国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

枇杷果實采前皺縮的轉(zhuǎn)錄組分析

2023-07-27 16:17:41常曉曉彭程陳慧瓊陸育生邱繼水
果樹學報 2023年7期
關鍵詞:轉(zhuǎn)錄組果實枇杷

常曉曉 彭程 陳慧瓊 陸育生 邱繼水

摘 ? ?要:【目的】了解早鐘6號枇杷果實采前遇到高溫天氣出現(xiàn)皺縮現(xiàn)象的分子機制,為培育抗皺縮枇杷品種奠定理論基礎。【方法】以易皺縮的早鐘6號枇杷果實和抗皺縮的思賀大果枇杷果實為材料,對早鐘6號枇杷采前不同皺縮程度的果實(正常果ZZS1、輕度皺縮果ZZS2和皺縮果ZZS3)進行生理生化指標分析,并對思賀大果枇杷和早鐘6號枇杷果實進行轉(zhuǎn)錄組測序,分析早鐘6號枇杷不同程度皺縮果實之間以及與思賀大果枇杷之間的差異基因表達情況,篩選與枇杷果實皺縮相關的基因?!窘Y果】早鐘6號枇杷皺縮果(ZZS2、ZZS3)與正常果(ZZS1)相比,丙二醛和脯氨酸含量、超氧化物歧化酶(SOD)和過氧化物酶(POD)活性均顯著升高。對轉(zhuǎn)錄組測序結果分析發(fā)現(xiàn),可能與枇杷果實采前皺縮相關的基因主要參與植物激素信號轉(zhuǎn)導途徑、苯丙烷生物合成途徑、淀粉和蔗糖代謝途徑、油菜素內(nèi)脂生物合成和信號轉(zhuǎn)導等代謝途徑。參與苯丙烷生物合成的12個基因中,有9個與木質(zhì)素合成相關,在DG vs ZZS1比較中均上調(diào)表達;參與植物激素信號轉(zhuǎn)導途徑的13個基因中,有6個(2個GH3和4個SAUR)參與生長素信號轉(zhuǎn)導;2個基因(EVM0023097和EVM0032997)參與油菜素內(nèi)脂生物合成途徑,在DG vs ZZS1、ZZS1 vs ZZS2和ZZS1 vs ZZS3三組比較中表達量均上調(diào);NAC轉(zhuǎn)錄因子基因在ZZS1 vs ZZS2、ZZS1 vs ZZS3、ZZS2 vs ZZS3三組比較中表達量均上調(diào)。結果表明,生長素和油菜素內(nèi)脂這兩種植物激素可能參與枇杷果實采前皺縮過程,木質(zhì)素合成相關基因可能與不同枇杷品種應對高溫抗皺縮能力有關,NAC轉(zhuǎn)錄因子可能參與調(diào)控枇杷果實皺縮相關基因的表達。【結論】木質(zhì)素可能與枇杷不同品種應對高溫脅迫的能力相關,生長素和油菜素內(nèi)脂可能在枇杷果實應對高溫脅迫的過程中起作用。

關鍵詞:枇杷;果實;皺縮;高溫;轉(zhuǎn)錄組

中圖分類號:S667.3 文獻標志碼:A 文章編號:1009-9980(2023)07-1342-12

Transcriptome analysis of pre-harvest fruit shrinkage in loquat

CHANG Xiaoxiao, PENG Cheng, CHEN Huiqiong, LU Yusheng, QIU Jishui*

(Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences/Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affair/Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, Guangdong, China)

Abstract: 【Objective】 The objective of the experiment is to understand the molecular mechanism of fruit shrinkage of Zaozhong 6 loquat when it was encountering high temperature before harvest, so as to lay a theoretical foundation for cultivating anti-shrinkage loquat varieties. Pre-harvest fruit shrinkage is affected by environmental factors, varieties and hormone levels in the tree. There are few studies on the molecular mechanism of pre-harvest fruit shrinkage and the screening and cultivation of anti-shrinkage varieties. A pre-harvest non-wrinkling loquat variety Sihedaguo was screened out from the resource nursery by our research group. It was used as an anti-wrinkling variety that was compared with Zaozhong 6 to preliminarily analyze the molecular mechanism of the difference in anti-wrinkling ability among the varieties. 【Methods】 Zaozhong 6 (easy to wrinkle) and Sihedaguo (anti-winkling) loquat fruits were selected as the materials. The physiological [malonaldehyde (MDA) and proline] and biochemical [superoxide dismutase (SOD) and peroxidase (POD)] indexes of pre-havest Zaozhong 6 loquat fruits with different shrinkage degrees (normal fruit labeled as ZZS1, slightly shrunken fruit as ZZS2 and shrunken fruit as ZZS3) were analyzed. Transcriptome sequencing of Sihedaguo (DG) and Zaozhong 6 loquat fruits with different shrinkage degrees was carried out. The differentially expressed genes among different degrees of shrunken fruits of Zaozhong 6, and differentially expressed genes between Sihedaguo and Zaozhong 6 normal fruits were analyzed, so as to screen the genes related to fruit shrinkage in loquat. 【Results】 Compared with the normal fruit (ZZS1), the contents of MDA and proline, and the activity of SOD and POD in the shrunken fruits (ZZS2, ZZS3) of Zaozhong 6 significantly increased. The content of proline and the activity of POD in ZZS3 increased by 81.9% and 94.5%, respectively compared with ZZS1. Four groups of samples (DG, ZZS1, ZZS2 and ZZS3) were subjected to transcriptome sequencing analysis. A total of 76.26 Gb Clean Data was obtained, and the percentage of Q30 bases in each sample was greater than 90%. Compared with ZZS1, there were 4245 differentially expressed genes in ZZS3, of which 2265 were up-regulated and 1980 were down-regulated. In order to screen the key genes affecting the shrinkage of Zaozhong 6 loquat, Venn diagram and differential expression gene analysis were carried out with the comparison of ZZS1 vs ZZS2, ZZS1 vs ZZS3 and ZZS2 vs ZZS3, and 27 common differentially expressed genes were found, of which 20 were up-regulated and 4 were down-regulated in all the three groups. According to the KEGG annotation, these genes are mainly involved in the brassinolide signal transduction pathway, terpenoid biosynthesis pathway, starch and sucrose metabolism pathway, fat metabolism pathway and plant hormone signal transduction pathway. It was found that NAC transcription factor was up-regulated in the three groups, indicating that it may be involved in the regulation of loquat fruit shrinkage-related gene expression. There were 1647 differentially expressed genes between ZZS1 and DG, of which 1028 were up-regulated and 619 were down-regulated. These genes were all differentially expressed genes between the two varieties, and some of them may not be related to the response of fruit shrinkage to high temperature. In order to further screen the genes related to the anti-shrinkage ability of loquat fruit, Venn diagram analysis was carried out in the three groups of DG vs ZZS1, ZZS1 vs ZZS2 and ZZS1 vs ZZS3, and 481 common differentially expressed genes were found in the three groups. According to COG functional classification, these genes are mainly involved in carbohydrate transport and metabolism, lipid transport and metabolism, cell wall/ membrane biosynthesis, secondary metabolite synthesis, transport and decomposition, signal transduction and defense mechanisms. According to KEGG classification, these genes are mainly involved in starch and sucrose metabolism, plant hormone signal transduction, phenylpropanoid biosynthesis (mainly involved in lignin synthesis), glycolysis and other pathways. Among the 12 genes involved in phenylpropanoid biosynthesis, 9 were related to lignin synthesis and were up-regulated in the group of DG vs ZZS1. Among the 13 genes involved in plant hormone signal transduction pathway, 6 (2 GH3 and 4 SAUR) were involved in auxin signal transduction. Two genes (EVM0023097 and EVM0032997) were involved in the brassinolide biosynthesis pathway, and the expression levels were up-regulated in the three groups of DG vs ZZS1, ZZS1 vs ZZS2 and ZZS1 vs ZZS3. The results showed that auxin and brassinolide may be involved in the pre-harvest fruit shrinkage of loquat. Genes involved in lignin synthesis may be related to the ability of different loquat cultivars to resist high temperature and fruit shrink. 【Conclusion】 The results of transcriptome sequencing showed that the genes that may be related to the pre-harvest fruit shrinkage of loquat were mainly involved in plant hormone signal transduction pathway, phenylpropanoid biosynthesis pathway, starch and sucrose metabolism pathway, brassinolide biosynthesis and signal transduction pathway. NAC transcription factor may be involved in the regulation of gene expression related to loquat fruit shrinkage. Lignin may be related to the ability of different loquat varieties to cope with high temperature stress, and auxin and brassinolide may play a role in the process of loquat fruit to resist high temperature stress.

Key words: Loquat; Fruit; Shrinkage; High temperature; Transcriptome

枇杷(Eriobotrya japonica Lindl.)為薔薇科枇杷屬植物中的普通枇杷栽培種[1],屬于亞熱帶常綠果樹,果實于春末夏初成熟,在廣州3月上旬至4月初成熟。早鐘6號枇杷是中國第一個雜交育成的推廣面積最大的枇杷品種[2],經(jīng)1999年引入廣東省栽培,因果實品質(zhì)優(yōu)良、早結豐產(chǎn)性好,目前已成為廣東省枇杷主栽品種之一[3]。然而在果實成熟期,如遇高溫天氣,早鐘6號枇杷果實易出現(xiàn)果皮皺縮現(xiàn)象,嚴重影響了果實品質(zhì)和經(jīng)濟效益。鄭少泉[4]的研究表明,枇杷果實成熟后期遇高溫干旱強日照,果面溫度升高,水分供應不足,容易造成萎蔫,往往在2~3 d的高溫晴天后發(fā)生大量果皮皺縮現(xiàn)象。王荔等[5]研究了早鐘6號枇杷果實皺皮的發(fā)生規(guī)律,發(fā)現(xiàn)皺皮現(xiàn)象集中發(fā)生在果實完熟前夕、果柄離層形成時。研究表明,采前柑橘果實皺縮受環(huán)境因子、品種、樹體激素水平等的影響,噴施生長素能夠顯著降低皺縮果率[6-8]。然而采前果實皺縮相關的分子機制研究較少,早鐘6號枇杷成熟期果實皺縮的相關研究鮮有報道,而對于抗皺縮品種的篩選,以及易皺縮品種與抗皺縮品種間的相關基因表達差異尚未有研究。

筆者課題組前期統(tǒng)計了枇杷資源圃中與早鐘6號枇杷果實成熟期相近的13份枇杷種質(zhì)資源的果實皺縮率,其中早鐘6號枇杷果實皺縮率達19.8%,有2份種質(zhì)(思賀大果枇杷和蜜糖枇杷)果實皺縮率為0,即沒有出現(xiàn)皺縮現(xiàn)象。這2份種質(zhì)中蜜糖枇杷的果實較小,因此筆者在本研究中選擇果實較大的種質(zhì)思賀大果枇杷作為抗皺縮品種,與易皺縮品種早鐘6號進行比較分析,對早鐘6號枇杷不同皺縮程度的果實和思賀大果枇杷進行了轉(zhuǎn)錄組測序分析,以期初步篩選與枇杷果實皺縮相關的基因、不同品種抗皺縮能力的差異基因以及相關的代謝通路,為進一步解析枇杷皺縮相關的分子機制,培育抗皺縮枇杷品種奠定理論基礎。

1 材料和方法

1.1 材料

試驗材料為早鐘6號和思賀大果枇杷果實,果實樣品采自廣東省農(nóng)業(yè)科學院果樹研究所枇杷資源圃,采摘時間2021年3月30日,果實成熟度8~9成熟。早鐘6號枇杷分3個不同的樣品:ZZS1代表早鐘6號正常果實,ZZS2代表早鐘6號輕度皺縮果,ZZS3代表早鐘6號皺縮果。思賀大果枇杷果實未出現(xiàn)皺縮現(xiàn)象,采取其正常果,標記為DG,果實照片見圖1。

1.2 生理指標測定方法

1.2.1 丙二醛含量 稱取1.0 g枇杷果實樣品,加入5.0 mL 100 g·L-1 TCA溶液,研磨勻漿后,離心收集上清液。取2.0 mL上清液加入2.0 mL 0.67% TBA,混合后在沸水浴中煮沸20 min,取出冷卻后離心收集上清液,測定OD450、OD532、OD600,根據(jù)公式計算丙二醛含量。

1.2.2 脯氨酸含量 稱取2.0 g枇杷果實樣品,加入5 mL 30 g·L-1磺基水楊酸溶液研磨勻漿后轉(zhuǎn)入試管中,沸水浴10 min,冷卻后離心15 min,上清液即為脯氨酸提取液。吸取2.0 mL提取液于具塞玻璃試管中,加入2.0 mL冰醋酸及3.0 mL酸性茚三酮試劑,沸水浴30 min,取出冷卻后加入4 mL甲苯,搖蕩30 s,靜置分層,取上層液測定OD520,根據(jù)標準曲線計算其含量。

1.2.3 超氧化物歧化酶(SOD)活性 酶液提?。喝?.1 g枇杷果實樣品,按體積比1∶10加入預冷的提取液(50 mmol·L-1 pH 7.8的磷酸緩沖液)和少量的石英砂,充分研磨后,于4 ℃下12 000 r·min-1離心15 min,所得上清液即可用于測定SOD活性。

SOD活性測定:依次加入0.3 ?mol·L-1核黃素0.15 mL、13 mmol·L-1甲硫氨酸2.5 mL、63 ?mol·L-1氯化硝基氮藍四唑0.25 mL、酶液0.05 mL,混勻后,照光10~15 min后,于560 nm測定吸光值。定義在測定條件下,抑制NBT光氧化還原50%所需的酶量為1個酶活性單位(U)。

1.2.4 過氧化物酶(POD)活性 酶液提?。悍Q取5.0 g枇杷果實樣品,加入5.0 mL提取緩沖液(含1 mmol·L-1 PEG、4% PVPP和1% Triton X-100),在冰浴條件下研磨成勻漿,于4 ℃,12 000×g離心30 min,收集上清液即為酶提取液。

POD活性測定:取0.5 mL酶提取液,加入3.0 mL 25 mmol·L-1愈創(chuàng)木酚溶液和200 μL 0.5 mol·L-1 H2O2溶液迅速混合啟動反應,在反應15 s時開始測定OD470,每隔1 min記錄1次,連續(xù)測定30 min,根據(jù)公式計算POD活性。

1.3 轉(zhuǎn)錄組測序與分析

轉(zhuǎn)錄組測序委托北京百邁客生物科技有限公司完成。提取枇杷ZZS1、ZZS2、ZZS3和DG果實樣品RNA后,構建cDNA文庫,文庫構建完成后,使用Q-PCR方法對文庫的有效濃度進行準確定量,以保證文庫質(zhì)量。庫檢合格后,用Illumina平臺進行測序。將下機數(shù)據(jù)進行過濾得到Clean Data,用HISAT2軟件與參考基因組進行序列比對,比對分析完成后利用String Tie對比對上的reads進行組裝和定量;用DESeq2進行樣品組間的差異表達分析,用clusterProfiler軟件(3.10.1)對差異表達基因進行GO富集分析及KEGG通路富集分析。

1.4 數(shù)據(jù)分析

試驗數(shù)據(jù)通過統(tǒng)計軟件SPSS21.0進行分析,用Duncan新復極差法進行方差分析,檢驗差異顯著性。

2 結果與分析

為了闡明早鐘6號枇杷果實成熟期果實皺縮的生理及分子機制,測定了丙二醛、脯氨酸含量和超氧化物歧化酶(SOD)、過氧化物酶(POD)活性,并且對早鐘6號枇杷正常果、輕度皺縮果、皺縮果以及資源圃中選出的無皺縮現(xiàn)象的思賀大果枇杷4個樣品進行了轉(zhuǎn)錄組測序,通過差異基因表達分析,以明確與早鐘6號枇杷果實皺縮相關的基因,以及品種之間應對高溫脅迫的關鍵差異基因。

2.1 枇杷果實在皺縮過程中的生理生化指標變化

如圖2所示,早鐘6號枇杷皺縮果(ZZS2、ZZS3)與正常果(ZZS1)相比,丙二醛和脯氨酸含量、SOD和POD活性均顯著增加;丙二醛含量(b)由正常果的(34.46±4.1) μmol·g-1增加到(41.86±0.77) μmol·g-1;皺縮果(ZZS3)的脯氨酸含量比正常果增加81.9%,SOD活性增加了41.6%,POD活性增加了94.5%。說明在枇杷果實皺縮過程中,細胞膜脂過氧化程度加深、抗氧化酶活性增強。

2.2 枇杷果實轉(zhuǎn)錄組測序分析

對4組樣品(ZZS1、ZZS2、ZZS3、DG)進行轉(zhuǎn)錄組測序分析,共得到76.26 Gb Clean Data,各樣品Q30堿基百分比均大于90%;GC含量在46.7~47.9之間(表1)。進行了ZZS1 vs ZZS2、ZZS1 vs ZZS3、ZZS2 vs ZZS3、DG vs ZZS1四組比較的差異表達基因分析,如表2和圖3所示,早鐘6號枇杷皺縮果(ZZS3)與正常果(ZZS1)相比,有差異表達基因4245個,其中上調(diào)表達2265個,下調(diào)表達1980個。早鐘6號枇杷(ZZS1)與思賀大果枇杷(DG)相比較,有差異基因1647個,其中上調(diào)表達1028個,下調(diào)表達619個。

2.3 早鐘6號枇杷不同程度皺縮果與正常果之間的差異表達基因分析

為了篩選影響早鐘6號枇杷皺縮的關鍵基因,對ZZS1 vs ZZS2,ZZS1 vs ZZS3和ZZS2 vs ZZS3三組比較進行了維恩圖及差異表達基因分析(圖4-A),找到3組共有的差異表達基因27個,其中20個在3組比較分析中均上調(diào),4個均下調(diào),3個在ZZS1 vs ZZS2和ZZS1 vs ZZS3比較中下調(diào),在ZZS2 vs ZZS3中上調(diào)。根據(jù)COG功能分類(圖4-B),這些基因參與了五大類功能,包括核苷酸運輸與代謝(F,7.69%)、碳水化合物運輸與代謝(G,15.38%)、脂質(zhì)運輸與代謝(I,7.69%)、次生代謝物合成、運輸與代謝(Q,38.46%)以及一般功能類(R,30.77%)。根據(jù)GO分類,這些基因參與了信號轉(zhuǎn)導、氧化還原、碳水化合物代謝、應對光刺激等生物學過程,參與細胞膜、內(nèi)質(zhì)網(wǎng)膜等組成成分,具有氧化還原酶活性、水解酶活性、纖維素酶活性、蛋白激酶活性等分子功能。

在這27個共有的差異表達基因中,有20個在3組比較中表達量均上調(diào),4個在3組比較中表達量均下調(diào),這些基因可能與枇杷果實皺縮高度相關。20個上調(diào)基因包括:1個絲氨酸/蘇氨酸-蛋白激酶,根據(jù)KEGG注釋,參與油菜素內(nèi)脂信號轉(zhuǎn)導途徑;6個C1H46蛋白,根據(jù)KEGG注釋,其中1個參與泛素介導的蛋白水解途徑,1個參與萜類生物合成途徑,其余4個未被注釋到任何代謝途徑(GO注釋為氧化還原活性);2個基因參與淀粉和蔗糖代謝途徑;1個基因參與苯唑嗪類生物合成;其余10個未被注釋到任何代謝途徑(包括1個水解酶類基因,1個NAC轉(zhuǎn)錄因子基因,1個F-box蛋白AFR-like基因,1個ras-related蛋白基因,2個DVH24蛋白基因,1個脫水素基因,另外3個基因GO注釋為細胞膜組分)。4個下調(diào)基因分別是1個GDSL酯酶/脂肪酶基因,參與脂肪代謝途徑;1個富含亮氨酸重復受體蛋白激酶基因,未被注釋到任何代謝途徑;1個內(nèi)切葡聚糖酶基因,參與淀粉與蔗糖代謝途徑;1個生長素響應蛋白基因,參與植物激素信號轉(zhuǎn)導途徑。

這24個在3組比較中表達量一致的基因表達聚類熱圖(圖5)顯示,其中有9個基因在重復間一致性較好,包括6個上調(diào)表達的基因[EVM0002174(BR-signaling kinase,參與油菜素內(nèi)脂信號轉(zhuǎn)導途徑)、EVM0008555(NAC轉(zhuǎn)錄因子基因)、EVM0012379(Zinc-binding dehydrogenase,參與氧化還原過程)、EVM0017570(Aldo/keto reductase family,參與氧化還原過程)、EVM0027280(Ras family)、EVM0039679(Dehydrin,響應水分脅迫)]和3個下調(diào)表達的基因[EVM0006727(GDSL esterase/lipase 7,參與脂肪代謝)、EVM0036225 (SAUR,參與生長素信號轉(zhuǎn)導途徑)、EVM0031215(endoglucanase,參與淀粉和蔗糖代謝途徑)]。

結果表明,在枇杷果實皺縮過程中,生長素和油菜素內(nèi)酯這兩類激素可能參與調(diào)控此過程,另外碳水化合物、萜類、脂類等代謝物在枇杷果實皺縮過程中也會發(fā)生變化;在分子水平上,脫水素基因表達量變化最明顯,ZZS1 vs ZZS2和ZZS1 vs ZZS3兩組比較的log2FC值均>5,在皺縮果中表達量最高;并且發(fā)現(xiàn)NAC轉(zhuǎn)錄因子在3組比較中均上調(diào)表達,說明其可能參與調(diào)控枇杷果實皺縮相關的基因表達。

2.4 早鐘6號枇杷正常果與思賀大果枇杷之間的差異表達基因分析

根據(jù)前期對資源圃中與早鐘6號枇杷果實同期成熟13份資源皺縮情況的統(tǒng)計,從中篩選出成熟后不會出現(xiàn)皺縮現(xiàn)象的思賀大果與早鐘6號枇杷果實進行轉(zhuǎn)錄組測序分析,以期篩選出關鍵差異基因。如表2所示,早鐘6號枇杷和思賀大果枇杷之間的差異基因有1647個,其中上調(diào)表達1028個,下調(diào)表達619個。這些基因是2個品種之間所有的差異表達基因,其中一部分可能與果實響應高溫并無關系,為了進一步篩選與枇杷果實高溫耐受相關的基因,對DG vs ZZS1、ZZS1 vs ZZS2和ZZS1 vs ZZS3三組比較進行了維恩圖分析(圖6-A),找到3組共有的差異表達基因481個,根據(jù)COG功能分類(圖6-B),主要參與碳水化合物運輸和代謝、脂質(zhì)運輸和代謝、細胞壁/膜生物合成、次生代謝物合成、運輸和分解、信號轉(zhuǎn)導和防御機制等。

根據(jù)KEGG分類,這些基因主要參與淀粉和蔗糖代謝途徑、植物激素信號轉(zhuǎn)導途徑、苯丙烷生物合成途徑(主要參與木質(zhì)素合成)、糖酵解途徑等。如圖7所示,參與苯丙烷生物合成途徑的12個基因中,有9個與木質(zhì)素的合成相關,分別是POD(2個:EVM0030656和EVM0044868)、COMT(3個:EVM0000718,EVM0004717和EVM0043031)、CAD (EVM0015104)、CCR(EVM0022913)、4CL(EVM0033838)和F5H(EVM0043011),這9個基因在DG vs ZZS1比較中均上調(diào)表達,說明木質(zhì)素可能與不同品種應對高溫脅迫能力相關;而在ZZS1 vs ZZS2和ZZS1 vs ZZS3兩組比較中均下調(diào)表達,說明這些基因的表達量隨著早鐘6號枇杷果實皺縮程度的加深而下降。

參與植物激素信號轉(zhuǎn)導途徑的13個基因中,有6個參與生長素信號轉(zhuǎn)導,包括2個GH3(EVM0012524和EVM0032063)、4個SAUR(EVM0015711、EVM00-

31846、EVM0038736、EVM0039643)。另外,在3組共有的差異表達基因中,發(fā)現(xiàn)有2個基因(EVM0023097和EVM0032997)參與油菜素內(nèi)脂生物合成途徑,這2個基因在DG vs ZZS1、ZZS1 vs ZZS2和ZZS1 vs ZZS3三組比較中表達量均上調(diào),NR注釋為cytochrome P450 90A1-like(CYP90A1)。

3 討 論

3.1 早鐘6號枇杷果實皺縮過程中抗逆指標變化明顯

早鐘6號枇杷果實隨著皺縮程度加深,丙二醛含量、脯氨酸含量、SOD活性、POD活性等抗逆指標升高。研究表明,丙二醛含量是反映細胞膜損傷程度的指標,高溫脅迫下,膜脂過氧化程度加深,細胞膜透性喪失,產(chǎn)生大量丙二醛等過氧化產(chǎn)物[9-10];同時由于高溫逆境造成超氧陰離子自由基增加,導致體內(nèi)活性氧積累,誘發(fā)SOD、POD等抗氧化酶類活性升高[11-12]。脯氨酸在逆境下,可以平衡細胞代謝、維持細胞結構的完整性,多種果樹遇溫度脅迫,脯氨酸含量會大量增加[13-15]。在廣州地區(qū),早鐘6號枇杷成熟期會遇到35~42 ℃的高溫,因此筆者推測,早鐘6號枇杷果實成熟期果皮皺縮,響應逆境指標變化明顯,可能是成熟期高溫脅迫所致。

3.2 生長素和油菜素內(nèi)脂可能參與枇杷果實皺縮過程

根據(jù)早鐘6號枇杷不同皺縮程度果實的轉(zhuǎn)錄組分析,以及早鐘6號枇杷與思賀大果枇杷的轉(zhuǎn)錄組比較分析,發(fā)現(xiàn)有6個差異基因(4個SAUR和2個GH3)參與生長素信號轉(zhuǎn)導,其中有2個在皺縮果中表達量上調(diào),4個下調(diào),說明生長素可能參與調(diào)節(jié)枇杷果實高溫皺縮過程。Li等[6]的研究表明,Zn+NAA處理提高了砂糖橘果實生長素水平,減少了皺縮果率和落果率。高溫脅迫能夠誘導生長素的合成以及生長素信號響應基因SAUR的表達[16-17]。番茄SLSAUR3、16、71、36等基因在高溫脅迫條件下表達量顯著下降[18]。王紅飛等[19]對黃瓜SAUR基因家族的研究表明,CsaSAUR1、CsaSAUR13、CsaSAUR15、CsaSAUR49、CsaSAUR50等5個基因受高溫誘導表達量增加。柑橘SAUR基因家族中CclSAUR39的表達受低溫脅迫的誘導,其對溫度脅迫敏感[20]。Chen等[21]對枇杷果實受高溫脅迫不同時間后的轉(zhuǎn)錄組測序分析,發(fā)現(xiàn)有58個差異表達基因參與生長素信號轉(zhuǎn)導途徑,其中有多個SAUR和GH3基因,說明生長素信號轉(zhuǎn)導途徑在枇杷應對高溫脅迫過程中起到關鍵作用。

另外,筆者在本研究中發(fā)現(xiàn)2個差異基因參與油菜素內(nèi)脂生物合成途徑,在早鐘6號枇杷皺縮果中的表達量高于其正常果,在抗皺縮果品種思賀大果枇杷中的表達量低于早鐘6號枇杷,說明枇杷果實中油菜素內(nèi)脂可能參與調(diào)節(jié)果皮應對高溫出現(xiàn)皺縮的程度。研究表明,油菜素內(nèi)脂參與植物應對干旱、高溫、凍害等非生物脅迫,提高抗氧化防御系統(tǒng)的能力,同時通過提高滲透調(diào)節(jié)物質(zhì)脯氨酸的含量緩解逆境對植物的傷害[22-27];高溫能夠通過誘導PIF4和HY5轉(zhuǎn)錄因子調(diào)控油菜素內(nèi)脂的合成,進而促進植株生長[28-29]。筆者在本研究中發(fā)現(xiàn),油菜素內(nèi)脂合成關鍵酶基因CYP90A1在DG vs ZZS1、ZZS1 vs ZZS2和ZZS1 vs ZZS3三組比較中表達量均上調(diào),說明其可能參與響應高溫脅迫信號,進而影響枇杷果實中油菜素內(nèi)脂的水平,以應對溫度脅迫。

3.3 木質(zhì)素合成代謝途徑與枇杷果實皺縮相關

對抗皺縮種質(zhì)思賀大果枇杷和易皺縮早鐘6號枇杷及其不同程度皺縮果的轉(zhuǎn)錄組分析,發(fā)現(xiàn)差異表達基因中有9個參與木質(zhì)素合成(POD 2個,COMT 3個和CAD、CCR、4CL、F5H各1個),與思賀大果枇杷相比,這些基因在早鐘6號枇杷中表達量上調(diào),說明木質(zhì)素含量及單體組分可能與不同品種抵抗高溫脅迫的能力有關。李雪等[30-31]對枇杷果實木質(zhì)化相關基因的功能分析發(fā)現(xiàn),EjPAL和Ej4CL基因的表達水平與木質(zhì)素含量呈正相關,瞬時過量表達Ej4CL1能夠誘導煙草葉片木質(zhì)素合成。而木質(zhì)素合成下游基因COMT、CAD的差異表達則會影響木質(zhì)素單體組分的含量[32-33],EjCAD1的表達水平與果實木質(zhì)化程度呈正相關[34]。枇杷果肉木質(zhì)化研究較多的是在果實采后貯藏衰老的過程中果實出現(xiàn)質(zhì)地生硬粗糙少汁的現(xiàn)象,可能與貯藏過程中發(fā)生冷害相關[35-37]。Shan等[34]的研究發(fā)現(xiàn),低溫條件下,易發(fā)生木質(zhì)化的枇杷品種洛陽青果實中的POD表達水平顯著高于不發(fā)生木質(zhì)化的品種白沙。低溫處理能夠誘導枇杷果實木質(zhì)化,并伴隨著CAD活性的升高及EjCAD3和EjCAD5基因表達量的增加[38]。本研究中木質(zhì)素合成相關基因在受高溫影響的不同程度皺縮果實中出現(xiàn)差異表達,說明枇杷果實木質(zhì)素的合成不僅與低溫冷害有關,同樣受到高溫脅迫的影響。

3.4 NAC轉(zhuǎn)錄因子可能參與調(diào)控枇杷果實皺縮相關基因的表達

對早鐘6號枇杷果實不同皺縮程度的轉(zhuǎn)錄組比較(ZZS1 vs ZZS2、ZZS1 vs ZZS3、ZZS2 vs ZZS3)分析發(fā)現(xiàn),NAC轉(zhuǎn)錄因子基因在3組中表達量均上調(diào),說明其可能參與調(diào)控枇杷果實皺縮相關的基因表達。研究表明NAC轉(zhuǎn)錄因子參與果實成熟衰老過程[39],如番茄突變體nor的果實不能正常成熟,其原因是NAC結構域的基因不能正常表達[40];citNAC與奉節(jié)臍橙晚熟突變體的果實成熟及組織衰老密切相關[41];草莓NAC轉(zhuǎn)錄因子調(diào)控細胞凋亡及衰老,導致采后草莓果實衰老[42]。本研究中,早鐘6號枇杷果實皺縮現(xiàn)象主要發(fā)生在成熟后期,其皺縮過程與果實成熟衰老過程一致,隨著皺縮程度加重,NAC轉(zhuǎn)錄因子基因表達量增加,說明其可能參與調(diào)控這一過程。研究表明,NAC轉(zhuǎn)錄因子調(diào)控枇杷果實木質(zhì)化,轉(zhuǎn)錄因子EjNAC對木質(zhì)素合成基因Ej4CL1具有轉(zhuǎn)錄激活效應[43],EjNAC3能與EjCAD-like基因啟動子結合并激活其表達[44]。本研究中,木質(zhì)素合成基因在枇杷不同程度皺縮果實中出現(xiàn)差異表達,說明NAC轉(zhuǎn)錄因子有可能在枇杷果實皺縮過程中參與調(diào)控木質(zhì)素合成相關基因的表達。

4 結 論

對早鐘6號枇杷不同程度皺縮果實的轉(zhuǎn)錄組測序分析,發(fā)現(xiàn)可能參與調(diào)控這一過程的基因主要有24個,包括絲氨酸/蘇氨酸-蛋白激酶、C1H46蛋白、F-box蛋白AFR-like基因、GDSL酯酶基因、內(nèi)切葡聚糖酶基因、NAC轉(zhuǎn)錄因子基因等,參與油菜素內(nèi)脂信號轉(zhuǎn)導途徑、泛素介導的蛋白水解途徑、萜類生物合成、脂肪代謝、淀粉與蔗糖代謝以及植物激素信號轉(zhuǎn)導途徑。對思賀大果枇杷與早鐘6號枇杷不同程度皺縮果實的轉(zhuǎn)錄組比較分析發(fā)現(xiàn),9個與木質(zhì)素合成相關的基因在DG vs ZZS1比較中均上調(diào)表達,說明木質(zhì)素可能與不同品種應對高溫脅迫能力相關;在3組共有的差異表達基因中發(fā)現(xiàn),6個基因參與生長素信號轉(zhuǎn)導,2個基因參與油菜素內(nèi)脂生物合成途徑,說明生長素和油菜素內(nèi)脂這兩種激素可能參與調(diào)控枇杷果實應對高溫脅迫的過程。

參考文獻 References:

[1] 林順權. 枇杷屬野生種種質(zhì)資源的研究與創(chuàng)新利用進展[J]. 園藝學報,2017,44(9):1704-1716.

LIN Shunquan. A review on research of the wild species in genus Eriobotrya germplasm and their innovative utilization[J]. Acta Horticulturae Sinica,2017,44(9):1704-1716.

[2] 林順權. 新中國果樹科學研究70年:枇杷[J]. 果樹學報,2019,36(10):1421-1428.

LIN Shunquan. Fruit scientific research in New China in the past 70 years:Loquat[J]. Journal of Fruit Science,2019,36(10):1421-1428.

[3] 邱繼水,曾帆,謝方啟,周碧容,黃炳雄,陳錦瑞. 早鐘6號枇杷在廣東的引種觀察[J]. 中國南方果樹,2006,35(3):31-33.

QIU Jishui,ZENG Fan,XIE Fangqi,ZHOU Birong,HUANG Bingxiong,CHEN Jinrui. Observation on introduction of Zaozhong 6 loquat in Guangdong Province[J]. South China Fruits,2006,35(3):31-33.

[4] 鄭少泉. 枇杷品種與優(yōu)質(zhì)高效栽培技術原色圖說[M]. 北京:中國農(nóng)業(yè)出版社,2005.

ZHENG Shaoquan. Primary color illustration of loquat varieties and high quality and high efficiency cultivation techniques[M]. Beijing:China Agriculture Press,2005.

[5] 王荔,張雪,黃旭明,王惠聰. 枇杷皺皮果發(fā)生規(guī)律及其防治方法[J]. 浙江農(nóng)業(yè)學報,2019,31(12):2019-2024.

WANG Li,ZHANG Xue,HUANG Xuming,WANG Huicong. Study on occurrence of loquat fruit creasing and its control method[J]. Acta Agriculturae Zhejiangensis,2019,31(12):2019-2024.

[6] LI J,LIANG C H,LIU X Y,HUAI B,CHEN J Z,YAO Q,QIN Y,LIU Z,LUO X Y. Effect of Zn and NAA co-treatment on the occurrence of creasing fruit and the peel development of ‘Shatangju mandarin[J]. Scientia Horticulturae,2016,201:230-237.

[7] GREENBERG J,KAPLAN I,F(xiàn)AINZACK M,EGOZI Y,GILADI B. Effects of auxins sprays on yield,fruit size,fruit splitting and the incidence of creasing of ‘Nova mandarin[J]. Acta Horticulturae,2006(727):249-254.

[8] GREENBERG J,HOLTZMAN S,F(xiàn)AINZACK M,EGOZI Y,GILADI B,OREN Y,KAPLAN I. Effects of NAA and GA3 sprays on fruit size and the incidence of creasing of ‘Washington navel orange[J]. Acta Horticulturae,2010,884:273-279.

[9] 余叔文,湯章城. 植物生理與分子生物學[M]. 2版. 北京:科學出版社,1998.

YU Shuwen,TANG Zhangcheng. Plant physiology and molecular biology[M]. 2nd ed. Beijing:Science Press,1998.

[10] 鄧朝軍,許奇志,蔣際謀,魏秀清,章希娟,鄭少泉. 高溫脅迫對枇杷果皮熱傷害的抗氧化特性影響[J]. 熱帶亞熱帶植物學報,2012,20(5):439-444.

DENG Chaojun,XU Qizhi,JIANG Jimou,WEI Xiuqing,ZHANG Xijuan,ZHENG Shaoquan. Changes in antioxidant properties induced by heat injury in loquat peel under high temperature stress[J]. Journal of Tropical and Subtropical Botany,2012,20(5):439-444.

[11] 孫山. 蘋果綠色果皮光合生理特性及果皮灼傷機制的研究[D]. 泰安:山東農(nóng)業(yè)大學,2009.

SUN Shan. Study on photosynthetic characteristics and mechanism of sunburn in green peel of apple fruit[D]. Taian:Shandong Agricultural University,2009.

[12] 王靜璞. 高溫、強光脅迫對蘋果果實抗氧化能力的影響[D]. 保定:河北農(nóng)業(yè)大學,2010.

WANG Jingpu. Effect of high-temperature and excessive-light stresses on antioxidant capacity in apple fruits[D]. Baoding:Hebei Agricultural University,2010.

[13] 朱虹,祖元剛,王文杰,閻永慶. 逆境脅迫條件下脯氨酸對植物生長的影響[J]. 東北林業(yè)大學學報,2009,37(4):86-89.

ZHU Hong,ZU Yuangang,WANG Wenjie,YAN Yongqing. Effect of proline on plant growth under different stress conditions[J]. Journal of Northeast Forestry University,2009,37(4):86-89.

[14] 李靖,孫淑霞,謝紅江,陳棟,涂美艷,何俊濤,羅旭,鮑榮粉,江國良. 枇杷花果凍害與若干生理生化指標的關系[J]. 果樹學報,2011,28(3):453-457.

LI Jing,SUN Shuxia,XIE Hongjiang,CHEN Dong,TU Meiyan,HE Juntao,LUO Xu,BAO Rongfen,JIANG Guoliang. The relationship between freezing injury and physiological indexes of loquat (Eriobotrya japonica) flowers and fruits[J]. Journal of Fruit Science,2011,28(3):453-457.

[15] 常曉曉,陸育生,林志雄,潘建平,邱繼水,唐振強. 枇杷幼果雨雪凍害的理化響應[J]. 中國農(nóng)學通報,2017,33(31):68-73.

CHANG Xiaoxiao,LU Yusheng,LIN Zhixiong,PAN Jianping,QIU Jishui,TANG Zhenqiang. The physiochemical response of young loquat fruit to freeze injury[J]. Chinese Agricultural Science Bulletin,2017,33(31):68-73.

[16] FRANKLIN K A,LEE S H,PATEL D,KUMAR S V,SPARTZ A K,GU C,YE S Q,YU P,BREEN G,COHEN J D,WIGGE P A,GRAY W M. Phytochrome-interacting factor 4 (PIF4) regulates auxin biosynthesis at high temperature[J]. Proceedings of the National Academy of Sciences of the United States of America,2011,108(50):20231-20235.

[17] REN H,GRAY W M. SAUR proteins as effectors of hormonal and environmental signals in plant growth[J]. Molecular Plant,2015,8(8):1153-1164.

[18] WU J,LIU S Y,HE Y J,GUAN X Y,ZHU X F,CHENG L,WANG J,LU G. Genome-wide analysis of SAUR gene family in Solanaceae species[J]. Gene,2012,509(1):38-50.

[19] 王紅飛,尚慶茂. 黃瓜SAUR基因家族的鑒定與表達分析[J]. 園藝學報,2019,46(6):1093-1111.

WANG Hongfei,SHANG Qingmao. Genome-wide identification and expression analysis of the SAUR gene family in Cucumis sativus[J]. Acta Horticulturae Sinica,2019,46(6):1093-1111.

[20] 王福生,余洪,胡洲,管德龍,張盼,朱世平,趙曉春. 柑橘屬SAUR基因家族的全基因組鑒定及表達分析[J]. 園藝學報,2020,47(1):23-40.

WANG Fusheng,YU Hong,HU Zhou,GUAN Delong,ZHANG Pan,ZHU Shiping,ZHAO Xiaochun. Genome-wide analysis of SAUR gene family in Citrus[J]. Acta Horticulturae Sinica,2020,47(1):23-40.

[21] CHEN Y P,DENG C J,XU Q Z,CHEN X P,JIANG F,ZHANG Y L,HU W S,ZHENG S Q,SU W B,JIANG J M. Integrated analysis of the metabolome,transcriptome and miRNome reveals crucial roles of auxin and heat shock proteins in the heat stress response of loquat fruit[J]. Scientia Horticulturae,2022,294:110764.

[22] 朱廣廉. 油菜素甾醇類植物激素的研究進展[J]. 植物生理學通訊,1992,28(5):317-322.

ZHU Guanglian. Advance in the study on brassinosteroids[J]. Plant Physiology Communications,1992,28(5):317-322.

[23] 李凱榮,吳發(fā)啟,王鍵. 天然油菜素內(nèi)酯對黃土丘陵區(qū)蘋果生長發(fā)育和產(chǎn)量的影響[J]. 水土保持學報,2003,17(3):174-177.

LI Kairong,WU Faqi,WANG Jian. Effects of natural brassinolide on growth,development and yield of apple trees[J]. Journal of Soil Water Conservation,2003,17(3):174-177.

[24] KAGALE S,DIVI U K,KROCHKO J E,KELLER W A,KRISHNA P. Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses[J]. Planta,2007,225(2):353-364.

[25] 蘭彩耘. 超量表達AtDWF4基因?qū)娌松L發(fā)育及抗寒性的影響[D]. 重慶:西南大學,2016.

LAN Caiyun. Effect of AtDWF4 gene overexpression on growth,development and cold resistance in Brassica juncea[D]. Chongqing:Southwest University,2016.

[26] 李嘉佳,李相怡,王磊,王世平. 葡萄果實內(nèi)油菜素內(nèi)酯生物合成調(diào)控及生理效應[J/OL]. 分子植物育種,2021:1-10. (2021-06-15). https://kns.cnki.net/kcms/detail/46.1068. S.20210615.1225.004.html.

LI Jiajia,LI Xiangyi,WANG Lei,WANG Shiping. The regulation of brassinolide biosynthesis and physiological effects in grape berries[J/OL]. Molecular Plant Breeding,2021:1-10. (2021-06-15). https://kns.cnki.net/kcms/detail/46.1068.S.20210615.1225.004. html.

[27] 鄭婷,程建徽,魏靈珠,向江,吳江. 油菜素內(nèi)酯及其在園藝植物中的研究進展[J/OL]. 分子植物育種,2022:1-9. (2022-01-13). https://kns.cnki.net/kcms/detail/46.1068.s.20220113.1105.004.html.

ZHENG Ting,CHENG Jianhui,WEI Lingzhu,XIANG Jiang,WU Jiang. Progress of brassinosteroids and reasearch advancements on horticultural plants[J/OL]. Molecular Plant Breeding,2022:1-9. (2022-01-13). https://kns.cnki.net/kcms/detail/46.1068.s.20220113.1105.004.html.

[28] MART?NEZ C,ESPINOSA-RU?Z A,DE LUCAS M,BERNARDO-GARC?A S,F(xiàn)RANCO-ZORRILLA J M,PRAT S. PIF4-induced BR synthesis is critical to diurnal and thermomorphogenic growth[J]. The EMBO Journal,2018,37(23):e99552.

[29] LEE S,WANG W L,HUQ E. Spatial regulation of thermomorphogenesis by HY5 and PIF4 in Arabidopsis[J]. Nature Communications,2021,12(1):3656.

[30] 李雪. 枇杷果實木質(zhì)化相關基因的克隆與功能分析[D]. 杭州:浙江大學,2016.

LI Xue. Cloning and functional analysis of genes involved in flesh lignification of loquat fruit[D]. Hangzhou:Zhejiang University,2016.

[31] LI X,ZANG C,GE H,ZHANG J,GRIERSON D,YIN X R,CHEN K S. Involvement of PAL,C4H,and 4CL in chilling injury-induced flesh lignification of loquat fruit[J]. HortScience,2017,52(1):127-131.

[32] ABBOTT J C,BARAKATE A,PIN?ON G,LEGRAND M,LAPIERRE C,MILA I,SCHUCH W,HALPIN C. Simultaneous suppression of multiple genes by single transgenes. Down-regulation of three unrelated lignin biosynthetic genes in tobacco[J]. Plant Physiology,2002,128(3):844-853.

[33] SIBOUT R,EUDES A,MOUILLE G,POLLET B,LAPIERRE C,JOUANIN L,S?GUIN A. Cinnamyl alcohol dehydrogenase-C and-D are the primary genes involved in lignin biosynthesis in the floral stem of Arabidopsis[J]. The Plant Cell,2005,17(7):2059-2076.

[34] SHAN L L,LI X,WANG P,CAI C,ZHANG B,SUN C D,ZHANG W S,XU C J,F(xiàn)ERGUSON I,CHEN K S. Characterization of cDNAs associated with lignification and their expression profiles in loquat fruit with different lignin accumulation[J]. Planta,2008,227(6):1243-1254.

[35] 鄭永華,李三玉,席玙芳. 枇杷冷藏過程中果肉木質(zhì)化與細胞壁物質(zhì)變化的關系[J]. 植物生理學報,2000,26(4):306-310.

ZHENG Yonghua,LI Sanyu,XI Yufang. Changes of cell wall substances in relation to flesh woodiness in cold stored loquat fruits[J]. Acta Photophysiologica Sinica,2000,26(4):306-310.

[36] 吳光斌,陳發(fā)河,張其標,楊姣. 熱激處理對冷藏枇杷果實冷害的生理作用[J]. 植物資源與環(huán)境學報,2004,13(2):1-5.

WU Guangbin,CHEN Fahe,ZHANG Qibiao,YANG Jiao. Effects of heat shock treatment on chilling injury and physiological responses of Eriobotrya japonica fruit during cold storage[J]. Journal of Plant Resources and Environment,2004,13(2):1-5.

[37] 蔡沖. 枇杷果實采后木質(zhì)化與品質(zhì)調(diào)控[D]. 杭州:浙江大學,2006.

CAI Chong. Regulation of lignification and quality changes in postharvest loquat fruit[D]. Hangzhou:Zhejiang University,2006.

[38] 徐蒙. 枇杷果實冷害木質(zhì)化的EjHAT1和EjbHLH1轉(zhuǎn)錄調(diào)控機制[D]. 杭州:浙江大學,2019.

XU Meng. Transcriptional regulation of loquat fruit chilling induced lignification by EjHAT1 and EjbHLH1[D]. Hangzhou:Zhejiang University,2019.

[39] 張琪靜,董文軒. NAC轉(zhuǎn)錄因子在果實發(fā)育成熟過程中的作用研究進展[J]. 園藝學報,2018,45(10):2052-2062.

ZHANG Qijing,DONG Wenxuan. Mechanisms of NAC transcription factor functions during fruit development and ripening[J]. Acta Horticulturae Sinica,2018,45(10):2052-2062.

[40] MARTEL C,VREBALOV J,TAFELMEYER P,GIOVANNONI J J. The tomato mads-box transcription factor ripening inhibitor interacts with promoters involved in numerous ripening processes in a colorless nonripening-dependent manner[J]. Plant Physiology,2011,157(3):1568-1579.

[41] LIU Y Z,BAIG M N R,F(xiàn)AN R,YE J L,CAO Y C,DENG X X. Identification and expression pattern of a novel NAM,ATAF,and CUC-like gene from Citrus sinensis Osbeck[J]. Plant Molecular Biology Reporter,2009,27(3):292-297.

[42] XU X B,YIN L L,YING Q C,SONG H M,XUE D W,LAI T F,XU M J,SHEN B,WANG H Z,SHI X Q. High-throughput sequencing and degradome analysis identify miRNAs and their targets involved in fruit senescence of Fragaria ananassa[J]. PLoS One,2013,8(8):e70959.

[43] XU Q,WANG W Q,ZENG J K,ZHANG J,GRIERSON D,LI X,YIN X R,CHEN K S. A NAC transcription factor,EjNAC1,affects lignification of loquat fruit by regulating lignin[J]. Postharvest Biology and Technology,2015,102:25-31.

[44] GE H,ZHANG J,ZHANG Y J,LI X,YIN X R,GRIERSON D,CHEN K S. EjNAC3 transcriptionally regulates chilling-induced lignification of loquat fruit via physical interaction with an atypical CAD-like gene[J]. Journal of Experimental Botany,2017,68(18):5129-5136.

猜你喜歡
轉(zhuǎn)錄組果實枇杷
枇杷
兒童時代(2022年1期)2022-04-19 12:42:16
枇杷
枇杷
夏月枇杷黃
基于轉(zhuǎn)錄組測序的山茱萸次生代謝生物合成相關基因的挖掘
金釵石斛轉(zhuǎn)錄組SSR位點信息分析
有機肥對火龍果不同批次果實生長與品質(zhì)的影響
人參屬藥用植物轉(zhuǎn)錄組研究進展
天津薊縣軟棗獼猴桃營養(yǎng)品質(zhì)分析
黃桃栽培技術
深圳市| 昭苏县| 泰兴市| 兰州市| 加查县| 宝应县| 汾西县| 甘洛县| 佳木斯市| 天祝| 临泽县| 凌源市| 九龙坡区| 鄂州市| 罗甸县| 城固县| 利津县| 微博| 永仁县| 晋中市| 杭锦后旗| 德安县| 镇赉县| 陵川县| 九龙城区| 天峻县| 清水县| 靖边县| 上饶市| 德令哈市| 长顺县| 嘉善县| 秦安县| 怀宁县| 镇巴县| 石首市| 汪清县| 德保县| 万宁市| 高要市| 漳州市|