Differences in berry skin and pulp cell wall polysaccharides from ripe and overripe Shiraz grapes evaluated using glycan profiling reveals extensin-rich flesh[J].Food Chemistry,2021,363:130180.
[2]FORLANI S,MASIERO S,MIZZOTTI C.Fruit ripening: the role of hormones, cell wall modifications, and their relationship with pathogens[J].Journal of Experimental Botany,2019,70(11):2993-3006.
[3]CHEN H J,CAO S F,F(xiàn)ANG X J,et al.Changes in fruit firmness, cell wall composition and cell wall degrading enzymes in postharvest blueberries during storage[J].Scientia Horticulturae,2015,188:44-48.
[4]GAO Y,ZIETSMAN A J J,VIVIER M A et al.
Deconstructing wine grape cell walls with enzymes during winemaking: new insights from glycan microarray technology[J].Molecules,2019,24(1):165.
[5]ZHANG M W,ZHANG P A,LU S W,et al.Comparative analysis of cuticular wax in various grape cultivars during berry development and after storage[J].Frontiers in Nutrition,2021,8:817796.
[6]LI S Y,DUAN C Q,HAN Z H.Grape polysaccharides: compositional changes in grapes and wines, possible effects on wine organoleptic properties, and practical control during winemaking[J].Critical Reviews in Food Science and Nutrition,2023,63(8):1119-1142.
[7]APOLINAR-VALIENTE R,ROMERO-CASCALES I,GOMEZ-PLAZA E et al.The composition of cell walls from grape marcs is affected by grape origin and enological technique[J].Food Chemistry,2015,167:370-377.
[8]LAMPUGNANI E R,KHAN G A,SOMSSICH M,et al.Building a plant cell wall at a glance[J].Journal of Cell Science,2018,131(2):207373.
[9]CHYLI?SKA M,SZYMANSKA-CHARGOT M,DERYLO K,et al.Changing of biochemical parameters and cell wall polysaccharides distribution during physiological development of tomato fruit[J].Plant Physiology and Biochemistry,2017,119:328-337.
[10]PENG Z Z,LIU G S,LI H L,et al.Molecular and genetic events determining the softening of fleshy fruits: a comprehensive review[J].International Journal of Molecular Sciences,2022,23(20):12482.
[11]WANG D,YEATS T H,ULUISIK S,et al.Fruit softening: revisiting the role of pectin[J].Trends in Plant Science,2018,23(4):302-310.
[12]ZAMIL M S,GEITMANN A.The middle lamella-more than a glue[J].Physical Biology,2017,14(1):015004.
[13]YOKOYAMA R,SHINOHARA N,ASAOKA R,et al.
The biosynthesis and function of polysaccharide components of the plant cell wall[M]//FUKUDA H.Plant Cell Wall Patterning and Cell Shape.Hoboken, USA: John Wiley & Sons,
Inc, 2014.
[14]NGOUEMAZONG E D,CHRISTIAENS S,SHPIGELMAN A,et al.The emulsifying and emulsion-stabilizing properties of pectin: a review[J].Comprehensive Reviews in Food Science and Food Safety,2015,14(6):705-718.
[15]COSGROVE D J.Expansive growth of plant cell walls[J].Plant Physiol Biochem,2000,38(1/2):109-124.
[16]易建勇,畢金峰,劉璇,等.果膠結(jié)構(gòu)域精細(xì)結(jié)構(gòu)研究進(jìn)展[J].食品科學(xué),2020,41(7):292-299.
[17]GAO Y,F(xiàn)ANGEL J U,WILLATS W G T,et al.
Dissecting the polysaccharide-rich grape cell wall matrix using recombinant pectinases during winemaking[J].Carbohydrate Polymers,2016,152:510-519.
[18]YAPO B M.Pectic substances: from simple pectic polysaccharides to complex pectins a new hypothetical model[J].Carbohydrate Polymers,2011,86:373-385.
[19]高華奇,王立芹,孫翠,等.采后躍變型果實(shí)軟化與果膠降解的研究進(jìn)展[J].果樹學(xué)報(bào),2022,39(10):1922-1934.
[20]KOUBALA B B,CHRISTIAENS S,KANSCI C,et al.
Isolation and structural characterisation of papaya peel pectin[J].Food Research International,2014,55:215-221.
[21]FUNAMI T,NAKAUMA M,ISHIHARA S,et al.
Structural modifications of sugar beet pectin and the relationship of structure to functionality[J].Food Hydrocolloids,
2011,25(2):221-229.
[22]BONNIN E,LAHAYE M.Contribution of cell wall modifying enzymes on the texture of fleshy fruits: the example of apple[J].Journal of the Serbian Chemical Society,2013,78(3):417-427.
[23]TURNER S,KUMAR M.Cellulose synthase complex organization and cellulose microfibril structure[J].Philos Trans A Math Phys Eng Sci,2018,376(2112):20170048.
[24]RAO J,LV Z,CHEN G,et al.Hemicellulose: structure, chemical modification, and application[J].Progress in Polymer Science,2023,140:101675.
[25]OPAZO M C,LIZANA R,STAPPUNG Y,et al.XTHs from Fragaria vesca: genomic structure and transcriptomic analysis in ripening fruit and other tissues[J].BMC Genomics,2017,18(1):852.
[26]LAMPORT D T A,TAN L,HELD M,et al.The role of the primary cell wall in plant morphogenesis[J].International Journal of Molecular Sciences,2018,19(9):2674.
[27]LIU J,ZHAO Y H,XU H,et al.Fruit softening correlates with enzymatic activities and compositional changes in fruit cell wall during growing in Lycium barbarum L[J].International Journal of Food Science & Technology,
2021,56(6):3044-3054.
[28]FASOLI M,DELLANNA R,SANTO S D,et al.
Pectins, hemicelluloses and celluloses show specific dynamics in the internal and external surfaces of grape berry skin during ripening[J].Plant and Cell Physiology,2016,57(6):1332-1349.
[29]LIU B H,WANG K F,SHU X G,et al.Changes in fruit firmness, quality traits and cell wall constituents of two highbush blueberries (Vaccinium corymbosum L.) during postharvest cold storage[J].Scientia Horticulturae,2019,246:557-562.
[30]海龍飛,栗溫新,李志謙,等.軟/硬肉葡萄果實(shí)細(xì)胞壁結(jié)構(gòu)、組分及降解酶活性的變化[J].果樹學(xué)報(bào),2023,40(4):690-698.
[31]NUNAN K J,SIMS L M,BACIC A,et al.Changes in cell wall composition during ripening of grape berries[J].Plant Physiology (Bethesda),1998,118(3):783-792.
[32]MOORE J P,NGUEMA-ONA E,F(xiàn)ANGEL J U,et al.
Profiling the main cell wall polysaccharides of grapevine leaves using high-throughput and fractionation methods[J].Carbohydrate Polymers,2014,99:190-198.
[33]GARRIDO-BANUELOS G,BUICA A,SCHUCKEL J,et al.Investigating the relationship between grape cell wall polysaccharide composition and the extractability of phenolic compounds into Shiraz wines. Part I: vintage and ripeness effects[J].Food Chemistry,2019,278:36-46.
[34]李艷,田冉文,鄭偉,等.番茄綠熟期果實(shí)硬度與果皮結(jié)構(gòu)及果膠含量的關(guān)系[J].中國蔬菜,2019(12):37-40.
[35]GIL M,QUIROS M,F(xiàn)ORT F,et al.Influence of grape maturity and maceration length on polysaccharide composition of cabernet sauvignon red wines[J].American Journal of Enology and Viticulture,2015,66(3):393-397.
[36]NUNAN K J,DAVIES C,ROBINSON S P,et al.
Expression patterns of cell wall-modifying enzymes during grape berry development[J].Planta,2001,214(2):257-264.
[37]ZIETSMAN A J J,MOORE J P,F(xiàn)ANGEL J U,et al.
Following the compositional changes of fresh grape skin cell walls during the fermentation process in the presence and absence of maceration enzymes[J].Journal of Agricultural and Food
Chemistry,2015,63(10):2798-2810.
[38]MOORE J P,F(xiàn)ANGEL J U,WILLATS W G T,et al.
Pectic-β(1,4)-galactan, extensin and arabinogalactan–protein epitopes differentiate ripening stages in wine and table grape cell walls[J].Annals of Botany,2014,114(6):1279-1294.
[39]YAKUSHIJI H,SAKURAI N,MORINAGA K.Changes in cell-wall polysaccharides from the mesocarp of grape berries during veraison[J].Physiologia Plantarum,2001,111(2):188-195.
[40]VICENS A,DAVID F,PASCALE W,et al.Changes in polysaccharide and protein composition of cell walls in grape berry skin (Cv. Shiraz) during ripening and over-ripening[J].Journal of Agricultural and Food Chemistry,2009,57(7):2955-2960.
[41]GUILLAUMIE S,F(xiàn)OUQUET R,KAPPEL C,et al.
Transcriptional analysis of late ripening stages of grapevine berry[J].BMC Plant Biol,2011,11:165.
[42]JARA K,CASTRO R I,RAMOS P,et al.Molecular insights into FaEG1, a strawberry endoglucanase enzyme expressed during strawberry fruit ripening[J].Plants (Basel),2019,8(6):140.
[43]COSGROVE D J.Plant expansins: diversity and interactions with plant cell walls[J].Current Opinion in Plant Biology,2015,25:162-172.
[44]SCHLOSSER J,OLSSON N,WEIS M,et al.Cellular expansion and gene expression in the developing grape (Vitis vinifera L.)[J].Protoplasma,2008,232(3/4):255-265.
[45]ISHIMARU M,SMITH D L,GROSS K C,et al.
Expression of three expansin genes during development and maturation of Kyoho grape berries[J].Journal of Plant Physiology,
2007,164(12):1675-1682.
[46]BRUMMELL D A,Howie W J,Ma C,et al.Postharvest fruit quality of transgenic tomatoes suppressed in expression of a ripening-related expansin[J].Postharvest Biology and Technology,2002,25(2):209-220.
[47]APOLINAR-VALIENTE R,GOMEZ-PLAZA E,TERRIER N,et al.The composition of cell walls from grape skin in Vitis vinifera intraspecific hybrids[J].Journal of the Science of Food and Agriculture,2017,97(12):4029-4035.
[48]ORTEGA-REGULES A,ROS-GARCIA J M,BAUTISTA-ORTIN A B,et al.Changes in skin cell wall composition during the maturation of four premium wine grape varieties[J].Journal of the Science of Food and Agriculture,2008,88(3):420-428.
[49]APOLINAR-VALIENTE R,ROMERO-CASCALES I,WILLIAMS P,et al.Effect of winemaking techniques on polysaccharide composition of Cabernet Sauvignon, Syrah and Monastrell red wines[J].Australian Journal of Grape and Wine Research,2014,20(1):62-71.
[50]張雯,馬依努爾·加馬力,王敏,等.不同葡萄品種果肉質(zhì)地和細(xì)胞結(jié)構(gòu)及生理指標(biāo)分析[J].西北植物學(xué)報(bào),2022,42(11):1870-1879.
[51]SANTOS J A,F(xiàn)RAGA H,MALHEIRO A C,et al.
A review of the potential climate change impacts and adaptation options for European viticulture[J].Applied Sciences,2020,10(9):3092.
[52]SGUBIN G,SWINGEDOUW D,MIGNOT J,et al.
Non‐linear loss of suitable wine regions over Europe in response to increasing global warming[J].Global Change Biology,2023,29(3):808-826.
[53]LEEUWEN C V,DESTRAC-IRVINE A.Modified grape composition under climate change conditions requires adaptations in the vineyard[J].OENO One,2017,51(2):147-154.
[54]APOLINAR-VALIENTE R,WILLIAMS P,ROMERO-CASCALES I,et al.Polysaccharide composition of monastrell red wines from four different spanish terroirs: effect of wine-making techniques[J].Journal of Agricultural and Food Chemistry,
2013,61(10):2538-2547.
[55]MARTINS VIVIANA,GARCIA ANA,et al.Vineyard calcium sprays induce changes in grape berry skin, firmness, cell wall composition and expression of cell wall-related genes[J].Plant Physiology and Biochemistry,2020,150:49-55.
[56]BANNA M F,LOAY A A.Evaluation berries shattering phenomena of ‘Flame seedless vines grafted on different rootstocks during shelf life[J].Scientia Horticulturae,2019,246:51-56.
[57]KISHIMOTO M,YAMAMOTO T,KOBAYASHI Y.Effects of lateral or secondary induced shoot use on number of bunches and fruit quality in forcing cultivation by current shoot cutting and flower cluster removal to shift grape ripening to a cooler season[J].The Horticulture Journal,2022,91(2):169-175.
[58]POU A,BALDA,ALBACETE,et al.Forcing vine regrowth to delay ripening and its association to changes in the hormonal balance[J].Vitis (Special Issue),2019,58:95-101.
[59]高宇,袁華璐,繆榕,等.葡萄與葡萄酒中細(xì)胞壁的研究進(jìn)展[J].中外葡萄與葡萄酒,2020(6):54-59.
[60]MARTINEZ-LAPUENTE L,GUADALUPE Z,AYESTARAN B,et al.Ultrasound treatment of crushed grapes: effect on the must and red wine polysaccharide composition[J].Food Chemistry,2021,356:129669.
[61]MARTINEZ L L,GUADALUPE Z,PEREZ-PORRAS P,et al.Effect of sonication treatment and maceration time in the extraction of polysaccharide compounds during red wine vinification[J].Molecules,2021,26(15):4452.
[62]GAO Y,F(xiàn)ANGEL J U,WILLATS W G T,et al.Tracking polysaccharides during white winemaking using glycan microarrays reveals glycoprotein-rich sediments[J].Food Research International,2019,123:662-673.
[63]MARTINEZ-LAPUENTE L,GUADALUPE Z,HIGUERAS M,et al.Effect of pre-fermentative treatments on polysaccharide composition of white and rosé musts and wines[J].Journal of Agricultural and Food Chemistry,2023,72(4):1928-1937.
[64]GAO Y,F(xiàn)ANGEL J U,WILLATS W G T,et al.Dissecting the polysaccharide-rich grape cell wall changes during winemaking using combined high-throughput and fractionation methods[J].Carbohydrate Polymers,2015,133:567-577.
[65]GIL M,KONTOUDAKIS N,GONZALEZ E,et al.
Influence of grape maturity and maceration length on color, polyphenolic composition, and polysaccharide content of cabernet sauvignon and tempranillo wines[J].Journal of Agricultural and Food Chemistry,2012,60(32):7988-8001.
[66]DOCO T,WILLIAMS P,CHEYNIER A V.Effect of flash release and pectinolytic enzyme treatments on wine polysaccharide composition[J].Journal of Agricultural and Food Chemistry,2007,55(16):6643-6649.
[67]MARTINEZ-LAPUENTE L,GUADALUPE Z,AYESTARAN B,et al.Effects of combining high power ultrasound and enological enzymes on the composition of polysaccharides in red wine[J].LWT,2022,170:114060.
[68]CHOLET C,DELSART C,PETREL M,et al.Structural and biochemical changes induced by pulsed electric field treatments on cabernet sauvignon grape berry skins: impact on cell wall total tannins and polysaccharides[J].Journal of Agricultural and Food Chemistry,2014,62(13):2925-2934.