劉烜汋, 王瑩瑩, 樊馨蔓, 王芳, 徐安定, 徐曉紅
CoIP-MS法篩選CHCHD2互作蛋白及其功能的初步分析*
劉烜汋, 王瑩瑩, 樊馨蔓, 王芳, 徐安定, 徐曉紅△
(暨南大學(xué)附屬第一醫(yī)院神經(jīng)內(nèi)科及卒中中心,廣東 廣州 510630)
篩選氧化應(yīng)激狀態(tài)下CHCHD2 (coiled-coil-helix-coiled-coil-helix domain-containing 2)的互作蛋白,以期挖掘出CHCHD2保護(hù)神經(jīng)細(xì)胞對(duì)抗氧化應(yīng)激損傷的潛在機(jī)制。通過(guò)Lipofectamine 2000分別在人神經(jīng)母細(xì)胞瘤細(xì)胞系SH-SY5Y中轉(zhuǎn)染含有Flag標(biāo)簽的對(duì)照質(zhì)粒及CHCHD2過(guò)表達(dá)質(zhì)粒,用100 μmol/L過(guò)氧化叔丁醇(tert-butyl hydroperoxide, TBHP)或蒸餾水處理24 h后,采用免疫共沉淀(CoIP)的方法富集各組細(xì)胞中與CHCHD2相結(jié)合的蛋白,SDS-PAGE跑濃縮膠,切取條帶,膠內(nèi)酶解后進(jìn)行液相色譜-質(zhì)譜聯(lián)用(LC-MS/MS)分析、數(shù)據(jù)庫(kù)檢索及生物信息分析,篩選與CHCHD2互作的蛋白,并對(duì)功能進(jìn)行初步分析。(1)CHCHD2具有保護(hù)SH-SY5Y細(xì)胞對(duì)抗TBHP誘導(dǎo)的氧化應(yīng)激損傷作用;(2)CoIP-MS結(jié)果提示,不同于生理狀態(tài),在氧化應(yīng)激狀態(tài)下共有64個(gè)蛋白是與CHCHD2互作的特有差異表達(dá)蛋白(differentially expressed proteins, DEPs);(3)通過(guò)GO功能注釋和KEGG富集分析,我們發(fā)現(xiàn)氧化應(yīng)激狀態(tài)下特有DEPs主要在外泌體和細(xì)胞漿中發(fā)揮作用,參與蛋白翻譯及翻譯起始等生物過(guò)程,在蛋白及poly(A) RNA結(jié)合方面發(fā)揮分子功能,并參與糖代謝過(guò)程;(4)DEPs還參與了負(fù)性調(diào)控活性氧生物合成過(guò)程和對(duì)過(guò)氧化氫的反應(yīng)等抗氧化應(yīng)激相關(guān)生物過(guò)程,其中腫瘤壞死因子受體相關(guān)蛋白1(tumor necrosis factor receptor-associated protein 1, TRAP1)和熱休克蛋白家族D成員1(heat shock protein family D member 1, HSPD1)是抗氧化應(yīng)激過(guò)程中重要的候選蛋白;(5)通過(guò)蛋白互作網(wǎng)絡(luò)分析,我們發(fā)現(xiàn)在氧化應(yīng)激狀態(tài)下特異性存在3個(gè)蛋白[Y盒結(jié)合蛋白1(Y-box-binding protein 1, YBX1)、含TCP1分子伴侶亞基6A(chaperonin containing TCP1 subunit 6A, CCT6A)和細(xì)胞色素C氧化酶裝配因子4同源物(cytochrome C oxidase assembly factor 4 homolog, COA4)]與CHCHD2有直接相互作用,也是后續(xù)需要重點(diǎn)關(guān)注的蛋白。利用CoIP-MS法成功篩選出生理狀態(tài)及氧化應(yīng)激狀態(tài)下CHCHD2的互作蛋白,并挖掘出與其抗氧化應(yīng)激過(guò)程密切相關(guān)的2個(gè)候選蛋白(TRAP1和HSPD1)及另外3個(gè)與其直接作用的候選蛋白(YBX1、CCT6A和COA4),為進(jìn)一步深入探索CHCHD2抗氧化應(yīng)激作用中的生物過(guò)程及分子機(jī)制奠定基礎(chǔ)。
CHCHD2蛋白;氧化應(yīng)激;免疫共沉淀;質(zhì)譜法;神經(jīng)退行性疾病
神經(jīng)退行性疾病包括阿爾茨海默?。ˋlzheimer disease, AD)、帕金森?。≒arkinson disease, PD)、亨廷頓舞蹈?。℉untington disease, HD)和肌萎縮性側(cè)索硬化(amyotrophic lateral sclerosis, ALS)等一系列疾病,是一類(lèi)嚴(yán)重威脅人類(lèi)健康和生活質(zhì)量的老年疾病,目前國(guó)際上尚無(wú)有效治療神經(jīng)退行性疾病或延緩其病程的藥物。雖然各種神經(jīng)退行性疾病間的發(fā)病機(jī)制各不相同,但氧化應(yīng)激導(dǎo)致的神經(jīng)損傷被認(rèn)為是其共有的重要發(fā)病機(jī)制之一[1]。因此,探尋神經(jīng)細(xì)胞中氧化應(yīng)激的具體調(diào)控機(jī)制及尋找抗氧化應(yīng)激相關(guān)蛋白和信號(hào)通路,對(duì)明確神經(jīng)退行性疾病的發(fā)病機(jī)制和探索相關(guān)的干預(yù)措施具有重要科研價(jià)值和社會(huì)意義。
線粒體相關(guān)蛋白CHCHD2(coiled-coil-helix-coiled-coil-helix domain-containing 2)是“CHCH(coiled-coil-helix-coiled-coil-helix)”功能結(jié)構(gòu)域蛋白質(zhì)家族中的一員?;蛲蛔円驯昏b定與PD、AD、額顳葉癡呆、路易體癡呆等神經(jīng)退行性疾病密切相關(guān)[2]。在不同的情況下,CHCHD2蛋白可以在線粒體和核中發(fā)揮不同的功能。生理?xiàng)l件下,CHCHD2在線粒體中發(fā)揮作用,作為氧化呼吸鏈的應(yīng)激調(diào)節(jié)器,與細(xì)胞色素C氧化酶(cytochrome C oxidase, COX)結(jié)合,維持線粒體嵴結(jié)構(gòu)的穩(wěn)定;而在低氧環(huán)境時(shí),CHCHD2移位到細(xì)胞核中,作為自身和COX亞基4異構(gòu)體2(COX subunit 4 isoform 2, COX4I2)的核轉(zhuǎn)錄因子,促進(jìn)自身和COX4I2的表達(dá)[3],從而穩(wěn)定氧化磷酸化(oxidative phosphorylation, OXPHOS)過(guò)程,并補(bǔ)償了活性氧(reactive oxygen species, ROS)產(chǎn)生而造成的能量缺乏[4],維持了線粒體呼吸鏈的穩(wěn)定。在果蠅中的突變或缺失會(huì)破壞呼吸鏈中細(xì)胞色素C的穩(wěn)定性,導(dǎo)致電子泄漏和ROS生成,進(jìn)而導(dǎo)致氧化應(yīng)激的產(chǎn)生、多巴胺能神經(jīng)元缺失及運(yùn)動(dòng)功能障礙[5]。而過(guò)表達(dá)外源性CHCHD2蛋白能夠降低細(xì)胞內(nèi)ROS水平[3],并挽救由突變而導(dǎo)致的PD相關(guān)表型[5]。提示了突變是通過(guò)其正常功能缺失而致病,同時(shí)說(shuō)明CHCHD2可能具有保護(hù)細(xì)胞對(duì)抗氧化應(yīng)激損傷的功能。但在氧化應(yīng)激狀態(tài)下,CHCHD2蛋白可以與哪些蛋白相互作用、通過(guò)哪些信號(hào)通路起到神經(jīng)保護(hù)作用仍然不清楚。
本研究發(fā)現(xiàn),過(guò)表達(dá)CHCHD2可保護(hù)人神經(jīng)母瘤細(xì)胞系SH-SY5Y對(duì)抗過(guò)氧化叔丁醇(tert-butyl hydroperoxide, TBHP)誘導(dǎo)的氧化應(yīng)激損傷,并進(jìn)一步通過(guò)免疫共沉淀(co-immunoprecipitation, CoIP)聯(lián)合質(zhì)譜(mass spectrometry, MS)的方法挖掘氧化應(yīng)激狀態(tài)下與CHCHD2相互作用的特有蛋白及相關(guān)信號(hào)通路,為尋找神經(jīng)退行性疾病及其它神經(jīng)系統(tǒng)疾病中抗氧化應(yīng)激的治療靶點(diǎn)提供了新的思路和方向。
SH-SY5Y細(xì)胞購(gòu)自American Type Culture Collection (ATCC)。
CHCHD2-Flag和vector-Flag質(zhì)粒均購(gòu)自上海吉?jiǎng)P基因科技有限公司;轉(zhuǎn)染試劑Lipofectamine 2000購(gòu)自Invitrogen;DMEM高糖培養(yǎng)基、胎牛血清及青-鏈霉素均購(gòu)自Gibco;TBHP購(gòu)自上海麥克林生化科技公司;caspase-3(激活型)抗體(兔單抗)、Flag抗體(小鼠單抗)、RIPA裂解液和PMSF購(gòu)自上海碧云天生物技術(shù)公司;過(guò)氧化物酶標(biāo)記的山羊抗小鼠IgG(H+L)和過(guò)氧化物酶標(biāo)記的驢抗兔IgG(H+L)均購(gòu)自上海翌圣生物科技公司;蛋白A/G磁珠購(gòu)自Thermo Fisher。PBST為PBS中加入0.1% Tween 20;等滲裂解液為在pH 7.4的50 mmol/L Tris-HCl中加入150 mmol/L NaCl、1% Triton X-100和1% cocktail蛋白酶抑制劑。
3.1細(xì)胞培養(yǎng)及模型構(gòu)建SH-SY5Y細(xì)胞的培養(yǎng)基為DMEM高糖基礎(chǔ)培養(yǎng)基加上10%胎牛血清及青鏈霉素雙抗,細(xì)胞培養(yǎng)在37 ℃、5% CO2培養(yǎng)箱里。藥物實(shí)驗(yàn)(CHCHD2-OE+TBHP)組:CHCHD2-Flag質(zhì)粒瞬時(shí)轉(zhuǎn)染SH-SY5Y細(xì)胞,轉(zhuǎn)染24 h后加入100 μmol/L TBHP處理24 h,收集細(xì)胞;藥物對(duì)照(vector+TBHP)組:vector-Flag質(zhì)粒瞬時(shí)轉(zhuǎn)染SH-SY5Y細(xì)胞,轉(zhuǎn)染24 h后加入100 μmol/L TBHP處理24 h,收集細(xì)胞;無(wú)藥物實(shí)驗(yàn)(CHCHD2-OE)組:CHCHD2-Flag質(zhì)粒瞬時(shí)轉(zhuǎn)染SH-SY5Y細(xì)胞,轉(zhuǎn)染24 h后加入與藥物組TBHP等體積的蒸餾水處理24 h,收集細(xì)胞;無(wú)藥物對(duì)照(vector)組:vector-Flag質(zhì)粒瞬時(shí)轉(zhuǎn)染SH-SY5Y細(xì)胞,轉(zhuǎn)染24 h后加入與藥物組TBHP等體積的蒸餾水處理24 h,收集細(xì)胞。
3.2總蛋白的提取用預(yù)冷的D-PBS洗細(xì)胞3次;每皿加入500 μL裂解液;用細(xì)胞刮鏟輕輕將細(xì)胞刮下,收集在1.5 mL EP管中,4 ℃旋轉(zhuǎn)裂解1~2 h;隨后在4 ℃、12 000 r/min離心15 min,提取上清液。
3.3CoIP每反應(yīng)體系采用50 μL磁珠,去掉Buffer,用500 μL PBST洗磁珠2~3次;用150 μL PBST重懸磁珠,加4 μg抗體,在4 ℃旋轉(zhuǎn)孵育過(guò)夜。用PBST清洗3次后,加入提取的蛋白上清,4 ℃旋轉(zhuǎn)過(guò)夜孵育。用等滲裂解液輕輕清洗3次,加適量1× Loading Buffer,100 ℃煮10 min,進(jìn)行Western blot實(shí)驗(yàn)。
3.4Western blot蛋白經(jīng)過(guò)SDS-PAGE分離后,以290 mA、1 h的條件轉(zhuǎn)移至硝酸纖維素膜;隨后用5%脫脂奶粉室溫封閉1 h,加入Ⅰ抗[caspase-3(激活型)抗體(兔單抗)和Flag抗體(小鼠單抗),1∶1 000],4 ℃搖床孵育過(guò)夜;然后加入辣根過(guò)氧化物酶標(biāo)記的對(duì)應(yīng)Ⅱ抗[過(guò)氧化物酶標(biāo)記的山羊抗小鼠IgG(H+L)和過(guò)氧化物酶標(biāo)記驢抗兔IgG(H+L),1∶5 000],室溫孵育1 h,用顯影儀進(jìn)行顯影。。
3.5LC-MS/MS分析
3.5.1蛋白濃縮制備8%的濃縮膠[ddH2O 4.78 mL,30% Acry/Bis 2.6 mL,Tris-HCl (pH 8.8) 2.5 mL,10% SDS 100 μL,10% AP 25 μL,TEMED 10 μL],80 V恒壓跑30 min。
3.5.2蛋白酶解(1)切膠:將蛋白條帶切出后放入EP管中;(2)水洗:加入MilliQ水清洗1 min,離心去上清液,水洗2次;(3)脫色:加入50% MeOH/50 mmol/L NH4HCO3于37 ℃恒溫箱內(nèi)脫色30 min,離心去上清液;(4)脫水:加入100%乙腈,震蕩30 s等膠粒變白后吸出液體;(5)烷基化:往干燥膠粒中加入25 mmol/L DTT/50 mmol/L NH4HCO3,于56 ℃反應(yīng)30 min,吸出DTT,加入55 mmol/L IAA/50 mmol/L NH4HCO3,室溫暗處反應(yīng)30 min;(6)水洗:將IAA吸出,加入MilliQ水清洗3次;(7)脫水:100%乙腈脫水至膠粒變白;(8)酶切:用25 mmo/L NH4HCO3稀釋胰酶至20 mg/L;于每管加入適量胰酶,冰浴30 min;再補(bǔ)加適量25 mmol/L NH4HCO3至覆蓋膠粒,放入37 ℃恒溫箱酶切過(guò)夜;(9)肽段提取:將EP管盒整個(gè)放入超聲儀中超聲15~20 min,吸出肽段于新的EP管。
3.5.3質(zhì)譜檢測(cè)肽段用樣品溶解液(0.1%甲酸和2%乙腈)溶解,4 ℃、13 200 r/min離心20 min,取上清,進(jìn)行質(zhì)譜鑒定。液相色譜為Dionex Ultimate 3000 RSLCnano(Thermo Scientific),與色譜相連的質(zhì)譜儀為Q Exactive(Thermo Scientific)。
3.5.4數(shù)據(jù)庫(kù)檢索質(zhì)譜原始文件經(jīng)過(guò)MM File Conversion軟件處理轉(zhuǎn)換,得到MGF格式文件,然后用MASCO(http://www.matrixscience.com/)檢索Uniprot數(shù)據(jù)庫(kù)。
3.6生物信息學(xué)分析根據(jù)生物學(xué)意義,得到3組差異表達(dá)蛋白(differentially expressed proteins, DEPs):(1)生理狀態(tài)下的DEPs:CHCHD2-OE組減去vector組;(2)氧化應(yīng)激狀態(tài)下的DEPs:CHCHD2-OE+TBHP組減去vector+TBHP組;(3)氧化應(yīng)激損傷條件下特有的DEPs:僅存在于用氧化應(yīng)激狀態(tài)中而不存在于生理狀態(tài)中的DEPs。進(jìn)一步利用Fisher精確檢驗(yàn)(單側(cè)),分別對(duì)這些蛋白進(jìn)行基于Gene Ontology (GO)和KEGG的功能富集分析,篩選所有值不超過(guò)設(shè)定閾值的功能節(jié)點(diǎn)和通路進(jìn)行后續(xù)分析。同時(shí),基于STRING數(shù)據(jù)庫(kù)(https://string-db.org),得到不同分組中DEPs的蛋白質(zhì)-蛋白質(zhì)互作網(wǎng)絡(luò)。
用SPSS 28.0軟件進(jìn)行統(tǒng)計(jì)學(xué)分析。數(shù)據(jù)均采用均數(shù)±標(biāo)準(zhǔn)誤(mean±SEM)表示。多組間比較采用雙因素方差分析(two-way ANOVA)。以<0.05為差異有統(tǒng)計(jì)學(xué)意義。
為了模擬神經(jīng)退行性疾病中氧化應(yīng)激損傷的病理狀態(tài),我們建立了外源性氧化應(yīng)激誘導(dǎo)劑TBHP誘導(dǎo)人神經(jīng)母細(xì)胞瘤SH-SY5Y細(xì)胞損傷的體外細(xì)胞模型。接下來(lái)為了明確CHCHD2是否具有保護(hù)人神經(jīng)細(xì)胞對(duì)抗氧化應(yīng)激損傷的作用,CHCHD2標(biāo)簽質(zhì)粒及對(duì)照標(biāo)簽質(zhì)粒被轉(zhuǎn)染至SH-SY5Y細(xì)胞內(nèi)。我們用Western blot檢測(cè)4個(gè)分組中Flag標(biāo)簽蛋白的表達(dá)情況,結(jié)果顯示CHCHD2-OE組及CHCHD2-OE+TBHP組均成功檢測(cè)到Flag標(biāo)簽蛋白的表達(dá);cleaved caspase-3是細(xì)胞凋亡的重要標(biāo)志物,我們用Western blot檢測(cè)了4個(gè)分組中cleaved caspase-3蛋白的表達(dá)情況,結(jié)果顯示,相比于無(wú)藥物組,藥物組的cleaved caspase-3蛋白表達(dá)量均顯著上升,但是相比于對(duì)照組,CHCHD2-OE實(shí)驗(yàn)組中cleaved caspase-3蛋白表達(dá)量均顯著下降,見(jiàn)圖1。該結(jié)果證明CHCHD2具有保護(hù)SH-SY5Y細(xì)胞對(duì)抗氧化應(yīng)激損傷的作用。
Figure 1.CHCHD2 protected SH-SY5Y cells against oxidative stress-induced neuronal damage. The levels of Flag tag protein and cleaved caspase-3 protein in SH-SY5Y cells were detected by Western blot. Mean±SEM. n=3. **P<0.01 vs control group; ##P<0.01 vs vector group.
為了探索生理狀態(tài)及氧化應(yīng)激狀態(tài)下CHCHD2可以與哪些蛋白相互作用,我們進(jìn)行了CoIP實(shí)驗(yàn)。用Western blot檢測(cè)總細(xì)胞蛋白液(Input)中及免疫沉淀(IP)洗脫液中誘餌蛋白CHCHD2的表達(dá),結(jié)果顯示在Input組中均可以檢測(cè)到CHCHD2蛋白的表達(dá),而在IP組中,僅CHCHD2-OE組及CHCHD2-OE+TBHP組可以檢測(cè)到,見(jiàn)圖2。這說(shuō)明我們已經(jīng)成功富集CHCHD2及其互作蛋白,可以進(jìn)行后續(xù)質(zhì)譜實(shí)驗(yàn)。
Figure 2.Co-immunoprecipitation assay. The expression of bait protein CHCHD2 in the Input (up) and IP elute (bottom) was detected by Western blot.
針對(duì)質(zhì)譜結(jié)果,我們將DEPs分成以下4種情況(圖3)進(jìn)行初步分析;(1)生理狀態(tài)組:用CHCHD2-OE組減去背景vector組,一共得到52個(gè)蛋白(表1),表明在生理狀態(tài)下除CHCHD2本身外,共有51個(gè)蛋白在SH-SY5Y細(xì)胞中與CHCHD2功能存在聯(lián)系;(2)氧化應(yīng)激狀態(tài)組:用CHCHD2-OE+TBHP組減去vector+TBHP組共得到75個(gè)蛋白(表2),表明存在74個(gè)CHCHD2相關(guān)蛋白在病理狀態(tài)下參與了對(duì)抗外源性氧化劑損傷的氧化應(yīng)激過(guò)程;(3)生理狀態(tài)與氧化狀態(tài)共有組:生理狀態(tài)組與病理狀態(tài)組取交集共得出11個(gè)共有蛋白可與CHCHD2相互作用(表3);(4)氧化應(yīng)激狀態(tài)特有組:在氧化應(yīng)激狀態(tài)下存在64個(gè)與CHCHD2相互作用的特有蛋白參與對(duì)抗氧化應(yīng)激過(guò)程(表4)。
Figure 3.The distribution of differentially expressed proteins between physiological condition group (A) and oxidative stress condition group (B).
表1 生理狀態(tài)組差異表達(dá)蛋白
RPS2440S ribosomal protein S24 KPNB1Importin subunit beta-1 RPS640S ribosomal protein S6 RPA1Replication protein A 70 kDa DNA-binding subunit ITIH2Inter-alpha-trypsin inhibitor heavy chain H2 POLDIP2Polymerase delta-interacting protein 2 CLPXATP-dependent Clp protease ATP-binding subunit clpX-like, mitochondrial MTHFD1C-1-tetrahydrofolate synthase, cytoplasmic RPS3A40S ribosomal protein S3a MAGED2Melanoma-associated antigen D2 LSM14BProtein LSM14 homolog B G3BP2Ras GTPase-activating protein-binding protein 2 U2AF2Splicing factor U2AF 65 kDa subunit GNAI2Guanine nucleotide-binding protein Gi subunit alpha-2 BAZ1ABromodomain adjacent to zinc finger domain protein 1A PRMT5Protein arginine N-methyltransferase 5 CHN1N-chimaerin FUSRNA-binding protein FUS RBM39RNA-binding protein 39 SPATA7Spermatogenesis-associated protein 7 KPNA2Importin subunit alpha-1 HBDHemoglobin subunit delta COL19A1Collagen type XIX alpha-1 chain
ARHGEF10LRho guanine nucleotide exchange factor 10-like protein HADHATrifunctional enzyme subunit alpha, mitochondrial RPL1960S ribosomal protein L19 SLC4A7Sodium bicarbonate cotransporter 3 VWFvon Willebrand factor CUL5Cullin-5 XRCC1DNA repair protein XRCC1 RBMXL1RNA binding motif protein, X-linked-like-1 LRRC59Leucine-rich repeat-containing protein 59 CDK13Cyclin-dependent kinase 13 GSNGelsolin RASIP1Ras-interacting protein 1 KLBBeta-klotho LAMA4Laminin subunit alpha-4 HNRNPA1Heterogeneous nuclear ribonucleoprotein A1 IPPActin-binding protein IPP SUCLA2Succinate-CoA ligase [ADP-forming] subunit beta, mitochondrial
表2 氧化應(yīng)激狀態(tài)組差異表達(dá)蛋白
RPL23A60S ribosomal protein L23a BASP1Brain acid soluble protein 1 TUFMElongation factor Tu, mitochondrial ATP5F1BATP synthase subunit beta, mitochondrial GPIGlucose-6-phosphate isomerase CHN1N-chimaerin H2AZ1Histone H2A.Z TPI1Triosephosphate isomerase PPM1BProtein phosphatase 1B PGK1Phosphoglycerate kinase 1 HMG20BSWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily E member 1-related RBM39RNA-binding protein 39 PIPProlactin-inducible protein COL1A1Collagen type I alpha-1 chain CCT4T-complex protein 1 subunit delta NACANascent polypeptide-associated complex subunit alpha, muscle-specific form FAM126BProtein FAM126B EIF4A2Eukaryotic initiation factor 4A-II CAPZA3F-actin-capping protein subunit alpha-3 RPS340S ribosomal protein S3 PRPHPeripherin SPECC1Cytospin-B HSPD160 kD heat shock protein, mitochondrial CCT6AT-complex protein 1 subunit zeta RPS4X40S ribosomal protein S4, X isoform PRDX1Peroxiredoxin-1 PRB2Basic salivary proline-rich protein 2 H3-2Histone HIST2H3PS2 HEYLHairy/enhancer-of-split related with YRPW motif-like protein PUF60Poly(U)-binding-splicing factor PUF60 RPS840S ribosomal protein S8 NUMA1Nuclear mitotic apparatus protein 1 MAGED2Melanoma-associated antigen D2 ZNF688Zinc finger protein 688
FCRL6Fc receptor-like protein 6 MDH1Malate dehydrogenase, cytoplasmic ERCC6LDNA excision repair protein ERCC-6-like H2BE1Histone H2B type 2-E1 STAB1Stabilin-1 PRDX6Peroxiredoxin-6 CCT2T-complex protein 1 subunit beta CCT7T-complex protein 1 subunit eta CDK13Cyclin-dependent kinase 13 DMDDystrophin PFN1Profilin-1 ZNF462Zinc finger protein 462 LRCH1Leucine-rich repeat and calponin homology domain-containing protein 1 PHB2Prohibitin-2 EFCAB12EF-hand calcium-binding domain-containing protein 12 COA4Cytochrome C oxidase assembly factor 4 homolog, mitochondrial RPL10L60S ribosomal protein L10-like RNASEL2-5A-dependent ribonuclease SARS2Serine-tRNA ligase, mitochondrial LRRC59Leucine-rich repeat-containing protein 59 RCC2Protein RCC2 LRRN3Leucine-rich repeat neuronal protein 3
表3 生理狀態(tài)組及氧化應(yīng)激狀態(tài)組共有差異表達(dá)蛋白
表4 氧化應(yīng)激狀態(tài)特有組差異表達(dá)蛋白
為了挖掘CHCHD2通過(guò)哪些可能的信號(hào)通路途徑來(lái)調(diào)控神經(jīng)細(xì)胞對(duì)抗氧化應(yīng)激損傷的作用,我們針對(duì)氧化應(yīng)激狀態(tài)下與CHCHD2互作的64個(gè)特有蛋白進(jìn)行了廣泛應(yīng)用于基因或蛋白質(zhì)功能注釋與分析的GO分析。GO可分為三個(gè)子庫(kù),即生物學(xué)過(guò)程(biological process, BP)、細(xì)胞組分(cellular component, CC)和分子功能(molecular function, MF),旨在從不同角度描述和刻畫(huà)蛋白所發(fā)揮的生物學(xué)作用。我們對(duì)這些DEPs在GO二級(jí)注釋中的分布進(jìn)行了統(tǒng)計(jì)和分析。首先,在BP層面,DEPs的功能主要集中在翻譯(translation)、細(xì)胞黏附(cell-cell adhesion)、核糖體RNA加工(rRNA processing)、翻譯起始(translational initiation)等。值得注意的是,對(duì)過(guò)氧化氫反應(yīng)(response to hydrogen peroxide)及負(fù)性調(diào)控ROS生物合成過(guò)程(negative regulation of reactive oxygen species biosynthetic process)等抗氧化應(yīng)激重要的生物過(guò)程被激活,提示抗氧化應(yīng)激相關(guān)蛋白可能代償性地表達(dá)增高,以維持細(xì)胞功能正常進(jìn)行(圖4A);其次,在CC層面,DEPs主要在外泌體(extracellular exosome)、細(xì)胞質(zhì)基質(zhì)(cytosol)、細(xì)胞核(nucleus)和細(xì)胞質(zhì)(cytoplasm)中發(fā)揮作用(圖4B),表明CHCHD2可直接或間接與多部位的不同蛋白一起發(fā)揮抗氧化應(yīng)激的功能;最后,在MF層面,DEPs主要功能集中于與蛋白、poly(A) RNA及ATP結(jié)合,而且還涉及氧化還原酶活性(oxidoreductase activity)及過(guò)氧化物還原酶的活性(peroxiredoxin activity)等分子功能(圖4C),提示氧化應(yīng)激狀態(tài)下CHCHD2可通過(guò)與抗氧化相關(guān)蛋白結(jié)合而發(fā)揮分子功能。
Figure 4.Functional classification of oxidative stress condition group-specific differentially expressed proteins by Gene Ontology (GO) analysis. A: biological process; B: cellular components; C: molecular function.
我們對(duì)64個(gè)DEPs進(jìn)行了GO分類(lèi)和KEGG通路的富集分析,目的是挖掘DEPs是否在某些功能類(lèi)型有顯著性的富集趨勢(shì)。對(duì)于富集分析(此處運(yùn)用Fisher精確概率檢驗(yàn))得到的值通過(guò)氣泡圖方式展現(xiàn)了DEPs顯著富集(<0.05)的功能節(jié)點(diǎn)和通路。氣泡圖中縱軸為功能節(jié)點(diǎn)或通路,橫軸數(shù)值與圓圈顏色表示富集顯著性[-log10(-value),值的負(fù)對(duì)數(shù)],圓圈大小表示功能分類(lèi)或通路中DEPs個(gè)數(shù)。其中,GO富集中BP分析表明,DEPs主要參與糖酵解過(guò)程、翻譯及翻譯起始。此外,DEPs還參與了負(fù)性調(diào)控ROS生物合成過(guò)程和對(duì)過(guò)氧化氫的反應(yīng)等抗氧化應(yīng)激相關(guān)生物過(guò)程(圖5A),其富集的主要功能蛋白為腫瘤壞死因子受體相關(guān)蛋白1(tumor necrosis factor receptor-associated protein 1, TRAP1)和熱休克蛋白家族D成員1(heat shock protein family D member 1, HSPD1);MF顯示,DEPs主要參與poly(A) RNA和蛋白的結(jié)合(圖5B);CC顯示,DEPs主要定位于外泌體、細(xì)胞質(zhì)基質(zhì)和細(xì)胞膜中(圖5C)。在KEGG富集分析中,DEPs主要參與糖酵解/糖異生(glycolysis/gluconeogenesis)和磷酸戊糖途徑(pentose phosphate pathway)等糖代謝過(guò)程(圖5D)。根據(jù)富集分析我們推測(cè)在神經(jīng)細(xì)胞發(fā)生氧化應(yīng)激時(shí),CHCHD2可能主要激活了糖代謝相關(guān)的抗氧化途徑而發(fā)揮保護(hù)功能。首先,為了適應(yīng)高ROS水平,細(xì)胞中葡萄糖代謝從有氧氧化轉(zhuǎn)變?yōu)樘墙徒?,不僅可避免OXPHOS過(guò)程中ROS的進(jìn)一步生成,且可以產(chǎn)生細(xì)胞代謝所需的能量。此外,細(xì)胞通過(guò)激活磷酸戊糖途徑增加NADPH的生成,使細(xì)胞在高ROS水平下存活。最后,CHCHD2可能直接激活了與ROS生物合成過(guò)程的負(fù)調(diào)控以及對(duì)過(guò)氧化氫的響應(yīng)等相關(guān)生物過(guò)程中的功能蛋白,從而直接發(fā)揮抗氧化應(yīng)激功能。因此,參與CHCHD2對(duì)抗氧化應(yīng)激損傷的DEPs具有多種分子功能,并參與多個(gè)生物學(xué)過(guò)程,表明CHCHD2保護(hù)神經(jīng)細(xì)胞對(duì)抗氧化應(yīng)激損傷是一個(gè)相對(duì)復(fù)雜的病理生理過(guò)程。
Figure 5.Functional enrichment analysis of oxidative stress condition group-specific differentially expressed proteins assessed by GO and KEGG pathway. A: GO biological process; B: GO molecular function; C: GO cellular components; D: KEGG pathway.
為進(jìn)一步分析DEPs間的相互作用,我們進(jìn)行了基于STRING數(shù)據(jù)庫(kù)的蛋白互作網(wǎng)絡(luò)分析。具體而言,即將篩選得到的DEPs,通過(guò)與STRING 11.0蛋白網(wǎng)絡(luò)互作數(shù)據(jù)庫(kù)比對(duì)后,選擇confidence score > 0.4(medium confidence)的互作關(guān)系,構(gòu)建蛋白質(zhì)-蛋白質(zhì)互作網(wǎng)絡(luò)并使用cytoscape 3.9.1軟件繪制蛋白互作網(wǎng)絡(luò)圖。圖6顯示了生理狀態(tài)DEPs、氧化應(yīng)激狀態(tài)DEPs及氧化應(yīng)激狀態(tài)特有DEPs的互作網(wǎng)絡(luò)分析。其中,在氧化應(yīng)激特有DEPs中Y盒結(jié)合蛋白1(Y-box-binding protein 1, YBX1)、含TCP1分子伴侶亞基6A(chaperonin containing TCP1 subunit 6A, CCT6A)和細(xì)胞色素C氧化酶裝配因子4同源物(cytochrome C oxidase assembly factor 4 homolog, COA4)與CHCHD2有直接互作關(guān)系(圖6C),表明這3個(gè)蛋白很可能特異性地參與了CHCHD2響應(yīng)外源性氧化應(yīng)激損傷的過(guò)程。
Figure 6.Interaction network analysis of differentially expressed proteins (DEPs) using STRING software. A: protein-protein interaction network (PPIN) analysis of DEGs in physiological condition group; B: PPIN analysis of DEGs in oxidative stress condition group; C: PPIN analysis of DEGs specially detected in oxidative stress condition group. In the network, nodes are proteins, and lines represent functional associations between proteins. The resulting networks were constructed with confidence scores higher than 4.
氧化應(yīng)激是由于細(xì)胞和組織中ROS產(chǎn)生和消除間不平衡,進(jìn)而導(dǎo)致ROS累積的一種現(xiàn)象。TBHP是一種ROS誘導(dǎo)劑,可刺激ROS過(guò)量產(chǎn)生,產(chǎn)生丙二醛,降低谷胱甘肽水平,誘導(dǎo)細(xì)胞凋亡,是一種常用的外源性氧化應(yīng)激損傷誘導(dǎo)劑。大量證據(jù)表明,氧化應(yīng)激在神經(jīng)退行性疾病的發(fā)生和發(fā)展中可能發(fā)揮不同程度的重要作用[6]。因此,在本研究中,我們采用THBP誘導(dǎo)神經(jīng)母細(xì)瘤SH-SY5Y細(xì)胞損傷來(lái)模擬神經(jīng)退行性疾病中氧化應(yīng)激損傷的病理狀態(tài),并著重挖掘抗氧化應(yīng)激相關(guān)蛋白CHCHD2的互作蛋白。
CHCHD2是“CHCH”蛋白質(zhì)家族成員之一,定位于線粒體和細(xì)胞核[3],其突變最先發(fā)現(xiàn)與PD相關(guān)[7],近年來(lái)被眾多學(xué)者關(guān)注。CHCHD2與其他核編碼的線粒體蛋白共同維持OXPHOS過(guò)程的穩(wěn)定,而的敲除降低了復(fù)合體I和IV的活性[8],并增加了細(xì)胞內(nèi)的ROS水平[3]。CHCHD2與Bcl-xL及細(xì)胞色素C共同定位于MICS1(線粒體形態(tài)和嵴結(jié)構(gòu)),被認(rèn)為是一種凋亡抑制因子[5, 9]。然而,CHCHD2在神經(jīng)細(xì)胞中抗氧化應(yīng)激功能是如何發(fā)揮作用的,目前仍不明確。為探索這一問(wèn)題,我們采用CoIP-MS的方法對(duì)SH-SY5Y細(xì)胞中與CHCHD2相結(jié)合的蛋白進(jìn)行了生物信息學(xué)分析。
將生理狀態(tài)組與氧化應(yīng)激狀態(tài)組取交集得到11個(gè)蛋白(表3),其中的補(bǔ)體C1q結(jié)合蛋白(complement C1q binding protein, C1QBP)已經(jīng)被Wei等[10]驗(yàn)證與CHCHD2存在蛋白互作關(guān)系,且其生物學(xué)功能與ROS的生成及氧化應(yīng)激過(guò)程密切相關(guān)。C1QBP又稱(chēng)作p32、gC1qR或HABP-1,對(duì)OXPHOS起關(guān)鍵作用,被獨(dú)立鑒定為人類(lèi)mRNA剪接因子SF2的一個(gè)亞基[11-12]。已有研究表明,p32的主要功能之一是通過(guò)調(diào)節(jié)線粒體蛋白的翻譯來(lái)維持線粒體的功能[13-14]。除了作為線粒體功能的調(diào)節(jié)器外,p32還與定位于細(xì)胞表面、細(xì)胞核、細(xì)胞質(zhì)或細(xì)胞外空間的各種蛋白相互作用[15]。綿羊成肌細(xì)胞中基因的敲除有效抑制了成肌細(xì)胞的分化和增殖,并促進(jìn)了細(xì)胞凋亡;的干擾也改變了綿羊成肌細(xì)胞的能量代謝,使其由OXPHOS轉(zhuǎn)變?yōu)樘墙徒?,并激活了AMPK磷酸化[16]。另有報(bào)道稱(chēng),p32與C1q球狀頭部的結(jié)合抑制了經(jīng)典途徑的補(bǔ)體激活[17]。如前所述,我們推測(cè)C1QBP可能與CHCHD2介導(dǎo)的抗氧化應(yīng)激過(guò)程高度相關(guān)。
在針對(duì)氧化應(yīng)激狀態(tài)特有DEPs的GO富集分析中,我們發(fā)現(xiàn)CHCHD2激活了負(fù)性調(diào)控ROS生物合成過(guò)程,主要富集TRAP1與HSPD1兩個(gè)蛋白。TRAP1又稱(chēng)熱休克蛋白75(heat shock protein 75, HSP75),主要存在于線粒體中。作為線粒體分子伴侶,TRAP1支持蛋白質(zhì)折疊,并有助于維持線粒體的完整性。TRAP1是一種細(xì)胞調(diào)節(jié)器,在線粒體生物能量學(xué),氧化還原穩(wěn)態(tài),氧化應(yīng)激誘導(dǎo)的細(xì)胞死亡、細(xì)胞凋亡和內(nèi)質(zhì)網(wǎng)未折疊蛋白反應(yīng)中均發(fā)揮作用[18]。TRAP1對(duì)線粒體功能障礙有保護(hù)作用,TRAP1過(guò)表達(dá)可減少ROS的產(chǎn)生和積累,從而降低氧化應(yīng)激損傷[19-21]。而沉默導(dǎo)致氧化應(yīng)激敏感性增加,細(xì)胞總ROS水平與TRAP1表達(dá)水平呈負(fù)相關(guān)[19-20, 22-24]。先前的幾項(xiàng)研究表明,在Warburg效應(yīng)的基礎(chǔ)上,TRAP1可誘導(dǎo)有氧糖酵解上調(diào)而減少ROS的產(chǎn)生,促進(jìn)ROS清除劑NADPH的增多,從而發(fā)揮抗氧化、抗凋亡的功能[25-28]。多項(xiàng)研究表明,TRAP1與神經(jīng)退行性疾病的發(fā)病密切相關(guān),尤其在PD中。Fitzgerald等[29]報(bào)道了一例遲發(fā)性PD患者外顯子2中存在純合p.Arg47Ter單核苷酸交換(R47X),導(dǎo)致轉(zhuǎn)運(yùn)序列提前出現(xiàn)終止密碼子和截短體。Cechetto等[30]及Masgras等[31]的研究表明,TRAP1在神經(jīng)元中的特異性表達(dá)似乎足以抑制神經(jīng)退化和肌肉退化,并逆轉(zhuǎn)缺失或突變果蠅的呼吸缺陷。在表達(dá)α-synuclein[A53T]突變蛋白的果蠅中,敲減進(jìn)一步加劇了多巴胺能神經(jīng)元的丟失,而TRAP1的過(guò)表達(dá)可拮抗α-synuclein[A53T]突變蛋白在大鼠原代神經(jīng)元和SH-SY5Y人神經(jīng)細(xì)胞誘導(dǎo)的線粒體應(yīng)激性損傷,表明TRAP1具有對(duì)抗氧化應(yīng)激損傷的神經(jīng)保護(hù)作用[32]。這些結(jié)果表明,TRAP1在神經(jīng)退行性疾病及抗氧化應(yīng)激過(guò)程中發(fā)揮重要作用。HSPD1又稱(chēng)作HSP60,主要在炎癥相關(guān)過(guò)程中發(fā)揮病理生理功能。已有研究發(fā)現(xiàn),HSP60在活化的小膠質(zhì)細(xì)胞中高度表達(dá),當(dāng)其在細(xì)胞外釋放時(shí)會(huì)誘導(dǎo)神經(jīng)炎癥發(fā)生并導(dǎo)致神經(jīng)元細(xì)胞死亡[33],并于與多種神經(jīng)退行性疾病的病理過(guò)程密切相關(guān)[34]。HSP60可以通過(guò)MyD88依賴(lài)途徑與小膠質(zhì)細(xì)胞表面的TLR4相互作用,并通過(guò)小膠質(zhì)細(xì)胞LOX-1誘導(dǎo)促炎因子的產(chǎn)生,介導(dǎo)神經(jīng)炎癥[35-36]。鞘內(nèi)注射HSP60通過(guò)激活小膠質(zhì)細(xì)胞的TLR4/MyD88信號(hào)通路,導(dǎo)致神經(jīng)退行性變和脫髓鞘[37]。HSP60可誘導(dǎo)小膠質(zhì)細(xì)胞中ROS的生成,而基因的下調(diào)可降低體內(nèi)和體外IL-1β的產(chǎn)生[38]。在腎透明細(xì)胞癌細(xì)胞中,敲除激活了NRF2介導(dǎo)的氧化應(yīng)激反應(yīng),從而增加谷胱甘肽的產(chǎn)生,進(jìn)一步抑制了快速增殖細(xì)胞中產(chǎn)生的ROS[39]。從AD患者分離的淋巴細(xì)胞中發(fā)現(xiàn)HSP60表達(dá)水平升高[40-41]。在小鼠模型中,Aβ-HSP60肽結(jié)合疫苗可誘導(dǎo)腦組織淀粉樣蛋白降低且伴有大腦炎癥反應(yīng)的顯著減少[42]。在PD患者的路易小體中,HSP60、HSP70及HSP90被發(fā)現(xiàn)與α-synuclein相互作用[43]。在體內(nèi)和體外PD模型中,6-羥基多巴胺作用于多巴胺能神經(jīng)元后,退化神經(jīng)元釋放HSP60以激活小膠質(zhì)細(xì)胞,從而導(dǎo)致細(xì)胞中HSP60的表達(dá)水平逐漸降低[44]。因此,通過(guò)抑制HSP60的表達(dá)和釋放來(lái)抑制神經(jīng)炎癥及伴隨的氧化應(yīng)激可能是一種適用于神經(jīng)退行性疾病的治療機(jī)制。如前所述,我們推測(cè)TRAP1和HSPD1可能與神經(jīng)細(xì)胞中CHCHD2對(duì)抗氧化應(yīng)激損傷及炎癥反應(yīng)過(guò)程密切相關(guān),是我們需要關(guān)注的重點(diǎn)候選蛋白。
此外,通過(guò)比較氧化應(yīng)激狀態(tài)組與生理狀態(tài)組的蛋白互作網(wǎng)絡(luò)分析(圖6),我們發(fā)現(xiàn)YBX1、CCT6A和COA4蛋白與CHCHD2有直接相互作用關(guān)系,并在氧化應(yīng)激狀態(tài)組中特異表達(dá),且YBX1也已經(jīng)被證實(shí)與CHCHD2存在直接相互作用[10]。YBX1是DNA和RNA結(jié)合蛋白家族中的成員之一,具有1個(gè)保守的冷休克結(jié)構(gòu)域。YBX1參與多種DNA及RNA的相關(guān)過(guò)程,包括DNA修復(fù)、轉(zhuǎn)錄調(diào)控、前體mRNA剪接、mRNA包裝以及翻譯調(diào)控。在細(xì)胞水平上,YBX1可促進(jìn)細(xì)胞增殖、抗凋亡、促進(jìn)細(xì)胞分化、在多種應(yīng)激情況下作為核轉(zhuǎn)錄因子發(fā)揮保護(hù)作用[45]。在腎細(xì)胞癌細(xì)胞中YBX1顯著促進(jìn)了細(xì)胞黏附,遷移和侵襲。YBX1通過(guò)Kindlin-2調(diào)節(jié)RCC細(xì)胞凋亡和ROS的產(chǎn)生[46]。人類(lèi)端粒酶逆轉(zhuǎn)錄酶通過(guò)招募YBX1共定位于啟動(dòng)子P2區(qū)域來(lái)激活其啟動(dòng)子,從而上調(diào)NRF2的表達(dá),促進(jìn)大腸癌增殖和遷移[47]。外源性hsa-miR-760通過(guò)靶向編碼區(qū)并與YBX1蛋白相互作用,有效地上調(diào)了Hmox1的表達(dá),降低了ROS水平,并使PM2.5誘導(dǎo)的支氣管上皮細(xì)胞免于凋亡[48]。CCT6A是CCT6的一個(gè)亞基,在多種癌癥中起著至關(guān)重要的作用[49]。CCT6A可能通過(guò)轉(zhuǎn)化生長(zhǎng)因子β信號(hào)通路增強(qiáng)淋巴結(jié)轉(zhuǎn)移,進(jìn)而加速非小細(xì)胞肺癌的進(jìn)展[49]。高表達(dá)的CCT6A通過(guò)維持細(xì)胞周期素D的表達(dá)以及加速第一個(gè)GAP期向合成期(G1~S)的轉(zhuǎn)變,促進(jìn)肝癌細(xì)胞的增殖[50]。此外,CCT6A已被鑒定為內(nèi)源性細(xì)胞外信號(hào)調(diào)節(jié)激酶(extracellular signal-regulated kinase, ERK)1/2信號(hào)復(fù)合物的特異成分[51],且具有絲裂原活化蛋白激酶(mitogen-activated protein kinase, MAPK)/ERK的磷酸化位點(diǎn)[52-53]。同時(shí),CCT6A和MAPK信號(hào)通路在基質(zhì)金屬蛋白酶3依賴(lài)的軸突生長(zhǎng)調(diào)控和神經(jīng)元遷移中起關(guān)鍵作用[54]。COA4又稱(chēng)作CHCHD8,是CHCHD2的同源蛋白,COA4的缺失會(huì)導(dǎo)致COX的組裝缺陷,尤其是COX1的缺失以及COX2和COX3的快速降解[55]。在本研究中,我們發(fā)現(xiàn)氧化應(yīng)激狀態(tài)下YBX1、CCT6A和COA4在CHCHD2過(guò)表達(dá)的SH-SY5Y神經(jīng)細(xì)胞中特異性表達(dá),提示這3個(gè)蛋白除已報(bào)道的功能外,還可能參與CHCHD2的抗氧化應(yīng)激過(guò)程和神經(jīng)保護(hù)作用,也是我們后續(xù)需要關(guān)注的候選蛋白。
綜上所述,本研究首次證實(shí)CHCHD2具有保護(hù)SH-SY5Y神經(jīng)細(xì)胞對(duì)抗外源性氧化應(yīng)激損傷的作用;并且通過(guò)CoIP-MS的方法,我們共篩選出64個(gè)氧化應(yīng)激狀態(tài)下與CHCHD2發(fā)生互作的特有候選蛋白,并進(jìn)一步通過(guò)生物信息學(xué)分析挖掘出與其抗氧化應(yīng)激過(guò)程密切相關(guān)的2個(gè)蛋白(TRAP1和HSPD1)及另外3個(gè)可與其直接作用的蛋白(YBX1、CCT6A和COA4)作為后續(xù)重點(diǎn)關(guān)注及驗(yàn)證的候選蛋白。這些蛋白多與細(xì)胞對(duì)抗氧化應(yīng)激、抗凋亡、細(xì)胞增殖和遷移等有一定的關(guān)系,我們推測(cè)這些蛋白在CHCHD2執(zhí)行信號(hào)傳遞中發(fā)揮協(xié)同作用,但是它們與CHCHD2是否存在實(shí)際的互作關(guān)系,以及通過(guò)何種信號(hào)通路發(fā)揮功能,需要未來(lái)通過(guò)后續(xù)的實(shí)驗(yàn)進(jìn)行進(jìn)一步驗(yàn)證。最后,本研究結(jié)果為進(jìn)一步深入探索CHCHD2抗氧化應(yīng)激作用中的生物過(guò)程及分子機(jī)制奠定基礎(chǔ),為開(kāi)發(fā)CHCHD2作為抗氧化應(yīng)激損傷治療靶點(diǎn)來(lái)治療神經(jīng)退行性疾病提供了新思路。
[1] Singh A, Kukreti R, Saso L, et al. Oxidative stress: a key modulator in neurodegenerative diseases[J]. Molecules, 2019, 24(8):1583.
[2] Kee TR, Espinoza Gonzalez P, Wehinger JL, et al. Mitochondrial CHCHD2: disease-associated mutations, physiological functions, and current animal models[J]. Front Aging Neurosci, 2021, 13:660843.
[3] Aras S, Bai M, Lee I, et al. MNRR1 (formerly CHCHD2) is a bi-organellar regulator of mitochondrial metabolism[J]. Mitochondrion, 2015, 20:43-51.
[4] Liu Y, Zhang Y. CHCHD2 connects mitochondrial metabolism to apoptosis[J]. Mol Cell Oncol, 2015, 2(4):e1004964.
[5] Meng H, Yamashita C, Shiba-Fukushima K, et al. Loss of Parkinson's disease-associated protein CHCHD2 affects mitochondrial crista structure and destabilizes cytochrome c[J]. Nat Commun, 2017, 8:15500.
[6] Jurcau A. Insights into the pathogenesis of neurodegenerative diseases: focus on mitochondrial dysfunction and oxidative stress[J]. Int J Mol Sci, 2021, 22(21):11847.
[7] Funayama M, Ohe K, Amo T, et al. CHCHD2 mutations in autosomal dominant late-onset Parkinson's disease: a genome-wide linkage and sequencing study[J]. Lancet Neurol, 2015, 14(3):274-282.
[8] Baughman JM, Nilsson R, Gohil VM, et al. A computational screen for regulators of oxidative phosphorylation implicates SLIRP in mitochondrial RNA homeostasis[J]. PLoS Genet, 2009, 5(8):e1000590.
[9] Liu Y, Clegg HV, Leslie PL, et al. CHCHD2 inhibits apoptosis by interacting with Bcl-xL to regulate Bax activation[J]. Cell Death Differ, 2015, 22(6):1035-1046.
[10] Wei Y, Vellanki RN, Coyaud é, et al. CHCHD2 is coamplified with EGFR in NSCLC and regulates mitochondrial function and cell migration[J]. Mol Cancer Res, 2015, 13(7):1119-1129.
[11] Krainer AR, Mayeda A, Kozak D, et al. Functional expression of cloned human splicing factor SF2: homology to RNA-binding proteins, U1 70K, and Drosophila splicing regulators[J]. Cell, 1991, 66(2):383-394.
[12] Honoré B, Madsen P, Rasmussen HH, et al. Cloning and expression of a cDNA covering the complete coding region of the P32 subunit of human pre-mRNA splicing factor SF2[J]. Gene, 1993, 134(2):283-287.
[13] Yagi M, Uchiumi T, Takazaki S, et al. p32/gC1qR is indispensable for fetal development and mitochondrial translation: importance of its RNA-binding ability[J]. Nucleic Acids Res, 2012, 40(19):9717-9737.
[14] Hillman GA, Henry MF. The yeast protein Mam33 functions in the assembly of the mitochondrial ribosome[J]. J Biol Chem, 2019, 294(25):9813-9829.
[15] Saha P, Datta K. Multi-functional, multicompartmental hyaluronan-binding protein 1 (HABP1/p32/gC1qR): implication in cancer progression and metastasis[J]. Oncotarget, 2018, 9(12):10784-10807.
[16] Ma J, Ren C, Yang H, et al. The expression pattern ofin sheep muscle and its role in differentiation, cell proliferation, and apoptosis of myoblasts[J]. Int J Mol Sci, 2019, 20(20):5161.
[17] Ghebrehiwet B, Lim BL, Peerschke EI, et al. Isolation, cDNA cloning, and overexpression of a 33-kD cell surface glycoprotein that binds to the globular "heads" of C1q[J]. J Exp Med, 1994, 179(6):1809-1821.
[18] D'souza M, Datta K. Evidence for naturally occurring hyaluronic acid binding protein in rat liver[J]. Biochem Int, 1985, 10(1):43-51.
[19] Hua G, Zhang Q, Fan Z. Heat shock protein 75 (TRAP1) antagonizes reactive oxygen species generation and protects cells from granzyme M-mediated apoptosis[J]. J Biol Chem, 2007, 282(28):20553-20560.
[20] Im CN, Lee JS, Zheng Y, et al. Iron chelation study in a normal human hepatocyte cell line suggests that tumor necrosis factor receptor-associated protein 1 (TRAP1) regulates production of reactive oxygen species[J]. J Cell Biochem, 2007, 100(2):474-486.
[21] Zhang P, Lu Y, Yu D, et al. TRAP1 provides protection against myocardial ischemia-reperfusion injury by ameliorating mitochondrial dysfunction[J]. Cell Physiol Biochem, 2015, 36(5):2072-2082.
[22] Matassa DS, Amoroso MR, Agliarulo I, et al. Translational control in the stress adaptive response of cancer cells: a novel role for the heat shock protein TRAP1[J]. Cell Death Dis, 2013, 4(10):e851.
[23] Yoshida S, Tsutsumi S, Muhlebach G, et al. Molecular chaperone TRAP1 regulates a metabolic switch between mitochondrial respiration and aerobic glycolysis[J]. Proc Natl Acad Sci U S A, 2013, 110(17):E1604-E1612.
[24] Montesano Gesualdi N, Chirico G, Pirozzi G, et al. Tumor necrosis factor-associated protein 1 (TRAP-1) protects cells from oxidative stress and apoptosis[J]. Stress, 2007, 10(4):342-350.
[25] Rasola A, Neckers L, Picard D. Mitochondrial oxidative phosphorylation TRAP(1)ped in tumor cells[J]. Trends Cell Biol, 2014, 24(8):455-463.
[26] Sciacovelli M, Guzzo G, Morello V, et al. The mitochondrial chaperone TRAP1 promotes neoplastic growth by inhibiting succinate dehydrogenase[J]. Cell Metab, 2013, 17(6):988-999.
[27] Chae YC, Caino MC, Lisanti S, et al. Control of tumor bioenergetics and survival stress signaling by mitochondrial HSP90s[J]. Cancer Cell, 2012, 22(3):331-344.
[28] Dekker FA, Rüdiger SGD. The mitochondrial Hsp90 TRAP1 and Alzheimer's disease[J]. Front Mol Biosci, 2021, 8:697913.
[29] Fitzgerald JC, Zimprich A, Carvajal Berrio DA, et al. Metformin reverses TRAP1 mutation-associated alterations in mitochondrial function in Parkinson's disease[J]. Brain, 2017, 140(9):2444-2459.
[30] Cechetto JD, Gupta RS. Immunoelectron microscopy provides evidence that tumor necrosis factor receptor-associated protein 1 (TRAP-1) is a mitochondrial protein which also localizes at specific extramitochondrial sites[J]. Exp Cell Res, 2000, 260(1):30-39.
[31] Masgras I, Laquatra C, Cannino G, et al. The molecular chaperone TRAP1 in cancer: from the basics of biology to pharmacological targeting[J]. Semin Cancer Biol, 2021, 76:45-53.
[32] Butler EK, Voigt A, Lutz AK, et al. The mitochondrial chaperone protein TRAP1 mitigates α-synuclein toxicity[J]. PLoS Genet, 2012, 8(2):e1002488.
[33] Sun Y, Zheng J, Xu Y, et al. Paraquat-induced inflammatory response of microglia through HSP60/TLR4 signaling[J]. Hum Exp Toxicol, 2018, 37(11):1161-1168.
[34] Alberti G, Paladino L, Vitale AM, et al. Functions and therapeutic potential of extracellular Hsp60, Hsp70, and Hsp90 in neuroinflammatory disorders[J]. Appl Sci, 2021, 11(2):736.
[35] Lehnardt S, Schott E, Trimbuch T, et al. A vicious cycle involving release of heat shock protein 60 from injured cells and activation of toll-like receptor 4 mediates neurodegeneration in the CNS[J]. J Neurosci, 2008, 28(10):2320-2331.
[36] Zhang D, Sun L, Zhu H, et al. Microglial LOX-1 reacts with extracellular HSP60 to bridge neuroinflammation and neurotoxicity[J]. Neurochem Int, 2012, 61(7):1021-1035.
[37] Rosenberger K, Dembny P, Derkow K, et al. Intrathecal heat shock protein 60 mediates neurodegeneration and demyelination in the CNS through a TLR4- and MyD88-dependent pathway[J]. Mol Neurodegener, 2015, 10:5.
[38] Swaroop S, Mahadevan A, Shankar SK, et al. HSP60 critically regulates endogenous IL-1β production in activated microglia by stimulating NLRP3 inflammasome pathway[J]. J Neuroinflammation, 2018, 15(1):177.
[39] Teng R, Liu Z, Tang H, et al. HSP60 silencing promotes Warburg-like phenotypes and switches the mitochondrial function from ATP production to biosynthesis in ccRCC cells[J]. Redox Biol, 2019, 24:101218.
[40] Cappello F, Angileri F, de Macario EC, et al. Chaperonopathies and chaperonotherapy. Hsp60 as therapeutic target in cancer: potential benefits and risks[J]. Curr Pharm Des, 2013, 19(3):452-457.
[41] Cappello F, Conway de Macario E, Marino Gammazza A, et al. Hsp60 and human aging: Les liaisons dangereuses[J]. Front Biosci (Landmark Ed), 2013, 18:626-637.
[42] Nemirovsky A, Fisher Y, Baron R, et al. Amyloid beta-HSP60 peptide conjugate vaccine treats a mouse model of Alzheimer's disease[J]. Vaccine, 2011, 29(23):4043-4050.
[43] Pemberton S, Melki R. The interaction of Hsc70 protein with fibrillar α-synuclein and its therapeutic potential in Parkinson's disease[J]. Commun Integr Biol, 2012, 5(1):94-95.
[44] Feng M, Zhang L, Liu Z, et al. The expression and release of Hsp60 in 6-OHDA induced in vivo and in vitro models of Parkinson's disease[J]. Neurochem Res, 2013, 38(10):2180-2189.
[45] Lyabin DN, Eliseeva IA, Ovchinnikov LP. YB-1 protein: functions and regulation[J]. Wiley Interdiscip Rev RNA, 2014, 5(1):95-110.
[46] Cui Q, Wang C, Liu S, et al. YBX1 knockdown induces renal cell carcinoma cell apoptosis via Kindlin-2[J]. Cell Cycle, 2021, 20(22):2413-2427.
[47] Gong C, Yang H, Wang S, et al. hTERT promotes CRC proliferation and migration by recruiting YBX1 to increase NRF2 expression[J]. Front Cell Dev Biol, 2021, 9:658101.
[48] Xu L, Zhao Q, Li D, et al. MicroRNA-760 resists ambient PM2.5-induced apoptosis in human bronchial epithelial cells through elevating heme-oxygenase 1 expression[J]. Environ Pollut, 2021, 284:117213.
[49] Zhang T, Shi W, Tian K, et al. Chaperonin containing T-complex polypeptide 1 subunit 6A correlates with lymph node metastasis, abnormal carcinoembryonic antigen and poor survival profiles in non-small cell lung carcinoma[J]. World J Surg Oncol, 2020, 18(1):156.
[50] Zeng G, Wang J, Huang Y, et al. Overexpressing CCT6A contributes to cancer cell growth by affecting the G1-to-S phase transition and predicts a negative prognosis in hepatocellular carcinoma[J]. Onco Targets Ther, 2019, 12:10427-10439.
[51] Von Kriegsheim A, Baiocchi D, Birtwistle M, et al. Cell fate decisions are specified by the dynamic ERK interactome[J]. Nat Cell Biol, 2009, 11(12):1458-1464.
[52] Xiang B, Chatti K, Qiu H, et al. Brk is coamplified with ErbB2 to promote proliferation in breast cancer[J]. Proc Natl Acad Sci U S A, 2008, 105(34):12463-12468.
[53] Roskoski R Jr. ERK1/2 MAP kinases: structure, function, and regulation[J]. Pharmacol Res, 2012, 66(2):105-143.
[54] Van Hove I, Verslegers M, Hu TT, et al. A proteomic approach to understand MMP-3-driven developmental processes in the postnatal cerebellum: chaperonin CCT6A and MAP kinase as contributing factors[J]. Dev Neurobiol, 2015, 75(9):1033-1048.
[55] Bode M, Longen S, Morgan B, et al. Inaccurately assembled cytochrome c oxidase can lead to oxidative stress-induced growth arrest[J]. Antioxid Redox Signal, 2013, 18(13):1597-612.
Identification and preliminary functional analysis of CHCHD2 interacting proteins by CoIP-MS
LIU Xuan-zhuo, WANG Ying-ying, FAN Xin-man, WANG Fang, XU An-ding, XU Xiao-hong△
(,,510630,)
To screen the proteins interacting with coiled-coil-helix-coiled-coil-helix domain-containing 2 (CHCHD2) under oxidative stress, and to explore the underlying mechanism of CHCHD2 protecting against oxidative stress-induced neuronal damage.The control plasmid and the CHCHD2 overexpression plasmid containing Flag tags were transfected into human neuroblastoma cell line SH-SY5Y using Lipofectamine 2000. After treatment with 100 μmol/L tert-butyl hydroperoxide (TBHP) or ddH2O for 24 h, the CHCHD2-binding proteins in different groups were enriched by co-immunoprecipitation (CoIP). The proteins were concentrated by SDS-PAGE, and the bands in the gel were cut for further enzymolysis and analysis by liquid chromatography with tandem mass spectrometry (LC-MS/MS). The CHCHD2-interacting proteins were identified via database searching and bioinformatic analysis.(1) CHCHD2 played a role in protecting SH-SY5Y cells against THBP-induced oxidative stress injury. (2) The results of CoIP-MS showed that a total of 64 CHCHD2-interacting proteins were specifically detected under oxidative stress condition rather than physiological condition. (3) The results of GO function annotation and KEGG pathway enrichment showed that the differentially expressed proteins (DEPs) specifically detected in oxidative stress group mainly existed in the exosome and cytosol. These DEPs participated in biological processes including protein translation and initiation, protein and/or ploy(A) RNA binding, and glucose metabolism. (4) The DEPs were also involved in anti-oxidative stress-related biological processes including negative regulation of reactive oxygen species biosynthetic process, and response to hydrogen peroxide. Tumor necrosis factor receptor-associated protein 1 (TRAP1) and heat shock protein family D member 1 (HSPD1) were two important candidate proteins. (5) The results of protein-protein interaction network analysis showed that Y-box-binding protein 1 (YBX1), chaperonin containing TCP1 subunit 6A (CCT6A) and cytochrome C oxidase assembly factor 4 homolog (COA4) directly interacted with CHCHD2 under oxidative stress condition rather than physiological condition, and were also candidate proteins for further validation.The CHCHD2-interacting proteins under physiological condition and oxidative stress condition were successfully identified by CoIP-MS, and two proteins (TRAP1 and HSPD1) closely related to the anti-oxidative stress process, as well as three proteins (YBX1, CCT6A and COA4) directly interacted with CHCHD2 under oxidative stress condition were identified as top-candidate proteins. These findings support the necessity for further exploration of the molecular mechanism and biological process of CHCHD2 in its anti-oxidative stress effect.
CHCHD2 protein; Oxidative stress; Co-immunoprecipitation; Mass spectrometry; Neurodegenerative diseases
R741.02; R363
A
10.3969/j.issn.1000-4718.2022.03.010
1000-4718(2022)03-0457-14
2021-12-27
2022-02-21
[基金項(xiàng)目]國(guó)家自然科學(xué)基金資助項(xiàng)目(No. 81901295)
Tel: 020-38688071; E-mail: xiaohong_xu86@163.com
(責(zé)任編輯:盧萍,羅森)