曹恒佩 艾萌萌,2 王延波
永磁輔助同步磁阻電機(jī)研究現(xiàn)狀及發(fā)展趨勢(shì)
曹恒佩1艾萌萌1,2王延波1
(1. 哈爾濱理工大學(xué)電氣與電子工程學(xué)院 哈爾濱 150080 2. 哈爾濱理工大學(xué)大型電機(jī)電氣與傳熱技術(shù)國(guó)家地方聯(lián)合工程研究中心 哈爾濱 150080)
永磁輔助同步磁阻電機(jī)(PMaSynRM)以其高功率密度、高效率、高性價(jià)比及寬調(diào)速范圍的優(yōu)點(diǎn),近年來(lái)已成為行業(yè)的研究熱點(diǎn),特別是在家用電器、電動(dòng)汽車及工業(yè)電機(jī)等領(lǐng)域。在國(guó)內(nèi)外研究現(xiàn)狀的基礎(chǔ)上,該文詳細(xì)介紹了永磁輔助同步磁阻電機(jī)的優(yōu)化設(shè)計(jì)、轉(zhuǎn)矩提升、轉(zhuǎn)矩脈動(dòng)抑制、機(jī)械強(qiáng)度、溫升分布計(jì)算以及容錯(cuò)設(shè)計(jì)等方面的最新研究進(jìn)展。分析了輔助槽與氣隙等設(shè)計(jì)對(duì)轉(zhuǎn)矩特性的提升;總結(jié)了中心肋與磁障等設(shè)計(jì)對(duì)機(jī)械強(qiáng)度的優(yōu)化;解釋了PMaSynRM在不同工況下的溫升分布并總結(jié)了多相、繞組等設(shè)計(jì)對(duì)永磁輔助同步磁阻電機(jī)容錯(cuò)能力的提高。最后,考慮電機(jī)行業(yè)的發(fā)展趨勢(shì),對(duì)永磁輔助同步磁阻電機(jī)的研究發(fā)展進(jìn)行展望。
永磁輔助同步磁阻電機(jī) 轉(zhuǎn)矩特性 機(jī)械強(qiáng)度 溫度分布 容錯(cuò)設(shè)計(jì)
永磁輔助同步磁阻電機(jī)(Permanent Magnet assisted Synchronous Reluctance Motor, PMaSynRM)最初由意大利學(xué)者A. Vagati首次提出[1]。PMaSynRM結(jié)合了同步磁阻電機(jī)(Synchronous Reluctance Motor, SynRM)和內(nèi)置式永磁同步電機(jī)(Interior Permanent Magnet Synchronous Motor, IPMSM)的特點(diǎn),該電機(jī)充分利用磁阻轉(zhuǎn)矩和永磁轉(zhuǎn)矩,具有功率密度高、效率高、調(diào)速范圍寬及體積小、質(zhì)量輕等顯著優(yōu)點(diǎn)[2-6]。因工藝水平和材料的限制,當(dāng)時(shí)對(duì)PMaSynRM的研究和應(yīng)用并未獲得足夠重視。近年來(lái),由于稀土永磁體使用量大,價(jià)格不斷提升,為減輕永磁電機(jī)對(duì)稀土的依賴,減少稀土開(kāi)采對(duì)環(huán)境的破壞,并在保證電機(jī)高性能的同時(shí)降低電機(jī)成本,PMaSynRM這一少稀土乃至無(wú)稀土的高效電機(jī)再次被提出,并在電動(dòng)汽車和空調(diào)、洗衣機(jī)等家電領(lǐng)域被廣泛應(yīng)用[7-9]。
PMaSynRM由同步磁阻電機(jī)發(fā)展而來(lái),通過(guò)在磁障中添加永磁材料來(lái)提供直軸永磁磁通,既能增大其交、直軸來(lái)提升磁阻轉(zhuǎn)矩,又因轉(zhuǎn)子磁障中添加永磁材料產(chǎn)生永磁轉(zhuǎn)矩,增大電機(jī)的轉(zhuǎn)矩密度,從而有效克服了同步磁阻電機(jī)本身低功率因數(shù)和低轉(zhuǎn)矩密度的缺點(diǎn)。這一改變使得原有同步磁阻電機(jī)設(shè)計(jì)方法也不再完全適用于PMaSynRM,尤其需要重新對(duì)其磁障形狀、尺寸、層數(shù)以及永磁體的材料、尺寸和用量進(jìn)行優(yōu)化設(shè)計(jì),以使電機(jī)獲得更佳的電磁性能。另外,添加永磁體后,PMaSynRM運(yùn)行時(shí)的轉(zhuǎn)子受力情況、損耗分布以及溫度變化也將隨之改變,需要對(duì)其轉(zhuǎn)子機(jī)械強(qiáng)度和電機(jī)溫升進(jìn)行深入研究,以確保電機(jī)長(zhǎng)期可靠運(yùn)行。
相比于IPMSM,PMaSynRM可在保證電磁性能的同時(shí)減少永磁體用量,極大地提高了電機(jī)的性價(jià)比。盡管PMaSynRM有諸多優(yōu)點(diǎn),但其轉(zhuǎn)矩脈動(dòng)較高、損耗較大、機(jī)械強(qiáng)度較低的劣勢(shì)也不容忽視。高轉(zhuǎn)矩脈動(dòng)使電機(jī)穩(wěn)定性降低,影響電機(jī)甚至系統(tǒng)的可靠性;相比同等條件下的永磁同步電機(jī),其效率更低;較低的機(jī)械強(qiáng)度會(huì)使電機(jī)高速運(yùn)行時(shí)轉(zhuǎn)子發(fā)生形變,從而引發(fā)事故。非多相PMaSynRM本身不具有容錯(cuò)性,限制了其在更廣闊領(lǐng)域內(nèi)的應(yīng)用。
綜上所述,PMaSynRM在設(shè)計(jì)、分析等方面存在許多常規(guī)電機(jī)所不具有的關(guān)鍵問(wèn)題,因此不能照搬常規(guī)電機(jī)的相關(guān)設(shè)計(jì)及分析方法,而需要進(jìn)行深入的研究。目前,PMaSynRM的優(yōu)化設(shè)計(jì)、轉(zhuǎn)矩提升、轉(zhuǎn)矩脈動(dòng)抑制、機(jī)械強(qiáng)度、溫升分布預(yù)測(cè)以及容錯(cuò)設(shè)計(jì)及控制等方面逐漸成為國(guó)內(nèi)外學(xué)者的研究熱點(diǎn)?;诖耍疚臍w納總結(jié)了上述方面國(guó)內(nèi)外的最新研究進(jìn)展,并對(duì)其發(fā)展趨勢(shì)與前景進(jìn)行展望。
本文對(duì)國(guó)內(nèi)外PMaSynRM的發(fā)展現(xiàn)狀進(jìn)行不完全統(tǒng)計(jì),見(jiàn)表1??梢钥闯觯琍MaSynRM的最高轉(zhuǎn)速已達(dá)60 000r/min,采用U型磁障轉(zhuǎn)子結(jié)構(gòu)。
表1 永磁輔助同步磁阻電機(jī)的發(fā)展
Tab.1 Development of PMaSynRM
(續(xù))
注:*表示國(guó)內(nèi)永磁輔助同步磁阻電機(jī)的發(fā)展?fàn)顩r。
PMaSynRM通過(guò)在SynRM的轉(zhuǎn)子中添加永磁體,使永磁體磁場(chǎng)與定子磁場(chǎng)相互作用產(chǎn)生永磁轉(zhuǎn)矩,相比于SynRM,PMaSynRM在相同電流下產(chǎn)生的電磁轉(zhuǎn)矩更大[10]。PMaSynRM吸取了IPMSM和SynRM的優(yōu)點(diǎn),具有高功率密度、高效率和寬調(diào)速范圍等優(yōu)點(diǎn)。
文獻(xiàn)[11-15]對(duì)比分析了PMaSynRM與SynRM的電磁性能與優(yōu)缺點(diǎn)。文獻(xiàn)[16]在前者基礎(chǔ)上應(yīng)用鐵氧體材料建立了IPMSM、SynRM和PMaSynRM三種電機(jī)的統(tǒng)一的數(shù)學(xué)模型,詳細(xì)地對(duì)比分析了三種電機(jī)主要應(yīng)用鐵氧體時(shí)的性能。表2給出了三種電機(jī)的主要數(shù)據(jù)。
表2 三種電機(jī)設(shè)計(jì)參數(shù)
Tab.2 Three kinds of motor design parameters
圖1 電機(jī)繞組聯(lián)結(jié)形式、磁力線分布和磁通密度分布
三種電機(jī)額定工作點(diǎn)的轉(zhuǎn)矩性能和功率因數(shù)如圖3所示??梢?jiàn),盡管IPMSM轉(zhuǎn)子具有被認(rèn)為有較高的轉(zhuǎn)矩特性的V型永磁體,但SynRM的額定轉(zhuǎn)矩與其相同。而PMaSynRM因永磁轉(zhuǎn)矩和磁阻轉(zhuǎn)矩的疊加使得額定轉(zhuǎn)矩最大。就功率因數(shù)而言,PMaSynRM高于SynRM,但略低于IPMSM。圖4為三種電機(jī)額定工作點(diǎn)的輸出功率、損耗和效率。電機(jī)轉(zhuǎn)速相同時(shí),輸出功率與輸出轉(zhuǎn)矩成正比;損耗主要由鐵耗、機(jī)械損耗和定子銅耗組成,文中未考慮雜耗。三種電機(jī)的機(jī)械損耗和鐵耗基本相同,但PMaSynRM銅耗大于SynRM和IPMSM,IPMSM的銅耗最小,而SynRM和PMaSynRM因采用分布式繞組結(jié)構(gòu),線圈端部長(zhǎng),銅耗也較大,且基本相同;SynRM和IPMSM的輸出功率相同,明顯小于PMaSynRM;PMSM的效率略高于PMaSynRM,SynRM的效率最低。這也證明了PMaSynRM的優(yōu)點(diǎn)。
圖2 三種電機(jī)相量
圖3 額定工作點(diǎn)的轉(zhuǎn)矩性能和功率因數(shù)
文獻(xiàn)[17-23]給出了IPMSM、SynRM和PMaSynRM等電機(jī)的性能對(duì)比,見(jiàn)表3,同時(shí)表明,PMaSynRM應(yīng)用鐵氧體永磁體時(shí)的成本遠(yuǎn)低于應(yīng)用釹鐵硼的IPMSM,且PMaSynRM在較低的成本中具有較優(yōu)的電磁性能。
圖4 額定工作點(diǎn)的輸出功率、損耗和效率
表3 IPMSM、SynRM和PMaSynRM性能對(duì)比
Tab.3 Performance comparison of IPMSM, SynRM and PMaSynRM
在電磁性能分析的基礎(chǔ)上,進(jìn)一步對(duì)比了同為鐵氧體時(shí)的三種電機(jī)質(zhì)量、有效材料成本和轉(zhuǎn)矩密度,并參考了文獻(xiàn)[24-27]中各類電機(jī)的成本、體積及經(jīng)濟(jì)性能,見(jiàn)表4。
表4 電機(jī)質(zhì)量和材料成本
Tab.4 Motor weight and material cost
由表4可見(jiàn),在永磁材料均為鐵氧體時(shí),SynRM與IPMSM的額定轉(zhuǎn)矩大致相同,SynRM的電機(jī)質(zhì)量和成本更低。PMaSynRM應(yīng)用成本更低的鐵氧體材料時(shí),盡管成本略高于SynRM與IPMSM,但性能更好、轉(zhuǎn)矩密度更高。
目前,對(duì)PMaSynRM的研究成果中轉(zhuǎn)矩提升和轉(zhuǎn)矩脈動(dòng)抑制首屈一指。轉(zhuǎn)矩的提升是通過(guò)合理選擇永磁體放置位置、改變轉(zhuǎn)子的結(jié)構(gòu)和形狀等措施以提高電機(jī)的永磁轉(zhuǎn)矩和磁阻轉(zhuǎn)矩;而轉(zhuǎn)矩脈動(dòng)的抑制主要是針對(duì)永磁轉(zhuǎn)矩脈動(dòng)、磁阻轉(zhuǎn)矩脈動(dòng)以及齒槽轉(zhuǎn)矩脈動(dòng),通過(guò)采取相鄰磁極下磁障寬度不對(duì)稱設(shè)計(jì)、非均勻氣隙,選擇合適的磁障位置、尺寸、形狀以及定子開(kāi)設(shè)輔助槽等措施來(lái)實(shí)現(xiàn)[28]。
根據(jù)電機(jī)的運(yùn)行原理,PMaSynRM電磁轉(zhuǎn)矩簡(jiǎn)化公式[29]為
式(1)第一項(xiàng)為永磁磁場(chǎng)與定子磁場(chǎng)相互作用產(chǎn)生的永磁轉(zhuǎn)矩;第二項(xiàng)為由于電機(jī)交直軸電感差而產(chǎn)生的磁阻轉(zhuǎn)矩,增大交直軸電感的差可有效提高PMaSynRM的轉(zhuǎn)矩[30]。因此,交、直軸電感以及磁鏈?zhǔn)怯绊慞MaSynRM轉(zhuǎn)矩特性的3個(gè)重要參數(shù)。
文獻(xiàn)[31-37]分別對(duì)集中繞組和分布繞組等繞組形式和分?jǐn)?shù)槽、整數(shù)槽下的PMaSynRM電磁性能進(jìn)行了對(duì)比分析,通過(guò)數(shù)值模擬發(fā)現(xiàn),分?jǐn)?shù)槽集中繞組的PMaSynRM具有更大的電磁轉(zhuǎn)矩,但由于集中繞組時(shí)電機(jī)轉(zhuǎn)矩脈動(dòng)較大,功率因數(shù)和效率較低,因此目前應(yīng)用較廣泛的是分布式繞組。
2.1.1 裂比對(duì)轉(zhuǎn)矩的影響
文獻(xiàn)[38]根據(jù)解析法和有限元法分別研究了PMaSynRM裂比即定子內(nèi)外徑之比對(duì)電機(jī)轉(zhuǎn)矩的影響,得到平均轉(zhuǎn)矩和電感隨裂比的變化曲線,如圖5所示。其中,圖5a為電機(jī)平均轉(zhuǎn)矩隨裂比的變化曲線,圖5b為電機(jī)交直軸電感隨裂比的變化曲線。研究發(fā)現(xiàn),電機(jī)的交直軸電感隨裂比變化進(jìn)而引起轉(zhuǎn)矩的變化。裂比在0.85~0.90范圍內(nèi)時(shí)電機(jī)性能較優(yōu)。當(dāng)裂比增加時(shí),交軸磁路飽和導(dǎo)致其電感減小,且直軸電感也略微減少,凸極比以及電感差會(huì)變大,此時(shí)電機(jī)的輸出轉(zhuǎn)矩達(dá)到最大;之后隨著裂比的進(jìn)一步增加,電機(jī)定子沖片更加緊湊,相同條件下磁路飽和加劇,盡管電感差增大,但此時(shí)永磁轉(zhuǎn)矩減小,二者共同作用使得轉(zhuǎn)矩減小。文獻(xiàn)[39]研究發(fā)現(xiàn),當(dāng)電機(jī)極數(shù)較大時(shí),可適當(dāng)降低軛部尺寸,裂比應(yīng)選擇大些;而極數(shù)較小時(shí),為避免磁路飽和以及降低鐵心中的磁通密度,應(yīng)使齒寬適當(dāng)大些,尤其是軛部尺寸較為厚實(shí),因此裂比適當(dāng)選擇小些。
2.1.2 永磁體的位置和材料對(duì)轉(zhuǎn)矩的影響
文獻(xiàn)[40-43]為獲得較大的交直軸電感差以提高電機(jī)電磁轉(zhuǎn)矩,對(duì)比分析了V型、C型和U型三種轉(zhuǎn)子磁障結(jié)構(gòu)對(duì)PMaSynRM電磁性能的影響,表明C型磁障電機(jī)的轉(zhuǎn)矩密度略大,而U型磁障的局部飽和和漏磁現(xiàn)象更為嚴(yán)重,其功率因數(shù)和效率略低。文獻(xiàn)[44-49]比較了在U型磁障中向d、q軸正負(fù)方向添加永磁體和永磁體添加位置對(duì)電磁性能的影響,如圖6所示。表5給出了在不同位置添加永磁體以及所添加永磁體占磁障總體積不同比例時(shí)的電機(jī)性能對(duì)比。從表5中可以看出,在永磁材料用量大致相同,位置在q軸時(shí),電機(jī)效率和轉(zhuǎn)矩更佳。
圖6 永磁體添加位置
表5 不同永磁體添加方案下的電機(jī)性能對(duì)比
Tab.5 Comparison of motor performance under different permanent magnet adding schemes
文獻(xiàn)[50]對(duì)磁障內(nèi)的永磁體的材料進(jìn)行研究,將記憶電機(jī)的理念應(yīng)用到了PMaSynRM上,重新對(duì)轉(zhuǎn)子進(jìn)行設(shè)計(jì),采用鐵氧體和鋁鎳鈷混合永磁與多層磁障結(jié)構(gòu),有效發(fā)揮了鋁鎳鈷高剩磁的特性,實(shí)現(xiàn)了電機(jī)弱磁區(qū)轉(zhuǎn)矩的提高和損耗的降低。
2.1.3 轉(zhuǎn)子結(jié)構(gòu)對(duì)轉(zhuǎn)矩的影響
文獻(xiàn)[51]提出一種雙氣隙蜂窩狀轉(zhuǎn)子PMaSynRM,在SynRM單氣隙的基礎(chǔ)上逐步細(xì)化轉(zhuǎn)子形狀,最終優(yōu)化得到如圖7a所示的雙氣隙蜂窩狀轉(zhuǎn)子結(jié)構(gòu),該結(jié)構(gòu)具有更優(yōu)的轉(zhuǎn)矩特性。文獻(xiàn)[52-54]給出了混合雙轉(zhuǎn)子結(jié)構(gòu),如圖7b所示,轉(zhuǎn)子Ⅰ為永磁轉(zhuǎn)子,轉(zhuǎn)子Ⅱ?yàn)榇抛柁D(zhuǎn)子,通過(guò)轉(zhuǎn)子軸向配置角度的設(shè)計(jì),達(dá)到最佳內(nèi)功率因數(shù)角,使得永磁轉(zhuǎn)矩和磁阻轉(zhuǎn)矩的最大值在相同的電流相位處疊加而實(shí)現(xiàn)最優(yōu)的轉(zhuǎn)矩特性。
PMaSynRM運(yùn)行時(shí)除了磁阻轉(zhuǎn)矩與永磁轉(zhuǎn)矩外,還有齒槽轉(zhuǎn)矩,并產(chǎn)生附加的轉(zhuǎn)矩脈動(dòng),盡管轉(zhuǎn)矩脈動(dòng)不影響平均輸出轉(zhuǎn)矩,卻會(huì)造成振動(dòng)和噪聲。PMaSynRM的轉(zhuǎn)矩脈動(dòng)的主要原因是齒槽轉(zhuǎn)矩、永磁轉(zhuǎn)矩脈動(dòng)和磁阻轉(zhuǎn)矩脈動(dòng)。
2.2.1 輔助槽對(duì)齒槽轉(zhuǎn)矩的抑制
為削弱齒槽轉(zhuǎn)矩引起的轉(zhuǎn)矩脈動(dòng),文獻(xiàn)[55]對(duì)比研究了4極18槽分?jǐn)?shù)槽集中繞組時(shí)定子齒頂開(kāi)輔助槽對(duì)轉(zhuǎn)矩脈動(dòng)的削弱效果,圖8為齒頂開(kāi)1~3個(gè)輔助槽的示意圖。發(fā)現(xiàn)開(kāi)2個(gè)輔助槽時(shí)每個(gè)槽距下等距齒槽效應(yīng)周期數(shù)從2增加到6,能有效削弱齒槽效應(yīng)引起的齒槽轉(zhuǎn)矩,但文獻(xiàn)[55]表明,對(duì)于4極12槽整數(shù)槽分布繞組開(kāi)2個(gè)輔助槽對(duì)轉(zhuǎn)矩脈動(dòng)的影響較小,且有可能惡化轉(zhuǎn)矩脈動(dòng),所以在不同極槽配合下需要選擇不同個(gè)數(shù)的輔助槽來(lái)降低齒槽轉(zhuǎn)矩對(duì)轉(zhuǎn)矩脈動(dòng)造成的影響。其中,1為輔助槽的高度,2為輔助槽的半徑,3為兩個(gè)輔助槽之間的距離。
圖7 PMaSynRM特殊轉(zhuǎn)子結(jié)構(gòu)
圖8 齒頂輔助槽開(kāi)槽示意圖
文獻(xiàn)[56-58]進(jìn)一步研究了輔助槽的尺寸對(duì)轉(zhuǎn)矩脈動(dòng)的影響,圖9、圖10分別為齒槽轉(zhuǎn)矩幅值隨輔助槽槽寬及槽深的變化曲線,圖中,為實(shí)際槽寬,0為假定槽寬,為槽深,為槽肩到槽口距離。
由圖9、圖10可知,適當(dāng)?shù)妮o助槽尺寸可有效抑制PMaSynRM轉(zhuǎn)矩脈動(dòng),但所開(kāi)輔助槽過(guò)大或過(guò)小反而會(huì)增加齒槽轉(zhuǎn)矩,研究表明,實(shí)際槽寬在0.50~0.80范圍內(nèi),槽深在0.2附近時(shí)輔助槽效果最優(yōu)。
圖9 齒槽轉(zhuǎn)矩幅值隨輔助槽槽寬的變化
圖10 齒槽轉(zhuǎn)矩幅值隨輔助槽槽深的變化
2.2.2 磁障結(jié)構(gòu)對(duì)轉(zhuǎn)矩脈動(dòng)的抑制
針對(duì)PMaSynRM轉(zhuǎn)矩脈動(dòng)抑制,現(xiàn)有成果多聚焦于對(duì)磁障的研究,發(fā)現(xiàn)其形狀、尺寸和位置等參數(shù)對(duì)轉(zhuǎn)矩特性有較大的影響。文獻(xiàn)[59]對(duì)比分析了轉(zhuǎn)子磁障末端是尖角和圓弧兩種結(jié)構(gòu)時(shí)的轉(zhuǎn)矩特性,圖11給出兩種磁障端部結(jié)構(gòu)。研究發(fā)現(xiàn),尖角型磁障結(jié)構(gòu)能減小q軸漏磁,對(duì)磁障層數(shù)較多的轉(zhuǎn)子,端部采用尖角時(shí)轉(zhuǎn)矩脈動(dòng)更?。欢耪蠈訑?shù)較少時(shí)則是圓弧磁橋轉(zhuǎn)矩脈動(dòng)更小。
圖11 兩種磁障端部結(jié)構(gòu)
文獻(xiàn)[60-63]進(jìn)一步將磁障端部尖角改為錐形,之后向極中心線旋轉(zhuǎn)每極所對(duì)磁障兩端的中間隔磁橋。轉(zhuǎn)子磁障端部向極中心線旋轉(zhuǎn)如圖12所示。圖12a的“ ”型結(jié)構(gòu)是將圖12b中A型結(jié)構(gòu)中的第
二層磁障張角改變,進(jìn)而改變瞬時(shí)轉(zhuǎn)矩相位,實(shí)現(xiàn)諧波轉(zhuǎn)矩的相互抵消,從而降低轉(zhuǎn)矩脈動(dòng)。
圖12 轉(zhuǎn)子磁障端部向極中心線旋轉(zhuǎn)
文獻(xiàn)[64-65]是對(duì)每極所對(duì)尖角型磁障兩端中間的隔磁橋分別背離極中心線偏移,如圖13所示,通過(guò)錯(cuò)位的磁障尖端減小轉(zhuǎn)矩脈動(dòng)。
圖13 轉(zhuǎn)子磁障尖端背離極中心線偏移
文獻(xiàn)[66]對(duì)比分析了三種轉(zhuǎn)子結(jié)構(gòu)下的PMaSynRM轉(zhuǎn)矩脈動(dòng)情況,圖14給出轉(zhuǎn)子幾何結(jié)構(gòu)。圖14a為磁障未偏移,整條永磁體僅有與磁障適型的結(jié)構(gòu),圖14b為磁障端部向極中心線偏移,整條永磁體與磁障適型的結(jié)構(gòu),圖14c為磁障端部向極中心線偏移,永磁體分段且與磁障適型的結(jié)構(gòu)。
圖15為這三種轉(zhuǎn)子結(jié)構(gòu)的PMaSynRM和輪輻式永磁同步電機(jī)的脈動(dòng)轉(zhuǎn)矩對(duì)比。圖中,①輪輻式永磁同步電機(jī);②整條永磁體且具有磁障未偏移的PmaSYnRM;③整條永磁體且除磁障端部向極中心線偏移的PmaSynRM;④永磁體分段且除磁障端部向極中心線偏移的PmaSynRM。由圖15可知,磁障端部向極中心線偏移有效削弱了轉(zhuǎn)矩脈動(dòng),永磁體分段后,最大轉(zhuǎn)矩略有增加,轉(zhuǎn)矩脈動(dòng)也進(jìn)一步被削弱,圖14c的轉(zhuǎn)子結(jié)構(gòu)的轉(zhuǎn)矩脈動(dòng)最小。
圖15 輪輻式永磁同步電機(jī)及不同轉(zhuǎn)子結(jié)構(gòu)PMaSynRM轉(zhuǎn)矩脈動(dòng)曲線
文獻(xiàn)[67-68]研究了氣隙對(duì)PMaSynRM電磁性能的影響,圖16為不同轉(zhuǎn)子機(jī)械角度下單邊氣隙長(zhǎng)
對(duì)PMaSynRM轉(zhuǎn)矩脈動(dòng)的影響曲線族。設(shè)轉(zhuǎn)矩脈動(dòng)歸一化為轉(zhuǎn)矩最大值與平均值的差和轉(zhuǎn)矩最大值的比。由圖可知,轉(zhuǎn)子機(jī)械角度不變時(shí),轉(zhuǎn)矩脈動(dòng)隨單邊氣隙長(zhǎng)的減小而減小,不同氣隙長(zhǎng)時(shí)轉(zhuǎn)矩脈動(dòng)的最小值均出現(xiàn)在轉(zhuǎn)子機(jī)械角度為5.4°時(shí);單邊氣隙長(zhǎng)一定時(shí),轉(zhuǎn)矩脈動(dòng)隨轉(zhuǎn)子機(jī)械角度的變化趨勢(shì)呈現(xiàn)先減少后增大,轉(zhuǎn)子機(jī)械角度為5.4°時(shí)轉(zhuǎn)矩脈動(dòng)最小。由此可見(jiàn),在保證裝配工藝及運(yùn)行可靠的條件下,PMaSynRM應(yīng)盡可能選擇較小的氣隙來(lái)削弱轉(zhuǎn)矩脈動(dòng)。
圖16 單邊氣隙長(zhǎng)對(duì)PMaSynRM轉(zhuǎn)矩脈動(dòng)的影響曲線
文獻(xiàn)[69]進(jìn)一步研究了每極磁障寬度(即轉(zhuǎn)子每極磁障對(duì)應(yīng)轉(zhuǎn)子沖片圓心的圓心角)對(duì)轉(zhuǎn)矩脈動(dòng)的影響,圖17為不同的磁障寬度示意圖,圖18為磁障寬度對(duì)PMaSynRM轉(zhuǎn)矩脈動(dòng)的影響曲線??芍D(zhuǎn)矩脈動(dòng)隨著每極磁障寬度的減小而減??;而在不同磁障寬度下,轉(zhuǎn)矩脈動(dòng)隨轉(zhuǎn)子機(jī)械角度先減小后增大,當(dāng)前轉(zhuǎn)子機(jī)械角度為5.4°時(shí),轉(zhuǎn)矩脈動(dòng)達(dá)到最小。
圖17 不同的磁障寬度示意圖
圖18 磁障寬度對(duì)PMaSynRM轉(zhuǎn)矩脈動(dòng)的影響曲線
文獻(xiàn)[70]探討了相鄰兩極之間的磁障距離對(duì)PMaSynRM轉(zhuǎn)矩脈動(dòng)的影響,發(fā)現(xiàn)隨著極間磁障距離的減小,轉(zhuǎn)矩脈動(dòng)先減小后增加,所以選擇合適的磁障位置可以實(shí)現(xiàn)相對(duì)更小的轉(zhuǎn)矩脈動(dòng)。
文獻(xiàn)[71-73]提出當(dāng)虛擬張角、磁障間夾角b以及磁障層數(shù)滿足式(2)時(shí),轉(zhuǎn)矩脈動(dòng)的抑制效果最好。而的變化也影響磁障與軸線距離的變化,會(huì)對(duì)轉(zhuǎn)矩脈動(dòng)產(chǎn)生一定的影響[74]。如圖19所示為轉(zhuǎn)子磁障設(shè)計(jì)參數(shù)。圖中,m1~m4依次為第一~四層磁障寬度,第一~三層磁障長(zhǎng)度相同為m123,第四層磁障長(zhǎng)度為m4,轉(zhuǎn)子半徑為m1。
除此之外,對(duì)轉(zhuǎn)子進(jìn)行不對(duì)稱設(shè)計(jì),也可達(dá)到削弱轉(zhuǎn)矩脈動(dòng)的效果。轉(zhuǎn)子不對(duì)稱方法有多種,文獻(xiàn)[75]重新設(shè)計(jì)每層磁障張角,非對(duì)稱轉(zhuǎn)子磁障如圖20所示,得到兩種不同磁障張角的轉(zhuǎn)子沖片,其主要諧波幅值相等而相位相差180°。將兩種磁障結(jié)構(gòu)交替使用,疊加后以實(shí)現(xiàn)削弱轉(zhuǎn)矩脈動(dòng)的效果。圖中,1、3為第一層磁障開(kāi)角角度,2、4為第二層磁障開(kāi)角角度,2、4為第一層磁障寬度,1、3為第二層磁障寬度,1、3為第二層磁障末端寬度,1為磁障的長(zhǎng)度。
圖20 非對(duì)稱轉(zhuǎn)子磁障
文獻(xiàn)[76]采用完全不對(duì)稱轉(zhuǎn)子結(jié)構(gòu)來(lái)抑制電機(jī)轉(zhuǎn)矩脈動(dòng),其特點(diǎn)是轉(zhuǎn)子每極永磁體槽所跨角度均不相同。文獻(xiàn)[77]以某一極為基準(zhǔn),將每極下磁障端部位置逐一偏離某一特定角度,如圖21所示,達(dá)到轉(zhuǎn)子不對(duì)稱效果,同時(shí)也避免了定轉(zhuǎn)子槽對(duì)齊時(shí)的齒槽效應(yīng),從而抑制轉(zhuǎn)矩脈動(dòng)。
圖21 非對(duì)稱磁障轉(zhuǎn)子對(duì)比示意圖
目前,對(duì)PMaSynRM的研究除上述電磁設(shè)計(jì)、轉(zhuǎn)矩特性外,研究人員還對(duì)其轉(zhuǎn)子機(jī)械強(qiáng)度、溫度預(yù)測(cè)以及容錯(cuò)性能等方面進(jìn)行了探討。
PMaSynRM運(yùn)行中受離心力、單邊磁拉力等力作用,可能使轉(zhuǎn)子薄弱位置尤其是隔磁橋處發(fā)生形變,甚至斷裂引發(fā)事故[78-79]。如何在保證電磁性能的同時(shí)提高其轉(zhuǎn)子機(jī)械強(qiáng)度也是PMaSynRM的研究熱點(diǎn)之一。
文獻(xiàn)[80-83]針對(duì)圖22所示的兩種轉(zhuǎn)子結(jié)構(gòu)進(jìn)行了應(yīng)力分析,從圖中可以發(fā)現(xiàn),在中心肋和外磁橋處所受應(yīng)力較大,通過(guò)增加中心肋(即內(nèi)磁橋)數(shù)量,并就形狀進(jìn)行適當(dāng)優(yōu)化,可使最大應(yīng)力點(diǎn)由外磁橋分散到多個(gè)磁橋上,能有效降低外磁橋的機(jī)械應(yīng)力,提升轉(zhuǎn)子強(qiáng)度。
圖22 應(yīng)力分布示意圖
另外,將磁障邊界調(diào)整為圓形,可適當(dāng)降低機(jī)械應(yīng)力[84],亦或改變磁障夾角的半徑或形狀來(lái)提高機(jī)械強(qiáng)度[85-86],也有研究將磁障設(shè)計(jì)為燕尾式,并通過(guò)增加等效磁障厚度來(lái)提高其機(jī)械強(qiáng)度,燕尾型磁障如圖23所示[87]。
圖23 燕尾型磁障
文獻(xiàn)[88]比較了轉(zhuǎn)子磁障中有無(wú)環(huán)氧樹(shù)脂填充物時(shí)轉(zhuǎn)子應(yīng)力的變化,磁障中環(huán)氧樹(shù)脂填對(duì)轉(zhuǎn)子應(yīng)力結(jié)的影響如圖24所示,實(shí)驗(yàn)表明,在轉(zhuǎn)子磁障中添加環(huán)氧樹(shù)脂填充物后,提高了電機(jī)永磁體與硅鋼片的整體性,也增強(qiáng)了電機(jī)轉(zhuǎn)子的機(jī)械強(qiáng)度。
運(yùn)行時(shí)的溫度和溫升分布對(duì)電機(jī)性能有顯著影響,因此,發(fā)熱和冷卻一直是電機(jī)的重點(diǎn)研究領(lǐng)域。與其他電機(jī)相比,PMaSynRM的熱分析文獻(xiàn)相對(duì)較少,主要集中于冷卻水道、電機(jī)穩(wěn)態(tài)溫升分布以及多物理場(chǎng)耦合分析等方面。文獻(xiàn)[89]對(duì)一臺(tái)軸向折返式水冷結(jié)構(gòu)的PMaSynRM采用流固耦合方法計(jì)算得到電機(jī)最大損耗時(shí)的溫升分布,以確保定子繞組和永磁體的最高溫度都在允許范圍內(nèi)。圖25所示為應(yīng)用軸向折返式水冷結(jié)構(gòu)的最大損耗下的PMaSynRM流固耦合溫升計(jì)算。
圖25 最大損耗下PMaSynRM流固耦合溫升計(jì)算
圖25中機(jī)殼溫升較小,電機(jī)內(nèi)部整體溫升較大,在電機(jī)內(nèi)部繞組的溫升最高,永磁體溫升次之,圖25f為軸向折返式水冷結(jié)構(gòu)。由圖25e可知,電機(jī)的進(jìn)出口溫差大致為8℃,證明水冷系統(tǒng)能夠帶走一定的熱量來(lái)達(dá)到電機(jī)散熱的要求。
文獻(xiàn)[90]對(duì)PMaSynRM樣機(jī)進(jìn)行了磁-熱耦合研究,對(duì)其單邊氣隙長(zhǎng)、永磁體體積等參數(shù)進(jìn)行優(yōu)化,獲取電機(jī)在穩(wěn)態(tài)溫升時(shí)具有最佳的電磁性能。樣機(jī)優(yōu)化前后溫度對(duì)比見(jiàn)表6,由表6可知,優(yōu)化后繞組和鐵氧體的溫度大幅下降,同時(shí)鐵氧體的剩磁也有所提升,可使電機(jī)在正常運(yùn)行中具有較低的溫升和更好的性能,保證了電機(jī)的可靠性。
表6 樣機(jī)優(yōu)化前后溫度對(duì)比
Tab.6 Temperature comparison of prototype before and after optimization
文獻(xiàn)[91-92]建立了九相PMaSynRM的三維瞬態(tài)熱模型和集總參數(shù)熱模型預(yù)測(cè)電機(jī)在故障條件下的不對(duì)稱溫度分布,為PMaSynRM在容錯(cuò)設(shè)計(jì)中建立電磁熱耦合模型提供了參考。
PMaSynRM多是三相電機(jī),發(fā)生缺相故障時(shí),容錯(cuò)性能較差。近年來(lái),有學(xué)者將PMaSynRM和容錯(cuò)電機(jī)相結(jié)合,用于提升PMaSynRM的容錯(cuò)性能,使其在故障時(shí)能持續(xù)運(yùn)行。PMaSynRM的容錯(cuò)設(shè)計(jì)大致可分為三類:一是在電驅(qū)動(dòng)系統(tǒng)增加裕度,利用資源的重復(fù)配置達(dá)到容錯(cuò)能力的提升,如并聯(lián)多個(gè)電機(jī),容錯(cuò)運(yùn)行時(shí)切除故障電機(jī)即可[93];二是將PMaSynRM設(shè)計(jì)成多相電機(jī);三是綜合前兩類進(jìn)行模塊化設(shè)計(jì),使整個(gè)系統(tǒng)兼具獨(dú)立驅(qū)動(dòng)和多自由度的特點(diǎn)。
文獻(xiàn)[94-95]設(shè)計(jì)了一臺(tái)五相PMaSynRM,樣機(jī)定轉(zhuǎn)子結(jié)構(gòu)如圖26所示,并對(duì)其在不同開(kāi)路故障下的轉(zhuǎn)矩特性進(jìn)行了分析計(jì)算,提出適當(dāng)?shù)碾娏骺刂撇呗裕WC故障后的電機(jī)安全運(yùn)行,實(shí)現(xiàn)平穩(wěn)的電機(jī)轉(zhuǎn)矩。通過(guò)在每個(gè)健康相電流引入一個(gè)適當(dāng)?shù)慕俏灰七_(dá)到減小故障后轉(zhuǎn)矩諧波的目的。文獻(xiàn)[96-97]對(duì)五相PMaSynRM在不同運(yùn)行狀態(tài)下的溫升進(jìn)行了研究,指出電機(jī)在容錯(cuò)控制時(shí)也應(yīng)考慮熱效應(yīng)的影響,并進(jìn)一步采用對(duì)稱分量分析方法提取故障條件的特征,判斷故障類型。通過(guò)由正序、負(fù)序、零序的峰值相比得到的兩個(gè)信號(hào)比指標(biāo),總結(jié)出不同故障狀態(tài)下的信號(hào)比指標(biāo)的變化規(guī)律,達(dá)到初步確認(rèn)故障類型,再通過(guò)故障后相位的變化規(guī)律,最終確認(rèn)故障類型。文獻(xiàn)[98]為提高PMaSynRM在容錯(cuò)狀態(tài)下的電磁性能,采用動(dòng)態(tài)超前電流相位的容錯(cuò)控制方法,以獲得更大的轉(zhuǎn)矩。當(dāng)發(fā)生故障時(shí),轉(zhuǎn)矩脈動(dòng)會(huì)發(fā)生嚴(yán)重畸變,所以文獻(xiàn)[99]以轉(zhuǎn)矩誤差為目標(biāo),建立模型預(yù)測(cè)控制系統(tǒng),以過(guò)去的狀態(tài)作為輸入,生成對(duì)未來(lái)狀態(tài)的預(yù)測(cè),達(dá)到預(yù)測(cè)故障的作用。
圖26 五相PMaSynRM
為確保電機(jī)在某相發(fā)生故障時(shí)健康相仍正常工作,需盡可能減少故障相對(duì)健康相的影響。文獻(xiàn)[100-102]對(duì)繞組進(jìn)行模塊化設(shè)計(jì),采用三倍冗余九相PMaSynRM,通過(guò)改變繞組得聯(lián)結(jié)型式,得到空間上相對(duì)獨(dú)立的三套三相繞組,從而實(shí)現(xiàn)每套繞組之間有一定的物理隔離、磁隔離、電隔離和熱隔離。
圖27所示為三倍冗余九相PMaSynRM繞組分布示意圖,每套繞組由標(biāo)準(zhǔn)三相逆變器驅(qū)動(dòng),當(dāng)電機(jī)某相發(fā)生故障時(shí),直接切斷故障相電流,此時(shí)另外兩套獨(dú)立的三相繞組使電機(jī)仍能在故障狀態(tài)時(shí)保持一定的電磁性能。文獻(xiàn)[103-104]使用電磁熱耦合模擬仿真對(duì)不同故障條件下故障區(qū)域溫度變化進(jìn)行了對(duì)比,預(yù)測(cè)出最壞情況下故障檢測(cè)和緩解的最大允許時(shí)間,為故障運(yùn)行時(shí)采取相應(yīng)措施提供了參考時(shí)間。
圖27 三倍冗余九相PMaSynRM
近年來(lái),PMaSynRM發(fā)展迅速,國(guó)內(nèi)外對(duì)其研究取得了豐碩的成果,產(chǎn)業(yè)化勢(shì)頭良好。但國(guó)內(nèi)與國(guó)外相比仍有較大的差距,對(duì)PmaSynRM的研制多集中在小功率和低轉(zhuǎn)速。綜合國(guó)內(nèi)外研究現(xiàn)狀看,盡管目前在電動(dòng)汽車、家用電器等領(lǐng)域有了較廣泛的應(yīng)用,但PMaSynRM仍存在亟需深入研究的關(guān)鍵技術(shù)問(wèn)題,主要包括:
1)損耗與溫升。隨著PMaSynRM新的應(yīng)用場(chǎng)合不斷出現(xiàn),對(duì)其最大功率需求日趨增加,使得電機(jī)電磁負(fù)荷和功率密度不斷提高,加之轉(zhuǎn)子磁障結(jié)構(gòu)對(duì)其運(yùn)行磁場(chǎng)的影響,尤其是高速應(yīng)用環(huán)境,PMaSynRM損耗的準(zhǔn)確計(jì)算仍值得深入研究。在此基礎(chǔ)上,研究不同工況、不同冷卻條件、不同轉(zhuǎn)子結(jié)構(gòu)對(duì)電機(jī)溫升分布規(guī)律的影響和多物理場(chǎng)雙向耦合方法預(yù)測(cè)電機(jī)全域溫升也是該類電機(jī)電磁設(shè)計(jì)、結(jié)構(gòu)優(yōu)化甚至擴(kuò)大應(yīng)用范圍必須解決的關(guān)鍵問(wèn)題之一。
2)高轉(zhuǎn)速化、高功率密度化或高轉(zhuǎn)矩密度化。對(duì)PMaSynRM進(jìn)行更合理的結(jié)構(gòu)設(shè)計(jì)和電磁設(shè)計(jì),充分利用永磁轉(zhuǎn)矩和磁阻轉(zhuǎn)矩,實(shí)現(xiàn)更高的功率密度或轉(zhuǎn)矩密度,達(dá)到更好的電磁性能。充分發(fā)揮PMaSynRM高功率密度、高效率等優(yōu)勢(shì)向高速領(lǐng)域發(fā)展,以期在航空航天領(lǐng)域發(fā)揮更大作用。
3)多目標(biāo)優(yōu)化設(shè)計(jì)。PMaSynRM的優(yōu)化設(shè)計(jì)涉及到電磁、流體流動(dòng)及傳熱、應(yīng)力場(chǎng)、轉(zhuǎn)子動(dòng)力學(xué)以及容錯(cuò)控制等方面的多約束條件下的多目標(biāo)綜合優(yōu)化設(shè)計(jì)。目前,PMaSynRM的優(yōu)化設(shè)計(jì)多為單一性能如電磁性能的優(yōu)化,多目標(biāo)協(xié)同優(yōu)化正逐漸成為其優(yōu)化設(shè)計(jì)的主要方向,借助多物理場(chǎng)雙向耦合分析,實(shí)現(xiàn)電機(jī)的損耗控制、轉(zhuǎn)矩脈動(dòng)抑制、轉(zhuǎn)子強(qiáng)度、冷卻結(jié)構(gòu)及全域溫升預(yù)測(cè)及抑制等多目標(biāo)系統(tǒng)優(yōu)化。
4)容錯(cuò)電機(jī)與故障診斷。對(duì)PMaSynRM進(jìn)行更合理的容錯(cuò)設(shè)計(jì),并研究其容錯(cuò)控制策略。合理設(shè)計(jì)PMaSynRM的轉(zhuǎn)子結(jié)構(gòu)、繞組型式及連接方式、永磁體設(shè)置位置及形狀等,進(jìn)一步提升其抗短路能力和電磁性能,準(zhǔn)確診斷系統(tǒng)的故障類型、故障位置等也是今后研究的重點(diǎn)。
[1] Vagati A, Pastorelli M, Francheschini G, et al. Design of low-torque-ripple synchronous reluctance motors[J]. IEEE Transactions on Industry Applications, 1998, 34(4): 758-765.
[2] 狄沖, 鮑曉華, 潘晉, 等. 基于Elmer開(kāi)源有限元平臺(tái)的鐵氧體輔助同步磁阻電機(jī)的建模和分析[J]. 電工技術(shù)學(xué)報(bào), 2022, 37(5): 1136-1144.
Di Chong, Bao Xiaohua, Pan Jin, et al. Modelling and analysis of a ferrite assisted synchronous reluctance machine based on the open-source platform Elmer[J]. Transactions of China Electrotechnical Society, 2022, 37(5): 1136-1144.
[3] 李岱巖. 新型非對(duì)稱轉(zhuǎn)子永磁輔助式同步磁阻電機(jī)研究[D]. 沈陽(yáng): 沈陽(yáng)工業(yè)大學(xué), 2019.
[4] 張清枝, 牛聯(lián)波, 艾永樂(lè). 永磁輔助磁阻同步電機(jī)性能分析[J]. 電力系統(tǒng)保護(hù)與控制, 2011, 39(22): 129-132.
Zhang Qingzhi, Niu Lianbo, Ai Yongle. Performance analysis of permanent magnet assisted reluctance synchronous machine[J]. Power System Protection and Control, 2011, 39(22): 129-132.
[5] 王瑾, 李巖, 賈建國(guó), 等. 反電動(dòng)勢(shì)和凸極率對(duì)高效永磁同步磁阻電機(jī)穩(wěn)態(tài)特性影響分析[J]. 電工技術(shù)學(xué)報(bào), 2020, 35(22): 4688-4698.
Wang Jin, Li Yan, Jia Jianguo, et al. Analysis of the influence of back-EMF and saliency ratio on steady- state characteristics of a high efficiency permanent magnet synchronous reluctance motor[J]. Transa- ctions of China Electrotechnical Society, 2020, 35(22): 4688-4698.
[6] 李新華, 汪思敏, 易夢(mèng)云, 等. 釹鐵硼永磁磁阻同步電機(jī)及其仿真分析[J]. 微特電機(jī), 2018, 46(8): 49-51.
Li Xinhua, Wang Simin, Yi Mengyun, et al. Simu- lation analysis of NdFeB permanent magnet relu- ctance synchronous motor[J]. Small & Special Electrical Machines, 2018, 46(8): 49-51.
[7] 柴鳳, 史妍雯, 劉越. 永磁同步磁阻電動(dòng)機(jī)綜述[J]. 微特電機(jī), 2015, 43(10): 81-87.
Chai Feng, Shi Yanwen, Liu Yue. Research review of permanent magnet assisted synchronous reluctance motor[J]. Small & Special Electrical Machines, 2015, 43(10): 81-87.
[8] Nicorici A M, Oprea C, Martis C. Performance evaluation of a 7.5kW permanent magnet assisted synchronous reluctance machine for light electric vehicles[C]//IEEE 2018 International Conference and Exposition on Electrical and Power Engineering (EPE), Iasi, Romania, 2018: 129-132.
[9] 李新華, 阮波, 徐竟成, 等. 電動(dòng)大巴永磁輔助磁阻同步電動(dòng)機(jī)仿真分析[J]. 微特電機(jī), 2014, 42(3): 1-3.
Li Xinhua, Ruan Bo, Xu Jingcheng, et al. Simulation analysis of PMaSynRM used in electrical bus[J]. Small & Special Electrical Machines, 2014, 42(3): 1-3.
[10] 黃輝, 胡余生. 永磁輔助同步磁阻電機(jī)設(shè)計(jì)與應(yīng)用[M]. 北京: 機(jī)械工業(yè)出版社, 2017.
[11] Nattuthurai S, Neelamegham R. Design and perfor- mance evaluation of SynRM and ferrite assisted- SynRM for EV application using FEA[C]//IEEE 2017 International Conference on Smart Technologies for Smart Nation (SmartTechCon), Bengaluru, India, 2017: 492-497.
[12] Aghazadeh H, Afjei E, Siadatan A. Comparative analysis of permanent magnet assisted synchronous reluctance motor with external-rotor[C]//IEEE 2019 10th International Power Electronics, Drive Systems and Technologies Conference (PEDSTC), Shiraz, Iran, 2019: 22-27.
[13] Neusüs S, Binder A. Experimental comparison of synchronous reluctance motors with and without ferrite magnet assistance[C]//IEEE 2019 IEEE International Electric Machines & Drives Conference, San Diego, CA, USA, 2019: 1464-1471.
[14] Bottesi O, Alberti L. Comparison of small-size generator for high-efficiency hydroelectric energy production[C]//2017 IEEE International Electric Machines and Drives Conference, Miami, FL, USA, 2017: 1-8.
[15] 黃輝, 胡余生, 陳東鎖, 等. 變頻壓縮機(jī)用無(wú)稀土永磁輔助同步磁阻電機(jī)的研究[J]. 微電機(jī), 2014, 47(4): 9-12.
Huang Hui, Hu Yusheng, Chen Dongsuo, et al. Research of rare-earthless permanent-magnet-assisted synchronous reluctance motor for variable speed compressor[J]. Micromotors, 2014, 47(4): 9-12.
[16] Shen Jianxin, Cai Shun, Shao Hang, et al. Evaluation of low-cost high-performance synchronous motors for ventilation application[C]//IEEE 2015 International Conference on Sustainable Mobility Applications, Renewables and Technology (SMART), Kuwait, 2015: 1-6.
[17] 喻琦, 王心堅(jiān), 章桐. 永磁同步電機(jī)與同步磁阻電機(jī)能量轉(zhuǎn)換特性對(duì)比[J]. 機(jī)電一體化, 2017, 23(11): 27-33.
Yu Qi, Wang Xinjian, Zhang Tong. Comparison of energy conversion characteristics between permanent magnet synchronous motor and synchronous relu- ctance motor[J]. Mechatronics, 2017, 23(11): 27-33.
[18] 丁娟, 朱江源, 常久鵬, 等. 純電動(dòng)車中永磁同步電機(jī)的研究[J]. 汽車電器, 2016(1): 13-16.
Ding Juan, Zhu Jiangyuan, Chang Jiupeng, et al. Research on PMSM for pure EV[J]. Auto Electric Parts, 2016(1): 13-16.
[19] 蔡順. 同步磁阻電機(jī)性能分析與結(jié)構(gòu)優(yōu)化[D]. 杭州: 浙江大學(xué), 2017.
[20] 沈建新, 蔡順, 郝鶴, 等. 同步磁阻電機(jī)分析與設(shè)計(jì)(連載之十) 同步磁阻電機(jī)與開(kāi)關(guān)磁阻電機(jī)定轉(zhuǎn)子的組合應(yīng)用[J]. 微電機(jī), 2017, 50(2): 71-76.
Shen Jianxin, Cai Shun, Hao He, et al. Analysis and design of synchronous reluctance machines part Ⅹ: combination of stators and rotors of synchronous reluctance machine and switched reluctance machine[J]. Micromotors, 2017, 50(2): 71-76.
[21] Jia Shaofeng, Zhang Ping, Liang Deliang, et al. Design and comparison of three different types of IE4 efficiency machines[C]//IEEE 2019 22nd Inter- national Conference on Electrical Machines and Systems (ICEMS), Harbin, China, 2019: 1-4.
[22] Kobayashi M, Morimoto S, Sanada M, et al. Perfor- mance comparison between PMASynRM with Dyfree bonded magnets and IPMSM with sintered magnets for automotive applications under various temperature conditions[C]//IEEE 2019 21st European Conference on Power Electronics and Applications (EPE '19 ECCE Europe), Genova, Italy, 2019: 1-9.
[23] 沈建新, 蔡順, 袁賽賽. 同步磁阻電機(jī)分析與設(shè)計(jì)(連載之一)概述[J]. 微電機(jī), 2016, 49(10): 72-79, 83.
Shen Jianxin, Cai Shun, Yuan Saisai. Analysis and design of synchronous reluctance machines part Ⅰ: an overview[J]. Micromotors, 2016, 49(10): 72-79, 83.
[24] Prakht V, Dmitrievskii V, Kazakbaev V. Theoretical performance analysis of ultra premium efficiency PM assisted synchronous reluctance motor with ferrite magnets[C]//IEEE 2018 International Conference on Industrial Engineering, Applications and Manu- facturing (ICIEAM), Moscow, Russia, 2018: 1-6.
[25] Cai Haiwei, Guan Bo, Xu Longya. Low-cost ferrite PM-assisted synchronous reluctance machine for electric vehicles[J]. IEEE Transactions on Industrial Electronics, 2014, 61(10): 5741-5748.
[26] Prakht V, Dmitrievskii V, Kazakbaev V. Mathema- tical modeling ultra premium efficiency (IE5 class) PM assisted synchronous reluctance motor with ferrite magnets[C]//IEEE 2018 25th International Workshop on Electric Drives: Optimization in Control of Electric Drives (IWED), Moscow, Russia, 2018: 1-6.
[27] Zimmermann M, Schupp L, Piepenbreier B. Operating strategy and iron loss model of a permanent magnet assisted synchronous reluctance machine with a ribless rotor[C]//IEEE 2018 21st International Conference on Electrical Machines and Systems (ICEMS), Jeju, 2018: 338-343.
[28] 沈建新, 蔡順, 郝鶴, 等. 同步磁阻電機(jī)分析與設(shè)計(jì)(連載之十二)永磁輔助同步磁阻電機(jī)的設(shè)計(jì)研究[J]. 微電機(jī), 2017, 50(3): 79-84, 88.
Shen Jianxin, Cai Shun, Hao He, et al. Analysis and design of synchronous reluctance machines part Ⅻ: investigation of permanent magnet assisted syn- chronous reluctance machines[J]. Micromotors, 2017, 50(3): 79-84, 88.
[29] 魏超, 孫德強(qiáng), 任延生, 等. 基于Maxwell 2D的永磁輔助同步磁阻電機(jī)的參數(shù)化建模及分析[J]. 電機(jī)與控制應(yīng)用, 2019, 46(12): 55-60.
Wei Chao, Sun Deqiang, Ren Yansheng, et al. Para- metric modeling and analysis of permanent magnet assisted synchronous reluctance motor on Maxwell 2D software[J]. Electric Machines & Control Appli- cation, 2019, 46(12): 55-60.
[30] 張景峰, 倪瑞林, 申春艷, 等. 磁阻轉(zhuǎn)矩對(duì)永磁電機(jī)性能的影響分析[J]. 電子世界, 2016(22): 157- 158.
Zhang Jingfeng, Ni Ruilin, Shen Chunyan, et al. Analysis of the effect of permanent magnet resistance on the performance of permanent magnet motor[J]. Electronics World, 2016(22): 157-158.
[31] 年恒震. 電動(dòng)汽車分?jǐn)?shù)槽永磁同步磁阻電機(jī)設(shè)計(jì)[D]. 沈陽(yáng): 沈陽(yáng)工業(yè)大學(xué), 2019.
[32] 沈建新, 蔡順, 郝鶴, 等. 同步磁阻電機(jī)分析與設(shè)計(jì)(連載之四)繞組形式的分析與選擇[J]. 微電機(jī), 2016, 49(11): 93-97.
Shen Jianxin, Cai Shun, Hao He, et al. Analysis and design of synchronous reluctance machines part Ⅳ: analysis and utility of winding configurations[J]. Micromotors, 2016, 49(11): 93-97.
[33] 沈建新, 蔡順, 郝鶴, 等. 同步磁阻電機(jī)分析與設(shè)計(jì)(連載之六)轉(zhuǎn)子均勻分布磁障的參數(shù)優(yōu)化[J]. 微電機(jī), 2016, 49(12): 84-88.
Shen Jianxin, Cai Shun, Hao He, et al. Analysis and design of synchronous reluctance machines part Ⅵ: parameter optimization of evenly distributed rotor barriers[J]. Micromotors, 2016, 49(12): 84-88.
[34] 肖勇, 黃輝, 胡余生, 等. 繞組形式對(duì)永磁輔助同步磁阻電機(jī)影響研究[J]. 日用電器, 2017(7): 66-68.
Xiao Yong, Huang Hui, Hu Yusheng, et al. Research on the influence of windings on permanent-magnet- assisted synchronous reluctance motor[J]. Electrical Appliances, 2017(7): 66-68.
[35] Tap A, Xheladini L, ?meryüz M, et al. Effects of the stator design parameters on the torque performance of a PMaSynRM[C]//IEEE 2017 11th IEEE International Conference on Compatibility, Power Electronics and Power Engineering, Cadiz, Spain, 2017: 346-351.
[36] Huang Hui, Hu Yusheng, Xiao Yong, et al. Research of parameters and antidemagnetization of rare-earth- less permanent magnet-assisted synchronous relu- ctance motor[J]. IEEE Transactions on Magnetics, 2015, 51(11): 1-4.
[37] Bianchi N, Bolognani S, Frare P. Design criteria for high-efficiency SPM synchronous motors[J]. IEEE Transactions on Energy Conversion, 2006, 21(2): 396-404.
[38] 胡慧瑩. 永磁同步磁阻電機(jī)參數(shù)化設(shè)計(jì)方法及轉(zhuǎn)矩優(yōu)化研究[D]. 哈爾濱: 哈爾濱工業(yè)大學(xué), 2018.
[39] 沈建新, 蔡順, 郝鶴, 等. 同步磁阻電機(jī)分析與設(shè)計(jì)(連載之三)極對(duì)數(shù)與裂比的優(yōu)化設(shè)計(jì)[J]. 微電機(jī), 2016, 49(11): 90-92, 97.
Shen Jianxin, Cai Shun, Hao He, et al. Analysis and design of synchronous reluctance machines part Ⅲ: optimization of number of pole-pairs and split ratio[J]. Micromotors, 2016, 49(11): 90-92, 97.
[40] 王風(fēng)華. 車用永磁同步電機(jī)拓?fù)浣Y(jié)構(gòu)比較研究[J]. 電氣傳動(dòng), 2019, 49(6): 93-96.
Wang Fenghua. Comparative research on topology of vehicle permanent magnet synchronous motor[J]. Electric Drive, 2019, 49(6): 93-96.
[41] 李威揚(yáng), 黃鵬程, 孟曙光, 等. 永磁同步電機(jī)轉(zhuǎn)子磁鋼拓?fù)浣Y(jié)構(gòu)與運(yùn)行工況匹配性分析[J]. 防爆電機(jī), 2018, 53(2): 19-22.
Li Weiyang, Huang Pengcheng, Meng Shuguang, et al. Matching analysis of rotor magnet steel topology structure with operation condition of permanent- magnet synchronous motor[J]. Explosion-Proof Electric Machine, 2018, 53(2): 19-22.
[42] 沈建新, 蔡順, 郝鶴, 等. 同步磁阻電機(jī)分析與設(shè)計(jì)(連載之七)轉(zhuǎn)子不均勻分布磁障的對(duì)比分析[J]. 微電機(jī), 2017, 50(1): 83-86.
Shen Jianxin, Cai Shun, Hao He, et al. Analysis and design of synchronous reluctance machines part Ⅶ: comparative analysis of unevenly distributed rotor barriers[J]. Micromotors, 2017, 50(1): 83-86.
[43] 董新偉, 王一飛, 楊磊. 車用高性能永磁同步電機(jī)磁極設(shè)計(jì)綜述[J]. 微電機(jī), 2019, 52(11): 97-100.
Dong Xinwei, Wang Yifei, Yang Lei. A survey of magnetic pole design for high performance permanent magnet synchronous motors[J]. Micromotors, 2019, 52(11): 97-100.
[44] 李新華, 黃啟振, 劉天知. 正負(fù)凸極永磁輔助式磁阻同步電動(dòng)機(jī)研究[J]. 微特電機(jī), 2015, 43(7): 1-3, 9.
Li Xinhua, Huang Qizhen, Liu Tianzhi. Research on permanent magnet assisted synchronous reluctance motor with the positive and negative salient pole[J]. Small & Special Electrical Machines, 2015, 43(7): 1-3, 9.
[45] Zhao Wenliang, Chen Dezhi, Lipo T A, et al. Perfor- mance improvement of ferrite-assisted synchronous reluctance machines using asymmetrical rotor configurations[J]. IEEE Transactions on Magnetics, 2015, 51(11): 1-4.
[46] Hu Yaohua, Liu Chuang, Zhu Shushu, et al. Opti- mized design of rotor structure in ferrite-assisted synchronous reluctance machines for electric vehicle application[C]//IEEE 2016 Eleventh International Conference on Ecological Vehicles and Renewable Energies (EVER), Monte Carlo, Monaco, 2016: 1-7.
[47] Tap A, Xheladini L, Asan T, et al. Effects of the rotor design parameters on the torque production of a PMaSynRM for washing machine applications[C]// IEEE 2017 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM) & 2017 Intl Aegean Conference on Electrical Machines and Power Electronics (ACEMP), Brasov, Romania, 2017: 370-375.
[48] Tap A, Xheladini L, Yilmaz M, et al. Comprehensive design and analysis of a PMaSynRM for washing machine applications[J]. IET Electric Power Appli- cations, 2018, 12(9): 1311-1319.
[49] 梅柏杉, 張翔建, 馮江波, 等. U型多磁障式永磁輔助同步磁阻電機(jī)轉(zhuǎn)子分析與設(shè)計(jì)[J]. 微特電機(jī), 2017, 45(5): 11-14.
Mei Baishan, Zhang Xiangjian, Feng Jiangbo, et al. Analysis and design on PM assist synchronous reluctance motor with U-shaped barriers rotor[J]. Small & Special Electrical Machines, 2017, 45(5): 11-14.
[50] 楊晨, 白保東, 陳德志, 等. 可變磁通永磁輔助同步磁阻電機(jī)設(shè)計(jì)與性能分析[J]. 電工技術(shù)學(xué)報(bào), 2019, 34(3): 489-496.
Yang Chen, Bai Baodong, Chen Dezhi, et al. Design and analysis of a variable flux permanent magnet assisted synchronous motor[J]. Transactions of China Electrotechnical Society, 2019, 34(3): 489-496.
[51] Morimoto S, Asano Y, Kosaka T, et al. Recent technical trends in PMSM[C]//IEEE 2014 Inter- national Power Electronics Conference (IPEC- Hiroshima 2014-ECCE ASIA), Hiroshima, Japan, 2014: 1997- 2003.
[52] 申海振. 新型混合轉(zhuǎn)子永磁同步磁阻電機(jī)設(shè)計(jì)與分析[D]. 濟(jì)南: 山東大學(xué), 2019.
[53] 杜錦華, 薛運(yùn)田. 新型永磁磁阻電機(jī)的結(jié)構(gòu)和電磁參數(shù)關(guān)系分析[J]. 中國(guó)科技論文, 2016, 11(23): 2640-2644.
Du Jinhua, Xue Yuntian. Analysis of the relationship between the structure and the electromagnetic para- meters for permanent magnetic reluctance machines[J]. China Sciencepaper, 2016, 11(23): 2640-2644.
[54] Zhang Yue, Yu Siyang, Liu Guangwei, et al. Com- parative research for a novel dual-stator synchronous machine with permanent magnet-reluctance com- posite rotor[J]. IEEE Transactions on Applied Superconductivity, 2020, 30(4): 1-5.
[55] 沈建新, 蔡順, 郝鶴, 等. 同步磁阻電機(jī)分析與設(shè)計(jì)(連載之五)定子鐵心的優(yōu)化設(shè)計(jì)[J]. 微電機(jī), 2016, 49(12): 80-83.
Shen Jianxin, Cai Shun, Hao He, et al. Analysis and design of synchronous reluctance machines part Ⅴ: stator core optimization[J]. Micromotors, 2016, 49(12): 80-83.
[56] 劉偉, 陳麗香, 唐任遠(yuǎn). 定子齒頂開(kāi)輔助槽削弱永磁電機(jī)齒槽轉(zhuǎn)矩的方法[J]. 電氣技術(shù), 2009, 10(8): 51-53.
Liu Wei, Chen Lixiang, Tang Renyuan. Reducing the cogging torque in permanent magnet machines by introducing auxiliary slot in the top of stator teeth[J]. Electrical Engineering, 2009, 10(8): 51-53.
[57] Wang Xiuhe, Yang Yubo, Fu Dajin. Study of cogging torque in surface-mounted permanent magnet motors with energy method[J]. Journal of Magnetism and Magnetic Materials, 2003, 267(1): 80-85.
[58] Zhu Z Q, Howe D. Analytical prediction of the cogging torque in radial-field permanent magnet brushless motors[J]. IEEE Transactions on Magnetics, 1992, 28(2): 1371-1374.
[59] 沈建新, 蔡順, 郝鶴, 等. 同步磁阻電機(jī)分析與設(shè)計(jì)(連載之八)轉(zhuǎn)子磁橋分析[J]. 微電機(jī), 2017, 50(1): 87-90.
Shen Jianxin, Cai Shun, Hao He, et al. Analysis and design of synchronous reluctance machines part Ⅷ: analysis of rotor flux bridge ribs[J]. Micromotors, 2017, 50(1): 87-90.
[60] Obata M, Morimoto S, Sanada M, et al. Performance evaluation of high power and low torque ripple structure of rare-earth free PMASynRM with ferrite magnet[C]//IEEE 2013 10th International Conference on Power Electronics and Drive Systems, Kitakyushu, Japan, 2013: 714-719.
[61] Morimoto S, Ooi S, Inoue Y, et al. Experimental evaluation of a rare-earth-free PMASynRM with ferrite magnets for automotive applications[J]. IEEE Transactions on Industrial Electronics, 2014, 61(10): 5749-5756.
[62] Sanada M, Morimoto S, Inoue Y. Development of high-power PMASynRM using ferrite magnets for reducing rare-earth material use[C]//IEEE 2014 Inter- national Power Electronics Conference (IPEC- Hiroshima 2014-ECCE ASIA), Hiroshima, Japan, 2014: 3519-3524.
[63] Chai Feng, Hu Huiying, Geng Lina. Theoretical analysis of torque performance in permanent magnet- assisted synchronous reluctance motor[C]//IEEE 2017 20th International Conference on Electrical Machines and Systems (ICEMS), Sydney, NSW, Australia, 2017: 1-6.
[64] Liu Wanzhen, Liu Guangqiang, Yao Li, et al. Rotor design optimization of permanent magnet-assisted synchronous reluctance motor with ferrite magnets[C]// IEEE 2016 19th International Conference on Electrical Machines and Systems (ICEMS), Chiba, Japan, 2016: 1-5.
[65] 劉萬(wàn)振, 劉廣強(qiáng), 林巖, 等. 鐵氧體輔助同步磁阻電機(jī)轉(zhuǎn)子優(yōu)化設(shè)計(jì)[J]. 微電機(jī), 2017, 50(2): 17-20.
Liu Wanzhen, Liu Guangqiang, Lin Yan, et al. Rotor optimization design of ferrite magnet-assisted syn- chronous reluctance motor[J]. Micromotors, 2017, 50(2): 17-20.
[66] Montalvo-Ortiz E E, Foster S N, Cintron-Rivera J G, et al. Comparison between a spoke-type PMSM and a PMASynRM using ferrite magnets[C]//IEEE 2013 International Electric Machines & Drives Conference, Chicago, IL, USA, 2013: 1080-1087.
[67] 梁杰尚. 永磁輔助型同步磁阻電機(jī)電磁性能分析[D]. 沈陽(yáng): 沈陽(yáng)工業(yè)大學(xué), 2019.
[68] 郭偉, 趙爭(zhēng)鳴. 新型同步磁阻永磁電機(jī)的結(jié)構(gòu)與電磁參數(shù)關(guān)系分析[J]. 中國(guó)電機(jī)工程學(xué)報(bào), 2005, 25(11): 124-128.
Guo Wei, Zhao Zhengming. Analysis of the relation between the electro-magnetic parameters and the structure of synchronous reluctance permanent mag- netic motors[J]. Proceedings of the CSEE, 2005, 25(11): 124-128.
[69] 方磊. 新能源車用永磁輔助式同步磁阻電機(jī)設(shè)計(jì)與控制方法研究[D]. 徐州: 中國(guó)礦業(yè)大學(xué), 2018.
[70] Niazi P, Toliyat H A, Cheong D H, et al. A low-cost and efficient permanent-magnet-assisted synchronous reluctance motor drive[J]. IEEE Transactions on Industry Applications, 2007, 43(2): 542-550.
[71] 董硯, 顏冬, 荊鍇, 等. 磁障漸變同步磁阻電機(jī)低轉(zhuǎn)矩脈動(dòng)轉(zhuǎn)子優(yōu)化設(shè)計(jì)[J]. 電工技術(shù)學(xué)報(bào), 2017, 32(19): 21-31.
Dong Yan, Yan Dong, Jing Kai, et al. Rotor optimal design of the gradient flux-barrier for torque ripple reduction in synchronous reluctance motor[J]. Transa- ctions of China Electrotechnical Society, 2017, 32(19): 21-31.
[72] Zimmermann M, Piepenbreier B. Design of a per- manent magnet assisted synchronous reluctance machine enhanced for saliency based sensorless control[C]//IEEE 2017 IEEE International Electric Machines and Drives Conference, Miami, FL, USA, 2017: 1-7.
[73] 楊晨. 永磁輔助同步磁阻電機(jī)設(shè)計(jì)及轉(zhuǎn)矩脈動(dòng)抑制研究[D]. 沈陽(yáng): 沈陽(yáng)工業(yè)大學(xué), 2019.
[74] Ibrahim M N, Sergeant P, Rashad E M. Influence of rotor flux-barrier geometry on torque and torque ripple of permanent-magnet-assisted synchronous reluctance motors[C]//IEEE 2016 XXII International Conference on Electrical Machines (ICEM), Lausanne, Switzerland, 2016: 398-404.
[75] Pi?a A J, Cai Haiwei, Alsmadi Y, et al. Analytical model for the minimization of torque ripple in permanent magnets assisted synchronous reluctance motors through asymmetric rotor poles[C]//IEEE 2015 IEEE Energy Conversion Congress and Expo- sition, Montreal, QC, Canada, 2015: 5609-5615.
[76] 任武. 永磁同步伺服電動(dòng)機(jī)轉(zhuǎn)矩脈動(dòng)抑制方法研究[D]. 武漢: 華中科技大學(xué), 2016.
[77] Sanada M, Hiramoto K, Morimoto S, et al. Torque ripple improvement for synchronous reluctance motor using an asymmetric flux barrier arrangement[J]. IEEE Transactions on Industry Applications, 2004, 40(4): 1076-1082.
[78] Varaticeanu B D, Minciunescu P, Matei S. Design of permanent magnet assisted synchronous reluctance motor for light urban electric vehicle[C]//IEEE 2014 International Symposium on Fundamentals of Elec- trical Engineering (ISFEE), Bucharest, Romania, 2014: 1-6.
[79] 徐媚媚, 劉國(guó)海, 陳前, 等. 永磁輔助同步磁阻電機(jī)設(shè)計(jì)及其關(guān)鍵技術(shù)發(fā)展綜述[J]. 中國(guó)電機(jī)工程學(xué)報(bào), 2019, 39(23): 7033-7043, 7116.
Xu Meimei, Liu Guohai, Chen Qian, et al. Design and key technology development of permanent magnet assisted synchronous reluctance motor[J]. Pro- ceedings of the CSEE, 2019, 39(23): 7033-7043, 7116.
[80] Obata M, Morimoto S, Sanada M, et al. Performance of PMASynRM with ferrite magnets for EV/HEV applications considering productivity[J]. IEEE Transactions on Industry Applications, 2014, 50(4): 2427-2435.
[81] Ooi S, Morimoto S, Sanada M, et al. Performance evaluation of a high-power-density PMASynRM with ferrite magnets[C]//2011 IEEE Energy Conversion Congress and Exposition, Phoenix, AZ, 2011: 4195- 4200.
[82] Bin Tarek M T, Choi S. Center post and rib length optimization of a high speed permanent magnet assisted synchronous reluctance motor[C]//2017 IEEE International Electric Machines and Drives Con- ference, Miami, FL, USA, 2017: 1-6.
[83] Islam M Z, Arafat A, Choi S. Design of five-phase bearingless permanent magnet assisted synchronous reluctance motor for high speed applications[C]//2018 IEEE Energy Conversion Congress and Exposition. Portland, OR, USA, 2018: 4419-4424.
[84] Islam M Z, Arafat A, Bonthu S S R, et al. Design of a robust five-phase ferrite-assisted synchronous relu- ctance motor with low demagnetization and mechanical deformation[J]. IEEE Transactions on Energy Conversion, 2019, 34(2): 722-730.
[85] Jung J W, Lee B H, Kim D J, et al. Mechanical stress reduction of rotor core of interior permanent magnet synchronous motor[J]. IEEE Transactions on Mag- netics, 2012, 48(2): 911-914.
[86] Bremner R D. Bridge stresses and design in IPM machines[C]//IEEE EUROCON, StPetersburg, Russia, 2009: 655-662.
[87] Kolehmainen J. Synchronous reluctance motor with form blocked rotor[J]. IEEE Transactions on Energy Conversion, 2010, 25(2): 450-456.
[88] 婁利崗. 真空泵用永磁輔助式同步磁阻電動(dòng)機(jī)設(shè)計(jì)與分析[D]. 沈陽(yáng): 沈陽(yáng)工業(yè)大學(xué), 2019.
[89] 王曉遠(yuǎn), 杜靜娟. 應(yīng)用CFD流固耦合熱分析車用高功率密度電機(jī)的水冷系統(tǒng)[J]. 電工技術(shù)學(xué)報(bào), 2015, 30(9): 30-38.
Wang Xiaoyuan, Du Jingjuan. Design and analysis of water cooling system for HEVs high-power-density motor using CFD and thermal technology[J]. Transa- ctions of China Electrotechnical Society, 2015, 30(9): 30-38.
[90] Xheladini L, Tap A, Imeryuz M, et al. Thermal and mechanical analysis of PM assisted synchronous reluctance motor for washing machines[J]. 10th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, 2017: 227-232.
[91] Shi Yanwen, Wang Jiabin, Wang Bo. Lumped- parameter and 3D thermal model of a PMASynRM under fault conditions with asymmetric temperature distribution[C]//2018 IEEE Energy Conversion Congress and Exposition, Portland, OR, USA, 2018: 6521-6528.
[92] Shi Yanwen, Wang Jiabin, Wang Bo. Transient 3-D lumped parameter and 3-D FE thermal models of a PMASynRM under fault conditions with asymmetric temperature distribution[J]. IEEE Transactions on Industrial Electronics, 2021, 68(6): 4623-4633.
[93] Ertugrul N, Soong W, Dostal G, et al. Fault tolerant motor drive system with redundancy for critical applications[C]//2002 IEEE 33rd Annual IEEE Power Electronics Specialists Conference. Proceedings (Cat. No.02CH37289), Cairns, QLD, Australia, 2002: 1457- 1462.
[94] Bonthu S S R, Arafat A, Choi S. Comparisons of rare-earth and rare-earth-free external rotor per- manent magnet assisted synchronous reluctance motors[J]. IEEE Transactions on Industrial Electro- nics, 2017, 64(12): 9729-9738.
[95] Bianchi N, Bolognani S, PréDai Pre M D. Impact of stator winding of a five-phase permanent-magnet motor on postfault operations[J]. IEEE Transactions on Industrial Electronics, 2008, 55(5): 1978-1987.
[96] Arafat A K M, Herbert J, Bin Tarek M T, et al. Study of the thermal effects of a five-phase permanent magnet assisted synchronous reluctance motor under fault tolerant control[C]//2017 IEEE International Electric Machines and Drives Conference, Miami, FL, USA, 2017: 1-6.
[97] Arafat A, Choi S, Baek J. Open-phase fault detection of a five-phase permanent magnet assisted syn- chronous reluctance motor based on symmetrical components theory[J]. IEEE Transactions on Indu- strial Electronics, 2017, 64(8): 6465-6474.
[98] Arafat A K M, Choi S. Fault tolerant control of five-phase permanent magnet assisted synchronous reluctance motor based on dynamic current phase advance[C]//2015 IEEE Energy Conversion Congress and Exposition, Montreal, QC, Canada, 2015: 1208- 1214.
[99] Dharmasena S, Choi S. Model predictive control of five-phase permanent magnet assisted synchronous reluctance motor[C]//2019 IEEE Applied Power Electronics Conference and Exposition, Anaheim, CA, USA, 2019: 1885-1890.
[100] Wang Bo, Wang Jiabin, Griffo A, et al. A general modeling technique for a triple redundant 3×3-phase PMA SynRM[J]. IEEE Transactions on Industrial Electronics, 2018, 65(11): 9068-9078.
[101] Wang Bo, Wang Jiabin, Griffo A, et al. A fault- tolerant machine drive based on permanent magnet- assisted synchronous reluctance machine[J]. IEEE Transactions on Industry Applications, 2018, 54(2): 1349-1359.
[102] Wang Bo, Wang Jiabin, Griffo A, et al. Experimental assessments of a triple redundant nine-phase fault- tolerant PMA SynRM drive[J]. IEEE Transactions on Industrial Electronics, 2019, 66(1): 772-783.
[103] Shi Yanwen, Wang Jiabin, Wang Bo. Electromagnetic- thermal coupled simulation under various fault con- ditions of a triple redundant 9-phase PMASynRM[J]. IEEE Transactions on Industry Applications, 2020, 56(1): 128-137.
[104] Shi Yanwen, Wang Jiabin, Wang Bo. EM-thermal coupled simulation under various fault conditions of a triple redundant 9-phase PMASynRM[C]//2018 IEEE Energy Conversion Congress and Exposition, Portland, OR, USA, 2018: 5757-5764.
Research Status and Development Trend of Permanent Magnet Assisted Synchronous Reluctance Motor
11,21
(1. School of Electrical and Electronic Engineering Harbin University of Science and Technology Harbin 150080 China 2. The Key Lab of National and Local United Engineering for Electric & Heat Transfer Technology of Large Electrical Machine Harbin University of Science and Technology Harbin 150080 China)
Permanent magnet assisted synchronous reluctance motor (PMaSynRM) has become a research hotspot in the industry in recent years, especially in the fields of household appliances, electric vehicles and industrial motors, due to its advantages of high power density, high efficiency, high cost performance and wide speed range. Based on the research status at home and abroad, this paper introduces the latest research progress in PMaSynRM's optimization design, torque boost, torque ripple suppression, mechanical strength, temperature rise distribution calculation, and fault-tolerant design. This paper also analyzes the improvement of auxiliary slot and air gap design on torque characteristics, summarizes the optimization of mechanical strength by the design of central ribs and magnetic barriers; and explains the temperature rise distribution of PMaSynRM under different working conditions, and summarizes the effects of multi-phase and winding design on the fault tolerance of PMaSynRM. Finally, considering the development trend of the motor industry, the research and development of PMaSynRM are prospected.
Permanent magnet assisted synchronous reluctance motor (PmaSynRM), torque characteristics, mechanical strength, temperature distribution, fault-tolerant design
10.19595/j.cnki.1000-6753.tces.210434
TM352
國(guó)家自然科學(xué)基金(52077047)和黑龍江省自然基金(LH2020E092)資助項(xiàng)目。
2021-04-01
2021-12-31
曹恒佩 男,1997年生,碩士研究生,研究方向?yàn)橛来泡o助同步磁阻電機(jī)設(shè)計(jì)。E-mail: 870152819@qq.com
艾萌萌 男,1991年生,講師,研究方向?yàn)樘胤N電機(jī)及電力變壓器設(shè)計(jì)。E-mail: aimengmeng@hrbust.edu.cn(通信作者)
(編輯 崔文靜)