国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

楊梅主產(chǎn)區(qū)土壤肥力空間異質(zhì)性及其影響因素

2023-07-27 05:55:59彭健健徐堅(jiān)王曉曉傅偉軍張申彭欣怡徐懿姜霓雯方嘉吳家森
果樹(shù)學(xué)報(bào) 2023年7期
關(guān)鍵詞:空間分布結(jié)構(gòu)方程模型土壤肥力

彭健健 徐堅(jiān) 王曉曉 傅偉軍 張申 彭欣怡 徐懿 姜霓雯 方嘉 吳家森

摘 ? ?要:【目的】闡明楊梅主產(chǎn)區(qū)土壤肥力的空間異質(zhì)性,探尋影響土壤肥力的主要因素?!痉椒ā恳罁?jù)楊梅(Myrica rubra)產(chǎn)區(qū)分布情況和適宜種植區(qū)域分布狀況,篩選出浙江省楊梅主產(chǎn)區(qū)臺(tái)州市仙居縣和臨海市的部分區(qū)域作為研究區(qū),利用1 km×1 km網(wǎng)格法布點(diǎn),采集了100個(gè)楊梅表層土壤樣品(0~20 cm),通過(guò)地統(tǒng)計(jì)學(xué)方法探究土壤肥力的空間異質(zhì)性?!窘Y(jié)果】研究區(qū)楊梅土壤平均pH值4.48,有機(jī)碳含量(w,后同)18.21 g·kg-1,堿解氮含量115.01 mg·kg-1,有效磷含量15.57 mg·kg-1,速效鉀含量239.23 mg·kg-1。楊梅主產(chǎn)區(qū)土壤有機(jī)碳含量、堿解氮含量、有效磷含量和速效鉀含量低值區(qū)主要分布在臨海東部,高值區(qū)則主要分布在仙居西部;pH值高值區(qū)主要分布在仙居?xùn)|部,低值區(qū)則主要分布在仙居和臨海的西部。土壤綜合肥力評(píng)價(jià)指數(shù)的結(jié)果表明,仙居西部和臨海西部土壤較肥沃,仙居?xùn)|部和臨海東部土壤較貧瘠。Pearson相關(guān)性分析結(jié)果表明,樹(shù)齡與土壤有機(jī)碳含量呈顯著正相關(guān)(p<0.05),海拔與土壤堿解氮含量呈極顯著正相關(guān)(p<0.01),而坡向與速效鉀含量呈顯著負(fù)相關(guān)(p<0.05)。結(jié)構(gòu)方程模型結(jié)果表明,樹(shù)齡對(duì)有機(jī)碳含量有顯著正影響(p<0.05),海拔對(duì)堿解氮含量有顯著正影響(p<0.05),對(duì)速效鉀含量有顯著負(fù)影響(p<0.05),坡向?qū)λ傩р浐坑酗@著負(fù)影響(p<0.05)?!窘Y(jié)論】楊梅主產(chǎn)區(qū)土壤酸化和肥力失衡問(wèn)題嚴(yán)重,應(yīng)該增加仙居?xùn)|部和臨海東部的肥料投入和加強(qiáng)日常管理,適當(dāng)控制仙居西部和臨海西部的肥料施用量,同時(shí)還應(yīng)增加研究區(qū)磷肥的施用。為緩解仙居西部和臨海西部土壤酸化問(wèn)題,可利用生石灰、有機(jī)肥和生理堿性肥料進(jìn)行改良。

關(guān)鍵詞:楊梅;土壤肥力;結(jié)構(gòu)方程模型;空間分布;影響因素;土壤肥力評(píng)價(jià)

中圖分類號(hào):S667.6 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2023)07-1421-13

Spatial variation of soil fertility and its influencing factors in Myrica rubra region: A case study in Xianju county and Linhai city

PENG Jianjian1, XU Jian2, WANG Xiaoxiao3, FU Weijun1, ZHANG Shen1, PENG Xinyi1, XU Yi1, JIANG Niwen1, FANG Jia1, WU Jiasen1*

(1School of Environmental and Resource Sciences, Zhejiang A & F University, Hangzhou 311300, Zhejiang, China; 2Bureau of Agriculture and Rural Affairs of Xianju, Xianju 317300, Zhejiang, China; 3Taizhou Wanfeng Forestry Co., Ltd., Xianju 317300, Zhejiang, China)

Abstract: 【Objective】 Soil fertility, the key factor of fruit production, is usually influenced by diverse factors in major producing areas. The study aimed to clarify the vital factors closely associated with the spatial heterogeneity of soil fertility by different comprehensive evaluation systems. The specific goals were to alleviate the common problem of soil acidification to provide a theoretical basis for realizing the precise management of soil nutrients in the main districts of Myrica rubra production. 【Methods】 According to the distribution of M. rubra main production area and suitable planting area, representative producing areas of Xianju county and Linhai city, Taizhou city, Zhejiang province were selected as study sites. 100 top soil (0-20 cm) samples were collected based on an intensive grid of 1 km×1 km. The spatial heterogeneity of soil fertility was studied by geostatistical methods. The soil fertility status of each region was evaluated by the integrated soil fertility evaluation index method, and the impact factors of soil fertility were explored by Pearson correlation analysis and Structural Equation Model (SEM). 【Results】 The results of soil physicochemical experiments showed that the average pH, organic carbon (OC), alkali-hydrolyzable nitrogen (AN), available phosphorus (AP) and available potassium (AK) of M. rubra soils in the study area were 4.48, 18.21 g·kg-1, 115.01 mg·kg-1, 15.57 mg·kg-1 and 239.23 mg·kg-1, respectively. Compared with the average value of soil nutrients in the main producing areas of M. rubra in China, the soil pH and AP were lower than the average value (4.95 and 24.65 mg·kg-1) respectively, and the OC and AK were higher than the average value (19.47 g·kg-1 and 62 mg·kg-1). The soil acidification was serious in our study sites, and the content of AP was generally lower than the average levels. The coefficients of variation of the five fertility indicators were 12.02%, 25.98%, 35.51%, 100.35%, and 53.74%, respectively. Except for the strong variation of AP, the others were all moderate, and all fertility indicators were greatly affected by fertilizer application. The nutrient-impoverished study area with low OC, AN, AP and AK were mainly distributed in the east region of Linhai City, and the nutrient-rich area with high OC, AN, AP and AK were distributed in the west region of Xianju County. The district with high pH was located in the East of Xianju county, while the district with low pH was located in the West of Xianju county and Linhai city. The convergent management of M. rubra forest had resulted in significant aggregation in high nutrient zones and acidification problems. The integrated soil fertility evaluation index showed that 91% of the soil samples in M. rubra forest reached medium and high fertility levels, only 9% of the soil samples were at low fertility level. Specifically, the Western part of Xianju county and the Western part of Linhai city were relatively fertile, while the Eastern part of Xianju county and the Eastern part of Linhai city were relatively impoverished. The results of the Pearson correlation analysis showed that the tree age was significantly positively correlated with the soil OC (p<0.05), altitude was significantly and positively correlated with the soil AN (p<0.01), while the correlation between slope and AK was significantly negative (p<0.05). The results of the Structural Equation Model showed that the tree age had a significant positive effect on OC (p<0.05), the altitude had a significant positive effect on AN (p<0.05), a significant negative effect on AK (p<0.05), and slope aspect had a significant negative effect on AK (p<0.05). With the growth of M. rubra trees, the soil pH showed an overall trend of decreasing, indicating that the soil acidification caused by excessive intensive management and fertilization application was becoming increasingly serious. As the aging of M. rubra trees, the standing environment continued to be stable, and the carbon source was continuously replenished by anthropogenic activities. Consequently, the accumulation rate of organic matter was greater than the decomposition rate, and the soil OC showed a rising trend, so that the organic matter kept accumulating. The results of various research methods showed that the anthropogenic fertilization application was the dominant factor affecting the soil nutrients, and elevation, slope direction and tree age were also important factors affecting the soil fertility. 【Conclusion】 The increase of the fertilizer input and reinforce field management in the East M. rubra producing areas of Xianju county and Linhai city is suggested to relieve soil acidification and fertility imbalance. While in the West of Xianju county and Linhai city, it is better to reduce the fertilizer application appropriately. Besides, in our study area, more phosphorus fertilizer is needed because the overall soil phosphorus level is lower than the average value of main M. rubra production areas soils in China. However, in order to alleviate the problem of soil acidification caused by the excessive fertilizer application in the Western region of Xianju county and Linhai city, application of the quicklime, organic fertilizer and physiological alkaline fertilizer is needed for soil improvement.

Key words: Myrica rubra; Soil fertility; Structural equation model; Spatial distribution; Influencing factors; Evaluation for soil fertility

土壤肥力的高低與農(nóng)林業(yè)發(fā)展密切相關(guān),在提升農(nóng)作物的產(chǎn)量和品質(zhì)中扮演著重要角色[1-2]。土壤的形成受到各種人為和自然因素的影響[3-4],最終發(fā)育形成不同類型。由于影響因子的差異,土壤性質(zhì)在不同地理位置上存在一定的差異[5-6],即空間異質(zhì)性。前人對(duì)土壤性質(zhì)的影響因素進(jìn)行了大量研究。姜霓雯等[7]在研究清涼峰自然保護(hù)區(qū)土壤肥力的空間變異時(shí),揭示了影響土壤肥力指標(biāo)關(guān)鍵的影響因子是海拔。Wang等[8]在研究影響青藏高原土壤肥力的生物因子(畜牧)和非生物因子(環(huán)境因子)時(shí)發(fā)現(xiàn),影響土壤肥力關(guān)鍵的因素是過(guò)度放牧。同時(shí),探尋土壤肥力的主要影響因子,對(duì)掌握土壤肥力變化根源和調(diào)控土壤肥力水平都有著重要的科學(xué)意義。

楊梅(Myrica rubra)是原產(chǎn)于我國(guó)亞熱帶的珍貴水果,主要集中在浙江、江蘇、福建和湖南等地栽培,口感獨(dú)特、營(yíng)養(yǎng)價(jià)值高,有延緩衰老、抗癌和抗氧化等功效。楊梅中含有豐富的膳食纖維,后者有助于調(diào)節(jié)腸道運(yùn)動(dòng),同時(shí)還有降低血脂和膽固醇的作用[9]。浙江省楊梅的產(chǎn)量、種植面積和產(chǎn)值均位列全國(guó)首位,栽培面積在2019年達(dá)到8.88萬(wàn)hm2,產(chǎn)量多達(dá)61.84萬(wàn)t,產(chǎn)值高達(dá)46.38億元[10]?!皸蠲方?jīng)濟(jì)”的繁榮發(fā)展也帶來(lái)了一定的環(huán)境問(wèn)題,如化肥的大量施用造成了土壤酸化和養(yǎng)分失衡等問(wèn)題[11-14],嚴(yán)重影響了土壤質(zhì)量、楊梅產(chǎn)量及品質(zhì)[15]。目前,前人對(duì)于影響楊梅土壤肥力因素的研究集中在生草栽培[16]、施肥處理[17]、微生物[18]和林齡[19]等方面,缺乏對(duì)楊梅土壤肥力空間分布及受地形因子影響程度的研究。因此,掌握林地土壤肥力的分布狀況及其影響因素,對(duì)促進(jìn)經(jīng)濟(jì)林生長(zhǎng)與經(jīng)濟(jì)效益增長(zhǎng)有著不可或缺的幫助。

為探明楊梅土壤肥力的影響因素,解決楊梅主產(chǎn)區(qū)土壤養(yǎng)分不均和酸化問(wèn)題,筆者在本研究中以浙江省楊梅主產(chǎn)區(qū)土壤為研究對(duì)象,探究楊梅主產(chǎn)區(qū)林地土壤養(yǎng)分的空間異質(zhì)性和分布規(guī)律,并根據(jù)相關(guān)性分析和結(jié)構(gòu)方程模型結(jié)果,探尋土壤肥力的不同影響因子。本研究為楊梅經(jīng)濟(jì)林土壤質(zhì)量管理、精準(zhǔn)施肥提供理論及技術(shù)基礎(chǔ),推進(jìn)楊梅果實(shí)增產(chǎn)與品質(zhì)升級(jí),實(shí)現(xiàn)楊梅經(jīng)濟(jì)林科學(xué)高效的管理和經(jīng)營(yíng)。

1 材料和方法

1.1 研究區(qū)與采樣地概況

楊梅是浙江省臺(tái)州市一大農(nóng)業(yè)經(jīng)濟(jì)亮點(diǎn)產(chǎn)業(yè),臺(tái)州市的楊梅種植面積在2019年高達(dá)2.95萬(wàn)hm2,產(chǎn)量多達(dá)27.6萬(wàn)t,產(chǎn)值超過(guò)24.5億元[20]。臺(tái)州市楊梅產(chǎn)區(qū)是中國(guó)最為著名的楊梅產(chǎn)區(qū)之一,占據(jù)浙江省1/3以上的種植面積和果實(shí)產(chǎn)量。仙居縣和臨海市楊梅種植面積大、產(chǎn)量多,因此被稱為“中國(guó)楊梅之鄉(xiāng)”,筆者選取浙江省楊梅主產(chǎn)區(qū)仙居縣和臨海市為研究區(qū)。

仙居縣位于浙江省東部,28°30′~29° N,120°~121° E,海拔1~1370 m,亞熱帶季風(fēng)氣候,平均降水量2000 mm,全年平均氣溫18.3 ℃,無(wú)霜期在240 d左右,年日照時(shí)數(shù)1 786.2 h,土壤為紅壤土類[19]。2019年,仙居縣的種植面積為9200 hm2,投產(chǎn)面積為8330 hm2,總產(chǎn)量達(dá)9.5萬(wàn)t,產(chǎn)值達(dá)7.2億元,是浙江省臺(tái)州市第一楊梅主產(chǎn)區(qū)[21]。

臨海市位于浙江省東南沿海,28°40′~29°04′ N,120°49′~121°41′ E,海拔10~1200 m,亞熱帶季風(fēng)氣候,平均降雨量1 710.4 mm,全年平均氣溫17.1 ℃,無(wú)霜期241 d,平均蒸發(fā)量1 231.4 mm。2019年,臨海市的種植面積8.87×103 hm2,年產(chǎn)量8.8萬(wàn)t,產(chǎn)值6.4億元,臨海市是浙江省最大的楊梅生產(chǎn)基地之一。

1.2 樣品采集和分析

2020年8月,采用1 km×1 km網(wǎng)格法布設(shè)采樣點(diǎn)[22-23],選取氣候最適宜楊梅生長(zhǎng)的區(qū)域?yàn)檠芯繀^(qū),結(jié)合楊梅林地的分布情況,在臺(tái)州仙居、臨海分別選取了64個(gè)和36個(gè)坐標(biāo)小區(qū)塊,根據(jù)初步定位好的100個(gè)GPS位點(diǎn),在每個(gè)楊梅經(jīng)濟(jì)林研究區(qū)樣地附近采用5點(diǎn)取樣法分別取每個(gè)樣點(diǎn)位于0~20 cm土層土壤1 kg,同時(shí)調(diào)查楊梅地徑、樹(shù)齡、施肥及其他管理措施,將土樣混合均勻后采用四分法取1 kg土樣裝于塑封袋中,密封保存帶回實(shí)驗(yàn)室。土壤樣品于通風(fēng)干燥處風(fēng)干7 d,研磨充分后分別過(guò)2 mm、0.149 mm篩,于陰涼干燥處,置于密封塑料袋中,編號(hào)封口保存。土壤pH值以及有機(jī)碳、堿解氮、有效磷和速效鉀含量根據(jù)《土壤農(nóng)化分析》內(nèi)的方法測(cè)定[24]。采樣點(diǎn)楊梅在10、15、20和25 a以上4個(gè)樹(shù)齡段所占比例分別為11%、41%、36%和12%,坡度范圍為2°~30°,各個(gè)坡向均有分布。

1.3 地統(tǒng)計(jì)學(xué)

地統(tǒng)計(jì)學(xué)以變異函數(shù)為主要研究工具,研究土壤在空間分布上的隨機(jī)性、連續(xù)性和空間相關(guān)性等自然現(xiàn)象[25]。普通克里格法是地統(tǒng)計(jì)學(xué)中最為常用的無(wú)偏最優(yōu)估計(jì)的插值法[26],本研究中,通過(guò)采用普通克里格方法來(lái)繪制土壤理化性狀的空間分布圖[27-28],直觀地反映出土壤理化性狀的空間異質(zhì)性。

[γh=12N(h)i=1N(h)Zxi+h-Z(xi)2][29]。 ? ? ?(1)

式中,[γh]表示間隔為[h]時(shí)的半方差;[h]表示樣本間距;[Z(xi)]和[Zxi+h]分別表示在[xi]和[xi+h]時(shí)變量[Z(x)]的實(shí)測(cè)值;[N(h)]表示空間間隔為[h]時(shí)的點(diǎn)對(duì)數(shù)。

當(dāng)半方差函數(shù)[γh]隨著樣本間距[h]的增加而增加,趨于一個(gè)常數(shù)后恒定不變[30],該常數(shù)即基臺(tái)值(C0+C);在[h]=0時(shí)半方差值即為塊金值(C0),表示由于采樣誤差和尺度過(guò)小的采樣等隨機(jī)因素引起的空間異質(zhì)性[31]。最常見(jiàn)的半方差函數(shù)理論模型有線性模型、指數(shù)模型、球狀模型和高斯模型[32]。

1.4 土壤肥力評(píng)價(jià)模型的選取和計(jì)算

結(jié)合前人研究成果,本研究選取了土壤肥力質(zhì)量指標(biāo)中最具代表性的5個(gè)重要指標(biāo),分別是pH值及有機(jī)碳、堿解氮、有效磷和速效鉀含量[33]。

由于土壤肥力評(píng)價(jià)指標(biāo)實(shí)測(cè)值量綱的不同,對(duì)數(shù)據(jù)進(jìn)行歸一化處理,利用隸屬度函數(shù)將各項(xiàng)指標(biāo)轉(zhuǎn)換為0.1~1之間的無(wú)量綱值[34],實(shí)現(xiàn)土壤各肥力指標(biāo)的量綱歸一化。利用因子分析法確定肥力指標(biāo)的權(quán)重,評(píng)價(jià)指標(biāo)公因子方差所占比例即為權(quán)重值。

拋物線型:

[Wi0.9x-x3x4-x3+0.1 ? ? ? x3x4 ;] ? ? ? ? ? ?(2)

S型:

[Wi ? ? ? 1.0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?x≥x20.9x-x1x2-x1+0.1 ? ? ?x1≤x

式中,[Wi]為各個(gè)肥力指標(biāo)的隸屬度;[x]為各個(gè)肥力指標(biāo)的實(shí)測(cè)值;[x1]、[x2]、[x3]和[x4]為各個(gè)肥力指標(biāo)的轉(zhuǎn)折點(diǎn)(表1)。

1.5 土壤綜合肥力評(píng)價(jià)

對(duì)各項(xiàng)指標(biāo)進(jìn)行評(píng)價(jià)后,需將單因素評(píng)價(jià)結(jié)果轉(zhuǎn)換為由各指標(biāo)所構(gòu)成的土壤綜合肥力評(píng)價(jià)結(jié)果。研究對(duì)各土壤肥力指標(biāo)的隸屬度值進(jìn)行加權(quán)求和,最終計(jì)算土壤綜合肥力評(píng)價(jià)指數(shù)[35],公式如下:

[IFI=i=1nWiNi]。 ? ? ?(4)

式中, IFI為土壤綜合肥力評(píng)價(jià)指數(shù);[Wi]為第[i]項(xiàng)指標(biāo)的隸屬度值;[Ni]為第[i]項(xiàng)指標(biāo)的權(quán)重值。

1.6 結(jié)構(gòu)方程模型

結(jié)構(gòu)方程模型(structural equation model,SEM)是一種基于變量的協(xié)方差矩陣分析變量間關(guān)系的方法,整合了因子分析、路徑分析和回歸分析等多種方法,通過(guò)假設(shè)影響路徑,對(duì)復(fù)雜的數(shù)據(jù)進(jìn)行處理,有效地揭示了因子之間的因果關(guān)系[36-37]。進(jìn)行結(jié)構(gòu)方程模型擬合分析之前,需對(duì)土壤肥力及其影響因子數(shù)據(jù)的可信度進(jìn)行驗(yàn)證[38]。相關(guān)性分析得到的相關(guān)系數(shù)不能表明因果關(guān)系,相較于相關(guān)性分析,結(jié)構(gòu)方程模型的優(yōu)勢(shì)在于處理多變量的同時(shí),還能處理變量之間的間接因果關(guān)系。通過(guò)卡方([χ2])檢驗(yàn)對(duì)構(gòu)建的模型進(jìn)行擬合優(yōu)度評(píng)價(jià),當(dāng)卡方檢驗(yàn)p>0.05,各參數(shù)中,CFI(comparative fit index,比較擬合指數(shù))和GFI(goodness of fit index,擬合優(yōu)度指數(shù))>0.9,RMR(root mean square residual,殘差均方根)<0.05,RMSEA(root mean square error of approximation,近似誤差均方根)<0.08時(shí),SEM擬合效果較為理想[39]。

1.7 數(shù)據(jù)的軟件處理與分析

采用SPSS 24.0和Excel 2016對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行整理、計(jì)算和表格的繪制;利用ArcGIS 10.7軟件采用克里金插值法繪制土壤肥力指標(biāo)空間分布圖;利用GS+7.0進(jìn)行半方差模型擬合和地統(tǒng)計(jì)分析;利用Pearson法研究土壤各項(xiàng)養(yǎng)分指標(biāo)之間的相關(guān)性,使用R 3.3.3進(jìn)行相關(guān)性圖形繪制;使用Minitab 19進(jìn)行Box-Cox轉(zhuǎn)換。

筆者在進(jìn)行數(shù)據(jù)分析之前,使用3倍標(biāo)準(zhǔn)差法(閾值法)剔除異常值,在剔除異常值時(shí),根據(jù)實(shí)際情況判斷異常值,分析異常值的原因。如果數(shù)據(jù)能夠說(shuō)明問(wèn)題,則可選擇性保留;如果是由系統(tǒng)誤差或人為誤差所導(dǎo)致,則可選擇剔除。

在本研究中要求數(shù)據(jù)符合正態(tài)分布,避免降低研究對(duì)實(shí)際情況的估算精度。由表2可知,pH值和有機(jī)碳的原始數(shù)據(jù)服從正態(tài)分布(p>0.05),采用峰度、偏度和Kolmogorov-Smirnov(K-S)聯(lián)合法對(duì)其余3種數(shù)據(jù)進(jìn)行多種檢驗(yàn)和處理[40],對(duì)堿解氮含量數(shù)據(jù)進(jìn)行Box-Cox轉(zhuǎn)換,對(duì)速效鉀和有效磷含量進(jìn)行對(duì)數(shù)轉(zhuǎn)換,轉(zhuǎn)換后,各土壤肥力指標(biāo)數(shù)據(jù)均滿足正態(tài)分布(p>0.05)。

2 結(jié)果與分析

2.1 楊梅主產(chǎn)區(qū)土壤肥力指標(biāo)的描述性統(tǒng)計(jì)分析

描述性統(tǒng)計(jì)分析結(jié)果如表3所示。楊梅林地土壤pH值為3.71~5.55,有機(jī)碳含量10.47~32.41 g·kg-1,堿解氮含量55.30~255.50 mg·kg-1,有效磷含量0.19~64.99 mg·kg-1,速效鉀含量66.00~632.00 mg·kg-1。由于適宜楊梅生長(zhǎng)的土壤有機(jī)碳含量為11.6~29.0 g·kg-1[41],因此采樣點(diǎn)91%的土壤有機(jī)碳含量適宜楊梅的生長(zhǎng)。當(dāng)變異系數(shù)小于10%時(shí),屬于弱變異,自然因素占主導(dǎo)作用;當(dāng)變異系數(shù)在10%~100%,屬于中等變異,自然和人為因素共同影響;當(dāng)變異系數(shù)大于100%時(shí),屬于強(qiáng)變異,人為因素占主導(dǎo)作用。土壤pH值及有機(jī)碳、堿解氮、速效鉀含量的變異系數(shù)均大于10%且小于100%,在空間上表現(xiàn)為中等變異性;有效磷含量的變異系數(shù)大于100%,在空間上表現(xiàn)為強(qiáng)變異性。

2.2 楊梅主產(chǎn)區(qū)土壤肥力指標(biāo)的空間分布特征

研究區(qū)楊梅土壤養(yǎng)分的空間分布結(jié)果顯示,仙居?xùn)|部地區(qū)楊梅土壤pH值較高,仙居和臨海西部地區(qū)土壤pH值較低,研究區(qū)大部分區(qū)域土壤pH值均小于4.5,屬于強(qiáng)酸性土壤;整體上看,土壤酸性自仙居?xùn)|部高值區(qū)域向四周逐漸增強(qiáng),其中仙居西部和臨海西部的土壤酸化問(wèn)題最嚴(yán)重。楊梅土壤有機(jī)碳含量則表現(xiàn)為仙居整體高于臨海,高值區(qū)域集中分布在仙居,表現(xiàn)顯著的集聚效應(yīng)。楊梅土壤堿解氮含量高值區(qū)域集中分布在仙居西部,由西部向東部逐漸降低,整體上呈現(xiàn)西高東低的分布特征,在仙居西部表現(xiàn)明顯的集聚效應(yīng)。楊梅土壤有效磷含量在仙居和臨海的西部地區(qū)較高,仙居整體上較低,呈現(xiàn)點(diǎn)狀分布的特征。楊梅土壤速效鉀含量在仙居的含量整體大于臨海,呈現(xiàn)斑塊破碎狀分布的特征。從養(yǎng)分的整體分布狀況來(lái)看,仙居和臨海的楊梅土壤高養(yǎng)分區(qū)域表現(xiàn)出明顯的聚集現(xiàn)象。

2.3 楊梅主產(chǎn)區(qū)土壤綜合肥力評(píng)價(jià)

土壤綜合肥力評(píng)價(jià)法能夠幫助當(dāng)?shù)氐霓r(nóng)林管理者、科研人員和決策人員更直觀和深入地了解當(dāng)?shù)氐耐寥婪柿顩r[33]。研究選取土壤pH值、有機(jī)碳含量、堿解氮含量、有效磷含量和速效鉀含量作為計(jì)算土壤綜合肥力的5個(gè)指標(biāo)。表4為各肥力評(píng)價(jià)指標(biāo)被分配的公因子權(quán)重和方差的值,不同指標(biāo)的權(quán)重值差異較大,有機(jī)碳含量、堿解氮含量和有效磷含量被分配的權(quán)重較高(0.254、0.247和0.220),pH值和速效鉀含量被分配到的權(quán)重為0.105和0.174。

將計(jì)算的土壤肥力指數(shù)結(jié)果利用ArcGIS 7.0通過(guò)克里金插值法繪制分布圖。當(dāng)土壤肥力指數(shù)(integrated soil fertility evaluation index,IFI)>0.47時(shí),說(shuō)明土壤肥力屬于中、高質(zhì)量水平[35],在楊梅主產(chǎn)區(qū)仙居和臨海中,有91%的土壤肥力屬于中、高質(zhì)量水平,僅9%的土壤肥力水平處于低質(zhì)量水平。中、高肥力水平的土壤主要分布在仙居西部和臨海西部,低肥力水平的土壤較少,主要分布在仙居和臨海東部地區(qū)。主產(chǎn)區(qū)楊梅土壤肥力水平整體較高,大部分地區(qū)土壤已達(dá)到肥沃水平,僅少數(shù)地區(qū)土壤較貧瘠。

2.4 楊梅主產(chǎn)區(qū)土壤肥力指標(biāo)相關(guān)性分析

Pearson相關(guān)性分析可以有效地反映土壤肥力指標(biāo)與影響因子之間的關(guān)系。如圖1所示,海拔與堿解氮含量呈極顯著正相關(guān)(p<0.01),坡向與速效鉀含量呈顯著負(fù)相關(guān)(p<0.05),樹(shù)齡、地徑與土壤有機(jī)碳含量呈顯著正相關(guān)(p<0.05)。隨著樹(shù)齡的增長(zhǎng),楊梅立地環(huán)境趨于穩(wěn)定,隨著楊梅周圍枯枝落葉等有機(jī)物料的分解,表層土壤腐殖質(zhì)不斷積累,有機(jī)碳含量隨著樹(shù)齡的增長(zhǎng)而增加[42]。而坡度對(duì)土壤肥力指標(biāo)的影響不顯著,但坡度對(duì)楊梅生長(zhǎng)有著重要影響,因?yàn)闂蠲犯挡荒头e水,適宜在排水效果良好的山坡上種植。

2.5 楊梅主產(chǎn)區(qū)土壤肥力指標(biāo)和影響因素的結(jié)構(gòu)方程模型路徑分析

模型的適配度檢驗(yàn)結(jié)果顯示:[χ2]=24.020,df=26,n=100,p=0.575,CFI=1.000,GFI=0.951,RMR=0.000,RMSEA=0.000,表明本研究中模型和數(shù)據(jù)的適配度較高、擬合情況理想,可以滿足研究和分析的要求。楊梅土壤肥力指標(biāo)與影響因素的結(jié)構(gòu)方程模型路徑圖如圖2所示。影響因素中海拔、坡向和樹(shù)齡均對(duì)各項(xiàng)肥力指標(biāo)有著顯著的影響,其中樹(shù)齡對(duì)有機(jī)碳含量有顯著正影響(p<0.05),路徑系數(shù)為0.248;坡向?qū)λ傩р浐坑酗@著負(fù)影響(p<0.05),路徑系數(shù)為-0.197;海拔對(duì)堿解氮含量有顯著正影響(p<0.05),路徑系數(shù)為0.204;對(duì)速效鉀含量有顯著負(fù)影響(p<0.05),路徑系數(shù)為-0.214。從路徑圖可以看出,各影響因素對(duì)有效磷含量的直接影響并不顯著,但能通過(guò)對(duì)有機(jī)碳含量和堿解氮含量的直接影響進(jìn)而間接影響有效磷含量,土壤pH值與各項(xiàng)影響因素之間的路徑系數(shù)均較小,pH值的變化主要是嚴(yán)重的人為施肥管理干擾引起的。

2.6 樹(shù)齡對(duì)楊梅主產(chǎn)區(qū)土壤肥力指標(biāo)的影響

樹(shù)齡和地形因子(海拔、坡度、坡向)是影響土壤肥力的因素,在對(duì)不同梯度樹(shù)齡的楊梅土壤肥力指標(biāo)進(jìn)行單因素方差分析時(shí),有較顯著的差異和變化特征,各個(gè)梯度的海拔、坡度和坡向之間均不存在顯著差異(p>0.05),因此對(duì)樹(shù)齡進(jìn)行具體分析。

不同樹(shù)齡對(duì)土壤肥力指標(biāo)的影響如圖3所示,樹(shù)齡分為10、15、20、25 a以上4個(gè)階段。土壤pH值隨著樹(shù)齡的增長(zhǎng)呈現(xiàn)降低的趨勢(shì),15、20、25 a以上的楊梅土壤pH值顯著低于10年生楊梅土壤。隨著樹(shù)齡的增長(zhǎng),由于化肥長(zhǎng)期過(guò)度使用,根系吸收后的酸根離子與土壤中的氫離子結(jié)合生成酸,導(dǎo)致土壤板結(jié)[43],土壤呈現(xiàn)酸化的趨勢(shì),土壤酸化不利于土地的可持續(xù)利用,嚴(yán)重影響土壤肥力質(zhì)量。土壤有機(jī)碳隨著樹(shù)齡的增長(zhǎng)逐漸增加,25 a以上楊梅土壤有機(jī)碳與15、20年生楊梅土壤差異顯著。隨著經(jīng)營(yíng)年限增加,立地環(huán)境穩(wěn)定,人為補(bǔ)充碳源,土壤中有機(jī)物質(zhì)積累速率大于分解速率,土壤的有機(jī)碳含量逐年增加。

3 討 論

3.1 楊梅主產(chǎn)區(qū)土壤肥力特征

本研究中的楊梅各土壤養(yǎng)分平均值主產(chǎn)區(qū)(仙居和臨海)與全國(guó)楊梅主產(chǎn)區(qū)相比,土壤pH值低于全國(guó)楊梅主產(chǎn)區(qū)土壤平均值(4.95),有機(jī)碳含量高于全國(guó)楊梅主產(chǎn)區(qū)平均值(11.29 g·kg-1),有效磷含量低于全國(guó)楊梅主產(chǎn)區(qū)平均值(24.65 mg·kg-1),速效鉀含量高于全國(guó)楊梅主產(chǎn)區(qū)平均值(62 mg·kg-1)[41]。通過(guò)與土壤養(yǎng)分平均值比較,發(fā)現(xiàn)本研究中研究區(qū)楊梅土壤酸化問(wèn)題嚴(yán)重。土壤酸化會(huì)降低土壤養(yǎng)分活性,抑制作物對(duì)養(yǎng)分的吸收,嚴(yán)重影響楊梅果實(shí)的產(chǎn)量和品質(zhì)[44],還會(huì)促進(jìn)土壤中有害元素的釋放和有害微生物的滋生,加大楊梅病害發(fā)生的概率,造成根系發(fā)育不良[45]。土壤有效磷含量整體較低,葉柳欣等[19]在研究中發(fā)現(xiàn)磷素是楊梅生長(zhǎng)的限制性元素,實(shí)地調(diào)查顯示,果農(nóng)在管理過(guò)程中,偏重于施用氮肥和鉀肥,缺少對(duì)磷肥的施用。研究結(jié)果說(shuō)明人為活動(dòng)成為影響土壤肥力和分布的一大重要因素。這與孫玉冰等[46]和牛文鵬等[47]的研究結(jié)果一致。張彬等[48]在研究蘋果種植區(qū)時(shí)發(fā)現(xiàn),土壤速效鉀含量的變異程度最大,其原因是果園人為施肥,而本研究中的楊梅林人為施肥活動(dòng)較頻繁,受人為施肥影響,有效磷變異程度較大,對(duì)楊梅林地土壤中有效磷含量影響較大。然而磷素對(duì)楊梅的生長(zhǎng)同樣很重要,合成蛋白質(zhì)需要大量磷素[49],磷素缺乏會(huì)限制楊梅的生長(zhǎng)[50]。相較于茶園土壤和水稻土壤,林地土壤的磷吸附能力較差[51],因此應(yīng)加強(qiáng)對(duì)磷肥的搭配施用。對(duì)于過(guò)多施用化肥導(dǎo)致楊梅土壤酸化的問(wèn)題[52-53],可以利用生石灰、有機(jī)肥和生理堿性肥料(如草木灰)調(diào)控土壤pH值,緩解土壤酸化[54-55]。

3.2 楊梅主產(chǎn)區(qū)土壤肥力空間分布特征

由于研究區(qū)橫跨范圍較廣,種植的作物種類多樣,土地管理和利用方式差異大,因此相鄰區(qū)域土壤肥力差異大[56],空間分布不連續(xù)。研究區(qū)內(nèi)部的地勢(shì)由西南向東北降低,四周則由大山包裹形成盆地,而有機(jī)碳含量和堿解氮含量高值區(qū)大都分布在高海拔地區(qū)。相關(guān)研究表明,地形因子導(dǎo)致溫差、日照和水分的差異是土壤肥力空間異質(zhì)性的主導(dǎo)因素[57]。

由實(shí)地調(diào)查可知,楊梅果農(nóng)在肥力管理中,為了節(jié)省成本和省時(shí)省力,過(guò)度偏施氮肥和鉀肥,而磷肥的施用量較少,雖然楊梅對(duì)氮素和鉀素的需求較大,但磷素也是促進(jìn)植物蛋白質(zhì)合成的重要元素之一。有機(jī)肥在日常施用過(guò)程中由于費(fèi)時(shí)、費(fèi)力和肥效慢等缺點(diǎn),難以統(tǒng)一大量施用,化肥的濫用進(jìn)而導(dǎo)致土壤酸化問(wèn)題的形成,酸化導(dǎo)致肥料利用率下降,增加肥料采購(gòu)成本,嚴(yán)重時(shí)還會(huì)導(dǎo)致楊梅的質(zhì)量和產(chǎn)量下降。土壤綜合肥力指數(shù)不僅取決于肥料施用量和肥料吸收效率,還受到多種影響因素的作用。楊梅果農(nóng)應(yīng)該根據(jù)當(dāng)?shù)赝寥赖膶?shí)際情況,及時(shí)調(diào)整肥料施用結(jié)構(gòu),重新制定專門的改良方案,在管理中節(jié)省生產(chǎn)成本,提升楊梅果實(shí)品質(zhì),促進(jìn)楊梅產(chǎn)業(yè)的健康發(fā)展。

3.3 楊梅主產(chǎn)區(qū)土壤肥力影響因素

本研究中,pH值與各項(xiàng)土壤肥力指標(biāo)之間均呈負(fù)相關(guān),但僅與有效磷含量呈顯著負(fù)相關(guān)(p<0.05),說(shuō)明土壤酸化在一定程度上影響著土壤有效養(yǎng)分的含量,影響植物吸收土壤中的有效養(yǎng)分。過(guò)量施用化肥雖然能增加土壤中的養(yǎng)分,但帶來(lái)的土壤酸化問(wèn)題也會(huì)導(dǎo)致肥料利用率的下降,施用生物質(zhì)炭可有效緩解土壤酸化問(wèn)題,還可以增加土壤有效養(yǎng)分[58]。除有機(jī)碳含量和速效鉀含量不存在顯著正相關(guān)外(p>0.05),有機(jī)碳含量、堿解氮含量、有效磷含量和速效鉀含量?jī)蓛砷g均存在顯著正相關(guān)(p<0.05),其中有機(jī)碳含量和堿解氮含量之間的相關(guān)系數(shù)(0.509)最高。有機(jī)碳含量和土壤供氮有著密切的關(guān)系,充分說(shuō)明土壤有機(jī)碳是堿解氮的源泉[59]。隨著樹(shù)齡的增長(zhǎng),堿解氮含量呈現(xiàn)先減少后增加(高-低-高)的趨勢(shì),與劉順等[60]在研究土壤堿解氮含量隨著樹(shù)齡變化時(shí)有相似的結(jié)果。這是由于10~15 a階段,楊梅進(jìn)入盛產(chǎn)期,氮素的需求量大,樹(shù)齡在15 a后隨著肥料的大量施用,氮素逐漸積累。有效磷含量呈現(xiàn)出先增加后降低(低-高-低)的趨勢(shì),與劉順等[61]對(duì)陳山紅心杉土壤的研究結(jié)果相同,可能是由于楊梅的需磷高峰期在15 a之后。速效鉀含量隨著樹(shù)齡的增加變化波動(dòng)較大,不同樹(shù)齡楊梅的土壤無(wú)顯著差異和明顯規(guī)律。鉀元素由于其移動(dòng)性強(qiáng)的特性,在不同年份和氣候易受徑流、淋溶等影響而流失[33]。通過(guò)對(duì)比結(jié)果可以發(fā)現(xiàn),在經(jīng)濟(jì)林土壤管理中,人為施肥是影響土壤養(yǎng)分有效態(tài)的主導(dǎo)因素[31] 。

楊梅生長(zhǎng)地的海拔、坡向和坡度不同,會(huì)導(dǎo)致楊梅生長(zhǎng)環(huán)境的光照、溫度和濕度的差異,影響土壤中有效養(yǎng)分的釋放[62],最終影響到楊梅的生長(zhǎng)發(fā)育、果實(shí)的產(chǎn)量、品質(zhì)和成熟時(shí)間。根據(jù)楊梅喜陰耐濕的特點(diǎn),在楊梅園的選址時(shí),應(yīng)根據(jù)楊梅品種的成熟時(shí)間,選取不同海拔。同時(shí)在空氣濕度大、排水效果良好的陰(半陰)坡上種植楊梅,果實(shí)的品質(zhì)會(huì)有顯著的提升。當(dāng)具備一定經(jīng)濟(jì)條件時(shí),楊梅果農(nóng)可以搭建設(shè)施大棚。設(shè)施栽培可以針對(duì)性地解決外界對(duì)楊梅生長(zhǎng)的干擾問(wèn)題,控制果實(shí)成熟的時(shí)間,提升果實(shí)的品質(zhì),還能起到防蟲防風(fēng),提前、推遲和延長(zhǎng)收獲時(shí)間等作用[63]。

4 結(jié) 論

楊梅主產(chǎn)區(qū)土壤肥力主要受到人為施肥影響,土壤酸化和肥力失衡問(wèn)題嚴(yán)重,需要在仙居和臨海東部增加肥料施用量,仙居和臨海西部則需要適當(dāng)降低化肥的施用比例,主產(chǎn)區(qū)還需增加磷肥的施用,為緩解土壤酸化問(wèn)題,可利用生石灰、有機(jī)肥和生理堿性肥料(如草木灰)改良。

參考文獻(xiàn) References:

[1] 劉占鋒,傅伯杰,劉國(guó)華,朱永官. 土壤質(zhì)量與土壤質(zhì)量指標(biāo)及其評(píng)價(jià)[J]. 生態(tài)學(xué)報(bào),2006,26(3):901-913.

LIU Zhanfeng,F(xiàn)U Bojie,LIU Guohua,ZHU Yongguan. Soil quality:Concept,indicators and its assessment[J]. Acta Ecologica Sinica,2006,26(3):901-913.

[2] EL-NAGGAR A,LEE S S,RINKLEBE J,F(xiàn)AROOQ M,SONG H,SARMAH A K,ZIMMERMAN A R,AHMAD M,SHAHEEN S M,OK Y S. Biochar application to low fertility soils:A review of current status,and future prospects[J]. Geoderma,2019,337:536-554.

[3] 朱永官,李剛,張甘霖,傅伯杰. 土壤安全:從地球關(guān)鍵帶到生態(tài)系統(tǒng)服務(wù)[J]. 地理學(xué)報(bào),2015,70(12):1859-1869.

ZHU Yongguan,LI Gang,ZHANG Ganlin,F(xiàn)U Bojie. Soil security:From Earths critical zone to ecosystem services[J]. Acta Geographica Sinica,2015,70(12):1859-1869.

[4] 張甘霖,史舟,朱阿興,王秋兵,吳克寧,史志華,趙永存,趙玉國(guó),潘賢章,劉峰,宋效東. 土壤時(shí)空變化研究的進(jìn)展與未來(lái)[J]. 土壤學(xué)報(bào),2020,57(5):1060-1070.

ZHANG Ganlin,SHI Zhou,ZHU Axing,WANG Qiubing,WU Kening,SHI Zhihua,ZHAO Yongcun,ZHAO Yuguo,PAN Xianzhang,LIU Feng,SONG Xiaodong. Progress and perspective of studies on soils in space and time[J]. Acta Pedologica Sinica,2020,57(5):1060-1070.

[5] 夏子書,白一茹,王幼奇,包維斌,楊帆,鐘艷霞,李鳴驥. 基于GIS和隨機(jī)森林算法的寧東土壤飽和導(dǎo)水率分布與預(yù)測(cè)[J]. 水土保持學(xué)報(bào),2021,35(1):285-293.

XIA Zishu,BAI Yiru,WANG Youqi,BAO Weibin,YANG Fan,ZHONG Yanxia,LI Mingji. Distribution and prediction of soil saturated hydraulic conductivity in ningdong based on GIS and random forest algorithm[J]. Journal of Soil and Water Conservation,2021,35(1):285-293.

[6] 羅梅,郭龍,張海濤,汪善勤,梁攀. 基于環(huán)境變量的中國(guó)土壤有機(jī)碳空間分布特征[J]. 土壤學(xué)報(bào),2020,57(1):48-59.

LUO Mei,GUO Long,ZHANG Haitao,WANG Shanqin,LIANG Pan. Characterization of spatial distribution of soil organic carbon in China based on environmental variables[J]. Acta Pedologica Sinica,2020,57(1):48-59.

[7] 姜霓雯,童根平,葉正錢,程樟峰,呂永強(qiáng),傅偉軍. 浙江清涼峰自然保護(hù)區(qū)土壤肥力指標(biāo)空間變異及其影響因素[J]. 生態(tài)學(xué)報(bào),2022,42(6):2430-2441.

JIANG Niwen,TONG Genping,YE Zhengqian,CHENG Zhangfeng,L? Yongqiang,F(xiàn)U Weijun. Spatial variability of soil fertility properties and its affecting factors of Qingliangfeng Nature Reserve,Zhejiang[J]. Acta Ecologica Sinica,2022,42(6):2430-2441.

[8] WANG Y,HEBERLING G,G?RZEN E,MIEHE G,SEEBER E,WESCHE K. Combined effects of livestock grazing and abiotic environment on vegetation and soils of grasslands across Tibet[J]. Applied Vegetation Science,2017,20(3):327-339.

[9] 雷丹,李軍勝,李書藝,祝振洲,何靜仁. 蓮藕可溶性膳食纖維與多酚復(fù)合物的穩(wěn)定性及脂肪吸附活性研究[J]. 中國(guó)食品學(xué)報(bào),2022,22(2):31-39.

LEI Dan,LI Junsheng,LI Shuyi,ZHU Zhenzhou,HE Jingren. Stability and fat adsorption activity of the complex of soluble dietary fiber and polyphenols from lotus root[J]. Journal of Chinese Institute of Food Science and Technology,2022,22(2):31-39.

[10] 柏德玟,周慧芬,姚瑩. 浙江水果產(chǎn)業(yè)發(fā)展70年[J]. 中國(guó)南方果樹(shù),2021,50(4):177-183.

BAI Dewen,ZHOU Huifen,YAO Ying. 70 years of fruit industry development in Zhejiang Province[J]. South China Fruits,2021,50(4):177-183.

[11] BONANOMI G,DE FILIPPIS F,ZOTTI M,IDBELLA M,CESARANO G,AL-ROWAILY S,ABD-ELGAWAD A. Repeated applications of organic amendments promote beneficial microbiota,improve soil fertility and increase crop yield[J]. Applied Soil Ecology,2020,156:103714.

[12] PEIGN? J,VIAN J F,PAYET V,SABY N P A. Soil fertility after 10 years of conservation tillage in organic farming[J]. Soil and Tillage Research,2018,175:194-204.

[13] ZHANG X F,ZHU A N,XIN X L,YANG W L,ZHANG J B,DING S J. Tillage and residue management for long-term wheat-maize cropping in the North China Plain:I. Crop yield and integrated soil fertility index[J]. Field Crops Research,2018,221:157-165.

[14] 楊東偉,章明奎,張鵬啟,楊永德. 水田改果園后土壤微生物學(xué)特性演變[J]. 土壤學(xué)報(bào),2018,55(1):182-193.

YANG Dongwei,ZHANG Mingkui,ZHANG Pengqi,YANG Yongde. Evolution of soil in microbiology after reclamation of paddy into orchard[J]. Acta Pedologica Sinica,2018,55(1):182-193.

[15] 張思庭. 楊梅林產(chǎn)量、果實(shí)品質(zhì)及土壤對(duì)養(yǎng)分補(bǔ)償?shù)捻憫?yīng)[D]. 福州:福建農(nóng)林大學(xué),2018.

ZHANG Siting. Effect of nutrient compensation on productivity,fruit and soil quality of Myrica rubra[D]. Fuzhou:Fujian Agriculture and Forestry University,2018.

[16] 顏曉捷,黃堅(jiān)欽,邱智敏,努爾阿米娜·熱合曼,朱旻華,吳家森. 生草栽培對(duì)楊梅果園土壤理化性質(zhì)和果實(shí)品質(zhì)的影響[J]. 浙江農(nóng)林大學(xué)學(xué)報(bào),2011,28(6):850-854.

YAN Xiaojie,HUANG Jianqin,QIU Zhimin,Nuramina·Rahman,ZHU Minhua,WU Jiasen. Soil physical and chemical properties and fruit quality with grass cover in a Myrica rubra orchard[J]. Journal of Zhejiang A & F University,2011,28(6):850-854.

[17] 郭秀珠,姜武,黃品湖,梁森苗,陳魏,鄭錫良,戚行江. 鉀鎂肥配施對(duì)楊梅品質(zhì)和礦質(zhì)營(yíng)養(yǎng)的影響[J]. 中國(guó)南方果樹(shù),2017,46(3):72-75.

GUO Xiuzhu,JIANG Wu,HUANG Pinhu,LIANG Senmiao,CHEN Wei,ZHENG Xiliang,QI Xingjian. Effects of combined application of potassium and magnesium fertilizer on quality and mineral nutrition of Myrica rubra[J]. South China Fruits,2017,46(3):72-75.

[18] 任海英,徐巧,戚行江,俞浙萍,鄭錫良,張淑文,王震鑠. 健康與凋萎病楊梅樹(shù)體及根圍菌群的差異[J]. 應(yīng)用生態(tài)學(xué)報(bào),2021,32(9):3107-3118.

REN Haiying,XU Qiao,QI Xingjiang,YU Zheping,ZHENG Xiliang,ZHANG Shuwen,WANG Zhenshuo. Differences of bacterial and fungal communities in the tree and rhizosphere of the healthy and twig blight-diseased bayberry[J]. Chinese Journal of Applied Ecology,2021,32(9):3107-3118.

[19] 葉柳欣,張勇,蔣仲龍,呂愛(ài)華,王增,周本智,王曉曉,吳家森. 不同林齡楊梅葉片與土壤的碳、氮、磷生態(tài)化學(xué)計(jì)量特征[J]. 安徽農(nóng)業(yè)大學(xué)學(xué)報(bào),2019,46(3):454-459.

YE Liuxin,ZHANG Yong,JIANG Zhonglong,L? Aihua,WANG Zeng,ZHOU Benzhi,WANG Xiaoxiao,WU Jiasen. The stoichiometic characteristics of carbon,nitrogen and phosphorus in soil and leaves of different ages of Myrica rubra[J]. Journal of Anhui Agricultural University,2019,46(3):454-459.

[20] 何風(fēng)杰,高洪勤,徐春燕. 臺(tái)州市水果產(chǎn)業(yè)現(xiàn)狀、存在問(wèn)題和對(duì)策建議[J]. 中國(guó)果業(yè)信息,2020,37(2):15-17.

HE Fengjie,GAO Hongqin,XU Chunyan. Present situation,existing problems and countermeasures of fruit industry in Taizhou city[J]. China Fruit News,2020,37(2):15-17.

[21] 張建斌,應(yīng)錚崢. 仙居縣楊梅產(chǎn)業(yè)綠色化發(fā)展主要做法及成效[J]. 現(xiàn)代農(nóng)業(yè)科技,2020(22):214-216.

ZHANG Jianbin,YING Zhengzheng. Main methods and effects of green development of Myrica rubra industry in Xianju county[J]. Modern Agricultural Science and Technology,2020(22):214-216.

[22] BAVEC ?,GOSAR M. Speciation,mobility and bioaccessibility of Hg in the polluted urban soil of Idrija (Slovenia)[J]. Geoderma,2016,273:115-130.

[23] FLEM B,EGGEN O A,TORGERSEN E,KONGSVIK M K,OTTESEN R T. Urban geochemistry in Kristiansand,Norway[J]. Journal of Geochemical Exploration,2018,187:21-33.

[24] 鮑士旦. 土壤農(nóng)化分析[M]. 3版. 北京:中國(guó)農(nóng)業(yè)出版社,2000.

BAO Shidan. Soil and agricultural chemistry analysis[M]. 3rd ed. Beijing:China Agriculture Press,2000.

[25] 史舟,李艷. 地統(tǒng)計(jì)學(xué)在土壤學(xué)中的應(yīng)用[M]. 北京:中國(guó)農(nóng)業(yè)出版社,2006.

SHI Zhou,LI Yan. Geostatistics and its application in soil science[M]. Beijing:China Agriculture Press,2006.

[26] DIODATO N,CECCARELLI M. Multivariate indicator Kriging approach using a GIS to classify soil degradation for Mediterranean agricultural lands[J]. Ecological Indicators,2004,4(3):177-187.

[27] MIAO Y,MULLA D J,ROBERT P C. Spatial variability of soil properties,corn quality and yield in two Illinois,USA fields:Implications for precision corn management[J]. Precision Agriculture,2006,7(1):5-20.

[28] KRAVCHENKO A N,THELEN K D,BULLOCK D G,MILLER N R. Relationship among crop grain yield,topography,and soil electrical conductivity studied with cross-correlograms[J]. Agronomy Journal,2003,95(5):1132-1139.

[29] 陳洋,齊雁冰,王茵茵,黃標(biāo),劉姣姣,張亮亮. 多重密度布點(diǎn)對(duì)土壤有機(jī)質(zhì)空間特性的解析[J]. 自然資源學(xué)報(bào),2016,31(12):2099-2110.

CHEN Yang,QI Yanbing,WANG Yinyin,HUANG Biao,LIU Jiaojiao,ZHANG Liangliang. Spatial characters of soil organic matter with multi-sampling density[J]. Journal of Natural Resources,2016,31(12):2099-2110.

[30] 馮家東,吳炳孫,王晶晶. 基于協(xié)同克里格的橡膠園土壤速效鉀空間變異性[J]. 應(yīng)用生態(tài)學(xué)報(bào),2022,33(4):915-921.

FENG Jiadong,WU Bingsun,WANG Jingjing. Spatial variability of soil available potassium in rubber plantation based on coKriging[J]. Chinese Journal of Applied Ecology,2022,33(4):915-921.

[31] DAI W,LI Y H,F(xiàn)U W J,JIANG P K,ZHAO K L,LI Y F,PENTTINEN P. Spatial variability of soil nutrients in forest areas:A case study from subtropical China[J]. Journal of Plant Nutrition and Soil Science,2018,181(6):827-835.

[32] 戴巍,趙科理,高智群,劉康華,張峰,傅偉軍. 典型亞熱帶森林生態(tài)系統(tǒng)碳密度及儲(chǔ)量空間變異特征[J]. 生態(tài)學(xué)報(bào),2017,37(22):7528-7538.

DAI Wei,ZHAO Keli,GAO Zhiqun,LIU Kanghua,ZHANG Feng,F(xiàn)U Weijun. Spatial variation characteristics of carbon density and storage in forest ecosystems in a typical subtropical region[J]. Acta Ecologica Sinica,2017,37(22):7528-7538.

[33] 董佳琦,張勇,傅偉軍,劉海英,王增,呂聯(lián)江,謝秉樓,蔣仲龍. 香榧主產(chǎn)區(qū)林地土壤養(yǎng)分空間異質(zhì)性及其肥力評(píng)價(jià)[J]. 生態(tài)學(xué)報(bào),2021,41(6):2292-2304.

DONG Jiaqi,ZHANG Yong,F(xiàn)U Weijun,LIU Haiying,WANG Zeng,L? Lianjiang,XIE Binglou,JIANG Zhonglong. Spatial variation of soil nutrients and evaluation of integrated soil fertility in Torreya grandis cv. Merrillii region[J]. Acta Ecologica Sinica,2021,41(6):2292-2304.

[34] QI Y B,DARILEK J L,HUANG B,ZHAO Y C,SUN W X,GU Z Q. Evaluating soil quality indices in an agricultural region of Jiangsu Province,China[J]. Geoderma,2009,149(3/4):325-334.

[35] CHEN S,LIN B W,LI Y Q,ZHOU S N. Spatial and temporal changes of soil properties and soil fertility evaluation in a large grain-production area of subtropical plain,China[J]. Geoderma,2020,357:113937.

[36] 李慧,汪景寬,裴久渤,李雙異. 基于結(jié)構(gòu)方程模型的東北地區(qū)主要旱田土壤有機(jī)碳平衡關(guān)系研究[J]. 生態(tài)學(xué)報(bào),2015,35(2):517-525.

LI Hui,WANG Jingkuan,PEI Jiubo,LI Shuangyi. Equilibrium relationships of soil organic carbon in the main croplands of northeast China based on structural equation modeling[J]. Acta Ecologica Sinica,2015,35(2):517-525.

[37] ALLAN E,MANNING P,ALT F,BINKENSTEIN J,BLASER S,BL?THGEN N,B?HM S,GRASSEIN F,H?LZEL N,KLAUS V H,KLEINEBECKER T,MORRIS E K,OELMANN Y,PRATI D,RENNER S C,RILLIG M C,SCHAEFER M,SCHLOTER M,SCHMITT B,SCH?NING I,SCHRUMPF M,SOLLY E,SORKAU E,STECKEL J,STEFFEN-DEWENTER I,STEMPFHUBER B,TSCHAPKA M,WEINER C N,WEISSER W W,WERNER M,WESTPHAL C,WILCKE W,F(xiàn)ISCHER M. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition[J]. Ecology Letters,2015,18(8):834-843.

[38] 吳明隆. 結(jié)構(gòu)方程模型:AMOS的操作與應(yīng)用[M]. 重慶:重慶大學(xué)出版社,2009.

WU Minglong. Structural equation model:Operation and application of AMOS[M]. Chongqing:Chongqing University Press,2009.

[39] 王新源,馬立鵬,程小云,張琴,蘭芳芳,李源,唐霞,曲浩,連杰,李玉霖. 不同治沙措施對(duì)荒漠綠洲過(guò)渡帶植物群落與土壤因子的影響[J]. 生態(tài)學(xué)報(bào),2022,42(14):5869-5883.

WANG Xinyuan,MA Lipeng,CHENG Xiaoyun,ZHANG Qin,LAN Fangfang,LI Yuan,TANG Xia,QU Hao,LIAN Jie,LI Yulin. Effects of different sand control measures on plant communities and soil factors in the desert-oasis ecotone[J]. Acta Ecologica Sinica,2022,42(14):5869-5883.

[40] 張紅桔,趙科理,葉正錢,許斌,趙偉明,顧曉波,張華鋒. 典型山核桃產(chǎn)區(qū)土壤重金屬空間異質(zhì)性及其風(fēng)險(xiǎn)評(píng)價(jià)[J]. 環(huán)境科學(xué),2018,39(6):2893-2903.

ZHANG Hongju,ZHAO Keli,YE Zhengqian,XU Bin,ZHAO Weiming,GU Xiaobo,ZHANG Huafeng. Spatial variation of heavy metals in soils and its ecological risk evaluation in a typical Carya cathayensis production area[J]. Environmental Science,2018,39(6):2893-2903.

[41] 梁森苗,王耀鋒,劉玉學(xué),呂豪豪,楊生茂. 我國(guó)楊梅主產(chǎn)地土壤養(yǎng)分狀況的分析[J]. 果樹(shù)學(xué)報(bào),2015,32(4):658-665.

LIANG Senmiao,WANG Yaofeng,LIU Yuxue,L? Haohao,YANG Shengmao. Present situation of soil nutrients in bayberry orchard of China[J]. Journal of Fruit Science,2015,32(4):658-665.

[42] 李守娟,楊磊,陳利頂,趙方凱,孫龍. 長(zhǎng)三角典型城郊土地利用變化及其土壤碳氮響應(yīng)[J]. 生態(tài)學(xué)報(bào),2018,38(20):7178-7188.

LI Shoujuan,YANG Lei,CHEN Liding,ZHAO Fangkai,SUN Long. Land use change and its influence on soil organic carbon and total nitrogen in a typical peri-urban watershed of the Yangtze River Delta[J]. Acta Ecologica Sinica,2018,38(20):7178-7188.

[43] 柴春燕,宋緒忠,徐紹清,鄭金土. 楊梅園土壤酸化原因及改良措施[J]. 現(xiàn)代園藝,2015(14):217-219.

CHAI Chunyan,SONG Xuzhong,XU Shaoqing,ZHENG Jintu. Causes and improvement measures of soil acidification in Myrica rubra orchard[J]. Contemporary Horticulture,2015(14):217-219.

[44] 朱浩宇,高明,龍翼,徐國(guó)鑫,王富華,王子芳. 化肥減量有機(jī)替代對(duì)紫色土旱坡地土壤氮磷養(yǎng)分及作物產(chǎn)量的影響[J]. 環(huán)境科學(xué),2020,41(4):1921-1929.

ZHU Haoyu,GAO Ming,LONG Yi,XU Guoxin,WANG Fuhua,WANG Zifang. Effects of fertilizer reduction and application of organic fertilizer on soil nitrogen and phosphorus nutrients and crop yield in a purple soil sloping field[J]. Environmental Science,2020,41(4):1921-1929.

[45] 陳娜,王秀榮,嚴(yán)小龍,廖紅. 酸性土壤上缺磷和鋁毒對(duì)大豆生長(zhǎng)的交互作用[J]. 應(yīng)用生態(tài)學(xué)報(bào),2010,21(5):1301-1307.

CHEN Na,WANG Xiurong,YAN Xiaolong,LIAO Hong. Interactive effects of P deficiency and Al toxicity on soybean growth:A pot experiment with acid soil[J]. Chinese Journal of Applied Ecology,2010,21(5):1301-1307.

[46] 孫玉冰,鄧守彥,李德志,宋云,李紅,周燕,王春葉,趙魯青,李立科. 崇明縣土壤主要理化指標(biāo)的空間分布與變異特征[J]. 生態(tài)與農(nóng)村環(huán)境學(xué)報(bào),2010,26(4):306-312.

SUN Yubing,DENG Shouyan,LI Dezhi,SONG Yun,LI Hong,ZHOU Yan,WANG Chunye,ZHAO Luqing,LI Like. Spatial distribution and variability of main soil physical and chemical properties in Chongming and affecting factors[J]. Journal of Ecology and Rural Environment,2010,26(4):306-312.

[47] 牛文鵬,李青圃,李鋮,程炯,吉冬青,蔣新宇,劉通. 珠江三角洲土壤養(yǎng)分多尺度空間分異及環(huán)境驅(qū)動(dòng)力[J]. 生態(tài)環(huán)境學(xué)報(bào),2021,30(4):743-755.

NIU Wenpeng,LI Qingpu,LI Cheng,CHENG Jiong,JI Dongqing,JIANG Xinyu,LIU Tong. Multi-scale spatial variability and environmental drivers of soil nutrient distributions in the Pearl River Delta,South China[J]. Ecology and Environmental Sciences,2021,30(4):743-755.

[48] 張彬,楊聯(lián)安,楊粉莉,王輝,謝賢健,陳衛(wèi)軍. 基于投影尋蹤的土壤養(yǎng)分綜合評(píng)價(jià)及影響因素研究[J]. 土壤,2020,52(6):1239-1247.

ZHANG Bin,YANG Lianan,YANG Fenli,WANG Hui,XIE Xianjian,CHEN Weijun. Study on comprehensive evaluation and influencing factors of soil nutrients based on projection pursuit[J]. Soils,2020,52(6):1239-1247.

[49] 姜沛沛,曹揚(yáng),陳云明,王芳. 不同林齡油松(Pinus tabulaeformis)人工林植物、凋落物與土壤C、N、P化學(xué)計(jì)量特征[J]. 生態(tài)學(xué)報(bào),2016,36(19):6188-6197.

JIANG Peipei,CAO Yang,CHEN Yunming,WANG Fang. Variation of C,N,and P stoichiometry in plant tissue,litter,and soil during stand development in Pinus tabulaeformis plantation[J]. Acta Ecologica Sinica,2016,36(19):6188-6197.

[50] 馬亞娟,徐福利,王渭玲,陳欽程,趙海燕,趙亞芳. 氮磷提高華北落葉松人工林地土壤養(yǎng)分和酶活性的作用[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2015,21(3):664-674.

MA Yajuan,XU Fuli,WANG Weiling,CHEN Qincheng,ZHAO Haiyan,ZHAO Yafang. Increase of soil nutrients and enzymatic activity by adding nitrogen and phosphorus to Larix principis-rupprechtii plantation[J]. Journal of Plant Nutrition and Fertilizer,2015,21(3):664-674.

[51] 徐敏,宋春,毛璐,肖霞. 不同土地利用方式下紫色土磷吸附-解吸動(dòng)力學(xué)特征[J]. 水土保持通報(bào),2015,35(5):39-44.

XU Min,SONG Chun,MAO Lu,XIAO Xia. Dynamics of phosphorus adsorption-desorption in purple soil under different land use types[J]. Bulletin of Soil and Water Conservation,2015,35(5):39-44.

[52] JIAO X Q,LYU Y,WU X B,LI H G,CHENG L Y,ZHANG C C,YUAN L X,JIANG R F,JIANG B W,RENGEL Z,ZHANG F S,DAVIES W J,SHEN J B. Grain production versus resource and environmental costs:Towards increasing sustainability of nutrient use in China[J]. Journal of Experimental Botany,2016,67(17):4935-4949.

[53] CUI Z L,ZHANG H Y,CHEN X P,ZHANG C C,MA W Q,HUANG C D,ZHANG W F,MI G H,MIAO Y X,LI X L,GAO Q,YANG J C,WANG Z H,YE Y L,GUO S W,LU J W,HUANG J L,LV S H,SUN Y X,LIU Y Y,PENG X L,REN J,LI S Q,DENG X P,SHI X J,ZHANG Q,YANG Z P,TANG L,WEI C Z,JIA L L,ZHANG J W,HE M R,TONG Y N,TANG Q Y,ZHONG X H,LIU Z H,CAO N,KOU C L,YING H,YIN Y L,JIAO X Q,ZHANG Q S,F(xiàn)AN M S,JIANG R F,ZHANG F S,DOU Z X. Pursuing sustainable productivity with millions of smallholder farmers[J]. Nature,2018,555(7696):363-366.

[54] 李偉峰,葉英聰,朱安繁,饒磊,孫凱,袁頡,郭熙. 近30 a江西省農(nóng)田土壤pH時(shí)空變化及其與酸雨和施肥量間關(guān)系[J]. 自然資源學(xué)報(bào),2017,32(11):1942-1953.

LI Weifeng,YE Yingcong,ZHU Anfan,RAO Lei,SUN Kai,YUAN Jie,GUO Xi. Spatio-temporal variation of pH in cropland of Jiangxi Province in the past 30 years and its relationship with acid rain and fertilizer application[J]. Journal of Natural Resources,2017,32(11):1942-1953.

[55] 高璐陽(yáng),馬志明,沈彥輝,劉中良. 基于模糊數(shù)學(xué)法的山東省蔬菜優(yōu)勢(shì)產(chǎn)區(qū)土壤肥力綜合評(píng)價(jià)[J]. 中國(guó)瓜菜,2022,35(11):27-33.

GAO Luyang,MA Zhiming,SHEN Yanhui,LIU Zhongliang. Comprehensive evaluation of soil fertility in dominant vegetable producing areas of Shandong Province by fuzzy number method[J]. China Cucurbits and Vegetables,2022,35(11):27-33.

[56] 方斌,吳金鳳,倪紹祥. 浦江縣土壤堿解氮的空間變異與農(nóng)戶N投入的關(guān)聯(lián)分析[J]. 生態(tài)學(xué)報(bào),2012,32(20):6489-6500.

FANG Bin,WU Jinfeng,NI Shaoxiang. Correlation analysis of spatial variability of soil available nitrogen and household nitrogen inputs at Pujiang County[J]. Acta Ecologica Sinica,2012,32(20):6489-6500.

[57] SUMFLETH K,DUTTMANN R. Prediction of soil property distribution in paddy soil landscapes using terrain data and satellite information as indicators[J]. Ecological Indicators,2008,8(5):485-501.

[58] 段春燕,沈育伊,徐廣平,滕秋梅,張德楠,何成新,張中峰,周龍武,孫英杰. 桉樹(shù)枝條生物炭輸入對(duì)桂北桉樹(shù)人工林酸化土壤的作用效果[J]. 環(huán)境科學(xué),2020,41(9):4234-4245.

DUAN Chunyan,SHEN Yuyi,XU Guangping,TENG Qiumei,ZHANG Denan,HE Chengxin,ZHANG Zhongfeng,ZHOU Longwu,SUN Yingjie. Effects of Eucalyptus branches biochar application on soil physicochemical properties of acidified soil in a Eucalyptus plantation in northern Guangxi[J]. Environmental Science,2020,41(9):4234-4245.

[59] 王振,王子煜,韓清芳,李文靜,韓麗娜,丁瑞霞,賈志寬,楊寶平. 黃土高原苜蓿草地土壤碳、氮變化特征研究[J]. 草地學(xué)報(bào),2013,21(6):1073-1079.

WANG Zhen,WANG Ziyu,HAN Qingfang,LI Wenjing,HAN Lina,DING Ruixia,JIA Zhikuan,YANG Baoping. Soil carbon and nitrogen variation characteristics of alfalfa grassland in loess plateau area[J]. Acta Agrestia Sinica,2013,21(6):1073-1079.

[60] 劉順,盛可銀,劉喜帥,吳珍花,郭曉敏,肖復(fù)明,張文元. 陳山紅心杉根際土壤有機(jī)碳、氮含量及根際效應(yīng)[J]. 生態(tài)學(xué)雜志,2017,36(7):1957-1964.

LIU Shun,SHENG Keyin,LIU Xishuai,WU Zhenhua,GUO Xiaomin,XIAO Fuming,ZHANG Wenyuan. Contents of soil organic carbon and nitrogen forms in rhizosphere soil of Cunninghamia lanceolata and the rhizopshere effect[J]. Chinese Journal of Ecology,2017,36(7):1957-1964.

[61] 劉順,劉喜帥,朱新傳,盛可銀,郭曉敏,張文元. 陳山紅心杉土壤養(yǎng)分、酶活性的根際效應(yīng)及肥力評(píng)價(jià)[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2017,23(2):492-501.

LIU Shun,LIU Xishuai,ZHU Xinchuan,SHENG Keyin,GUO Xiaomin,ZHANG Wenyuan. Rhizosphere effects of nutrients and enzyme activities of Cunninghania lanceolata and soil fertility assessment[J]. Journal of Plant Nutrition and Fertilizer,2017,23(2):492-501.

[62] 李勛,張健,楊萬(wàn)勤,張艷,張明錦,劉華,劉洋. 紅椿凋落葉全碳釋放的林窗效應(yīng)[J]. 自然資源學(xué)報(bào),2016,31(7):1114-1126.

LI Xun,ZHANG Jian,YANG Wanqin,ZHANG Yan,ZHANG Mingjin,LIU Hua,LIU Yang. Effect of forest gap on carbon release of Toona ciliata leaf litter[J]. Journal of Natural Resources,2016,31(7):1114-1126.

[63] 彭健健,王增,張勇,劉海英,顧光同,彭欣怡,吳家森,葉子豪,張申,尚世宇. 楊梅人工林相容性單株生物量模型構(gòu)建[J]. 浙江農(nóng)林大學(xué)學(xué)報(bào),2022,39(2):272-279.

PENG Jianjian,WANG Zeng,ZHANG Yong,LIU Haiying,GU Guangtong,PENG Xinyi,WU Jiasen,YE Zihao,ZHANG Shen,SHANG Shiyu. Construction of compatible individual tree biomass model of Myrica rubra plantation[J]. Journal of Zhejiang A & F University,2022,39(2):272-279.

猜你喜歡
空間分布結(jié)構(gòu)方程模型土壤肥力
拉薩市土壤肥力變化趨勢(shì)與改良策略
白龜山濕地重金屬元素分布特征及其來(lái)源分析
綠色科技(2016年20期)2016-12-27 17:34:13
我國(guó)信托業(yè)資本配置效率影響因素研究
企業(yè)內(nèi)部知識(shí)源R&D搜尋活動(dòng)對(duì)吸收能力的作用機(jī)制
基于GIS技術(shù)的福建省柳葉白前資源適宜性空間分布研究
基于結(jié)構(gòu)方程模型改進(jìn)ARMA模型參數(shù)估計(jì)
江蘇省臭氧污染變化特征
科技視界(2016年18期)2016-11-03 23:51:58
鐵路客流時(shí)空分布研究綜述
消費(fèi)者網(wǎng)絡(luò)購(gòu)物行為決策影響因素實(shí)證分析
安吉白茶園土壤肥力現(xiàn)狀分析
茶葉(2014年4期)2014-02-27 07:05:15
师宗县| 安阳市| 朔州市| 驻马店市| 鹤壁市| 通化市| 化德县| 毕节市| 柳林县| 久治县| 南阳市| 石嘴山市| 菏泽市| 裕民县| 开平市| 阆中市| 山阳县| 卢龙县| 凤阳县| 即墨市| 清水河县| 永吉县| 体育| 昭苏县| 大姚县| 琼海市| 民权县| 屏南县| 航空| 东莞市| 四子王旗| 卓尼县| 烟台市| 剑川县| 通州区| 枝江市| 紫云| 新沂市| 洛阳市| 津市市| 赤水市|