梁明宇, 馮洋, 劉婭榮, 李淑彤, 歐陽(yáng)潔琳, 陳芳,祝益民, 鄒聯(lián)洪,△, 蔣宇△
家兔心臟停搏自主循環(huán)恢復(fù)后血清代謝組學(xué)特征分析*
梁明宇1, 馮洋1, 劉婭榮1, 李淑彤1, 歐陽(yáng)潔琳1, 陳芳2,祝益民2, 鄒聯(lián)洪1,2△, 蔣宇2△
[1湖南師范大學(xué),分子流行病學(xué)湖南省重點(diǎn)實(shí)驗(yàn)室, 湖南 長(zhǎng)沙 410013;2湖南省人民醫(yī)院(湖南師范大學(xué)附屬第一醫(yī)院)湖南省急救醫(yī)學(xué)研究所,湖南 長(zhǎng)沙 410005]
探討分析家兔心臟停搏(CA)自主循環(huán)恢復(fù)(ROSC)后血清代謝組學(xué)特征變化。10只雄性新西蘭家兔,采用窒息法制備CA家兔模型,于CA前、ROSC后15 min、3 h、6 h和24 h各收集2 mL血液樣品,通過(guò)氣相色譜-質(zhì)譜聯(lián)用(GC-MS)測(cè)定各時(shí)間點(diǎn)血清代謝產(chǎn)物,采用Simca P軟件對(duì)血清代謝輪廓特征進(jìn)行主成分分析(PCA)和正交偏最小二乘判別分析(OPLS-DA),通過(guò)MetaboAnalyst 5.0軟件進(jìn)行檢驗(yàn)、火山圖、聚類(lèi)熱圖分析差異代謝產(chǎn)物,并對(duì)差異代謝物進(jìn)行KEGG代謝通路分析。與CA前相比,ROSC后15 min、3 h、6 h和24 h家兔的血清代謝輪廓特征發(fā)生明顯改變,分別有50、44、58和78個(gè)差異代謝物,其中山梨糖、賴(lài)氨酸、乙醇胺、2'-脫氧胞苷-5'-三磷酸和腐胺含量在ROSC后均減少(<0.05),莽草酸、磷酸絲氨酸、-甲基-L-谷氨酸、4-羥基-3-甲氧基苯甲醇(香草醇)、塔格糖、氨基丙二酸、乳果糖、吲哚-3-乙酸、景天庚酮糖和肌酸含量在ROSC后均增加(<0.05)。?;撬岷吭赗OSC后15 min、6 h和24 h減少(<0.05),在ROSC后3 h含量差異無(wú)統(tǒng)計(jì)學(xué)意義。與CA前相比,ROSC后15 min、3 h、6 h和24 h分別有8、8、12和15條差異代謝通路,其中苯丙氨酸、酪氨酸和色氨酸的生物合成在ROSC后均下調(diào),精氨酸和脯氨酸代謝在15 min和3 h時(shí)下調(diào),而在6和24 h時(shí)上調(diào)。磷酸戊糖途徑在ROSC后15 min時(shí)受到抑制,但是在其他時(shí)點(diǎn)無(wú)差異。CA家兔ROSC后的血清代謝組學(xué)存在顯著動(dòng)態(tài)差異。磷酸戊糖途徑受限和?;撬崴较抡{(diào)可能與ROSC后的損傷有關(guān),而肌酸水平上調(diào)提示心肌細(xì)胞損傷。
心臟停搏;自主循環(huán)恢復(fù);代謝組學(xué)
心臟停搏(cardiac arrest, CA)是指各種原因?qū)е碌男呐K射血功能突然停止,隨即出現(xiàn)脈搏消失、意識(shí)喪失、呼吸循環(huán)中斷的現(xiàn)象,致死率極高,是一個(gè)嚴(yán)重威脅生命安全的世界性公共健康問(wèn)題[1]。隨著急診急救技術(shù)的不斷進(jìn)步和應(yīng)用,越來(lái)越多患者經(jīng)搶救后能達(dá)到自主循環(huán)恢復(fù)[2]。但目前對(duì)CA和CA自主循環(huán)恢復(fù)(return of spontaneous circulation, ROSC)后的研究大部分是基于臨床治療效果的觀察,缺乏動(dòng)態(tài)的、多路徑的CA和ROSC后的發(fā)病進(jìn)程研究。
新陳代謝是機(jī)體生命活動(dòng)的基本特征,代謝變化在疾病病情判斷、早期診斷、預(yù)后及療效評(píng)估等方面逐漸受到重視,而代謝組學(xué)能對(duì)生物體內(nèi)代謝物進(jìn)行識(shí)別和定量分析,并尋找代謝物與疾病的病理生理變化關(guān)聯(lián)[3]。CA后缺氧缺血所致的器官損傷是幸存者后期死亡和長(zhǎng)期神經(jīng)功能障礙的主要原因[4],而缺血缺氧后機(jī)體會(huì)出現(xiàn)特征性的代謝變化。運(yùn)用代謝組學(xué)分析ROSC后的動(dòng)態(tài)代謝變化,可為發(fā)掘CA復(fù)蘇后器官損傷可能的機(jī)理提供數(shù)據(jù)支持,為新治療靶點(diǎn)的發(fā)現(xiàn)提供有效幫助。因此,本研究通過(guò)制備新西蘭家兔窒息性CA模型并進(jìn)行復(fù)蘇,從代謝組學(xué)層面探索家兔CAROSC后血清代謝物的動(dòng)態(tài)變化,為CA研究提供理論依據(jù)和參考。
雄性新西蘭家兔10只,平均體重為(2.50±0.18) kg,購(gòu)于湖南斯萊克景達(dá)實(shí)驗(yàn)動(dòng)物有限公司,許可證號(hào)為SCXK(湘)2013-0004。動(dòng)物實(shí)驗(yàn)符合倫理學(xué)標(biāo)準(zhǔn)。
新西蘭家兔禁食不禁水12 h,3%戊巴比妥(30 mg/kg)麻醉后固定于兔臺(tái),耳緣動(dòng)脈置動(dòng)脈留置針用于血壓監(jiān)測(cè),生物機(jī)能實(shí)驗(yàn)儀實(shí)時(shí)監(jiān)測(cè)體溫、心率、血壓,記錄正常(normal)狀態(tài)的數(shù)值。氣管插管后,采用窒息方式誘導(dǎo)室顫致CA,致顫時(shí)長(zhǎng)為3~4 min,以心電顯示無(wú)脈搏心電活動(dòng)或無(wú)電活動(dòng),血壓小于10 mmHg作為CA標(biāo)志,7 min后用動(dòng)物呼吸機(jī)給予機(jī)械通氣,注射腎上腺素并行胸外按壓術(shù)至自主循環(huán)恢復(fù),復(fù)蘇至ROSC時(shí)長(zhǎng)為2~3 min,分別于CA造模前(即正常狀態(tài))、ROSC后15 min、3 h、6 h、24 h從耳緣動(dòng)脈抽血2 mL,收集血清樣本于-80 ℃中保存?zhèn)溆茫芯苛鞒虉D如圖1所示。
Figure 1.Flow chart of cardiac arrest (CA) rabbit model. ROSC: return of spontaneous circulation.
將存于-80 ℃的血清樣本取出置于冰上自然解凍,取每份待測(cè)血清樣品5 μL混合于進(jìn)樣瓶中制作成質(zhì)量控制(quality control,QC)樣品。每個(gè)樣本取100 μL,加入內(nèi)標(biāo)10 μL(L-2-氯-苯丙氨0.3 g/L,甲醇配置)、100 μL蛋白沉淀劑甲醇-乙腈(2∶1),渦旋混勻10 s,冰水浴中超聲提取10 min,4 ℃、12 000 r/min、10 min,揮干,加入50 μL甲氧胺鹽酸吡啶溶液(15 g/L),渦旋混勻,70 ℃肟化1 h,冷卻15 min,加入50 μL雙(三甲基硅烷基)三氟乙酰胺[BSTFA,含1%三甲基氯硅烷(TMCS)]衍生試劑和正乙烷,渦旋震蕩,70 ℃ 60 min。室溫放置30 min,取上清液移入進(jìn)樣瓶。7890A-5975C型GC-MS氣質(zhì)聯(lián)用儀進(jìn)行代謝組學(xué)檢測(cè)。
通過(guò)ChromaTOF軟件處理GC-MS數(shù)據(jù),初步篩選得到314個(gè)代謝物。將代謝物數(shù)據(jù)矩陣導(dǎo)入SIMCA-P14.1軟件,采用主成分分析(principal component analysis, PCA)和正交偏最小二乘判別分析(orthogonal partial least squares discrimination analysis, OPLS-DA)評(píng)估各樣本的總體分布以及ROSC后15 min、3 h、6 h和24 h分別與normal相比的代謝組學(xué)總體差異,并進(jìn)行置換檢驗(yàn)來(lái)判斷模型的擬合程度;以差異倍數(shù)(fold change, FC)>2或FC<0.66,<0.05,變量投影重要性值(variable importance in the projection, VIP)>1的標(biāo)準(zhǔn)篩選差異代謝物,將代謝數(shù)據(jù)導(dǎo)入MetaboAnalyst 5.0軟件進(jìn)行檢驗(yàn)、火山圖、熱圖分析,并利用KEGG Pathway數(shù)據(jù)庫(kù)分析相關(guān)代謝通路。計(jì)量資料采用均數(shù)±標(biāo)準(zhǔn)差(mean±SD)表示。以<0.05表示差異有統(tǒng)計(jì)學(xué)意義。
連續(xù)監(jiān)測(cè)各時(shí)間點(diǎn)家兔的體溫、心率和平均動(dòng)脈壓(mean arterial blood pressure, MAP),與normal組相比,ROSC后15 min、3 h和6 h家兔體溫?zé)o明顯變化(>0.05),而ROSC后24 h體溫略有升高(<0.05),CA后7 min心率和MAP均為0,與normal組相比,ROSC后15 min心率無(wú)明顯變化(>0.05),3、6和24 h后心率加快(<0.05);ROSC后15 min、3 h和6 h時(shí)血壓呈下降趨勢(shì)(<0.05),ROSC后24 h血壓與normal組相比無(wú)明顯差異(>0.05),見(jiàn)表1。
表1 心臟停搏家兔模型各時(shí)間點(diǎn)體溫、心率、平均動(dòng)脈壓情況
ROSC: return of spontaneous circulation.*<0.05normal group.
首先對(duì)各個(gè)時(shí)點(diǎn)的家兔血清代謝物數(shù)據(jù)進(jìn)行PCA,結(jié)果如圖2A所示:與normal組相比,CA家兔ROSC后15 min、3 h、6 h和24 h樣本的代謝輪廓改變明顯,且呈時(shí)間相關(guān)的動(dòng)態(tài)變化趨勢(shì)。OPLS-DA也得到同樣結(jié)果,見(jiàn)圖2B。對(duì)模型有效性進(jìn)行200次置換檢驗(yàn),R2=0.453,Q2=-0.413,說(shuō)明OPLS-DA模型可靠,不存在過(guò)擬合現(xiàn)象,見(jiàn)圖2C。
CA家兔ROSC后15 min、3 h、6 h和24 h分別與normal組進(jìn)行兩兩比較分析,PCA結(jié)果顯示,與normal組相比,ROSC后15 min、3 h、6 h和24 h樣本的輪廓差異顯著(圖2D),OPLS-DA進(jìn)一步證明ROSC后各個(gè)時(shí)點(diǎn)樣本的代謝輪廓發(fā)生明顯變化(圖2E),且OPLS-DA分析模型不存在過(guò)擬合(圖2F)。
Figure 2.Analysis of serum metabolite profiles after return of spontaneous circulation (ROSC) in cardiac arrest rabbits. A, B and C: PCA (A), OPLS-DA (B) and permutation analysis (C) of serum metabolic characteristics at different time points; D and E: PCA (D), OPLS-DA (E) and permutation analysis (F) of serum metabolic characteristics between normal, and 15 min, 3 h, 6 h and 24 h after ROSC.
采用MetaboAnalyst 5.0軟件平臺(tái),按照FC>2且<0.05的標(biāo)準(zhǔn),篩選ROSC后不同時(shí)點(diǎn)血清差異代謝物。結(jié)果如圖3、表2所示:與normal組相比,ROSC后15 min、3 h、6 h和24 h的差異代謝物分別有50、44、58和78個(gè);有15種代謝物同時(shí)存在于ROSC后各時(shí)點(diǎn)組,其中山梨糖、賴(lài)氨酸、乙醇胺、2'-脫氧胞苷-5'-三磷酸和腐胺含量在4個(gè)時(shí)點(diǎn)均減少(<0.05),莽草酸、磷酸絲氨酸、N-甲基-L-谷氨酸、4-羥基-3-甲氧基苯甲醇(香草醇)、塔格糖、氨基丙二酸、乳果糖、吲哚-3-乙酸、景天庚酮糖和肌酸含量在4個(gè)時(shí)點(diǎn)均增加(<0.05);?;撬岷吭赗OSC后15 min、6 h和24 h減少(<0.05),但在ROSC后3 h含量與normal組差異無(wú)統(tǒng)計(jì)學(xué)意義(>0.05)。
Figure 3.Volcano analysis of serum metabolic characteristics in cardiac arrest rabbtis at 15 min, 3 h, 6 h and 24 h after return of spontaneous circulation (ROSC) compared with normal.
表2 心臟停搏家兔ROSC后血清中主要差異代謝產(chǎn)物
“/”:>0.05.
為了更加直觀體現(xiàn)出不同時(shí)間點(diǎn)家兔血清代謝物的差異性和聚類(lèi)程度,根據(jù)各對(duì)比組前50位VIP值的代謝物進(jìn)行聚類(lèi)熱圖分析。由圖4可知各組樣本均呈現(xiàn)出較為明顯的聚類(lèi)。
Figure 4.Heatmap analysis of serum metabolic characteristics between each time point, or at 15 min, 3 h, 6 h and 24 h after return of spontaneous circulation (ROSC) compared with normal.
將不同時(shí)點(diǎn)的血清差異代謝物導(dǎo)入MetaboAnalyst 5.0軟件中進(jìn)行KEGG代謝通路分析。根據(jù)Impact>0.1篩選出改變顯著的代謝通路,結(jié)果如圖5所示。與normal組相比,ROSC后15 min、3 h、6 h和24 h分別有8、8、12和15條差異代謝通路,其中苯丙氨酸、酪氨酸和色氨酸的生物合成均下調(diào),精氨酸和脯氨酸代謝在15 min和3 h時(shí)下調(diào),而在6 h和24 h時(shí)上調(diào)。磷酸戊糖途徑在ROSC后15 min時(shí)受到抑制,但是在其他時(shí)點(diǎn)卻無(wú)差異。牛磺酸和次?;撬岽x在ROSC后15 min、6 h和24 h均被抑制,且影響權(quán)重較大。
Figure 5.The KEGG pathway analysis of serum metabolic characteristics in cardiac arrest rabbits at 15 min, 3 h, 6 h and 24 h after return of spontaneous circulation (ROSC) compared with normal.
CA是急危重癥時(shí)較常見(jiàn)的嚴(yán)重不良事件。在我國(guó),每年發(fā)生心源性猝死的患者高達(dá)41.8/10萬(wàn)[5]。CA患者ROSC后出現(xiàn)的病理?yè)p害過(guò)程主要包括全身缺血再灌注損傷、腦組織損傷、心肌功能障礙和持續(xù)致病性病因與誘因等四個(gè)方面,被稱(chēng)為CA后綜合征[6]。炎癥反應(yīng)、氧化應(yīng)激和代謝紊亂是CA致多器官功能障礙的重要原因,也是影響CA患者預(yù)后的關(guān)鍵因素。代謝組學(xué)是對(duì)被干擾或刺激的生物系統(tǒng)的觀察,是對(duì)生物體代謝物變化的研究,能系統(tǒng)全面地反映生物體的代謝特征,從整體層面探討生命活動(dòng)的代謝特征和規(guī)律[7]。通過(guò)對(duì)CA家兔血清代謝組學(xué)的研究發(fā)現(xiàn),與心臟聚停前相比,CA家兔ROSC后各個(gè)時(shí)點(diǎn)的血清代謝輪廓特征存在差異,經(jīng)KEGG代謝通路分析發(fā)現(xiàn)苯丙氨酸,酪氨酸和色氨酸的生物合成、精氨酸和脯氨酸代謝、磷酸戊糖途徑、?;撬岷痛闻;撬岽x等途徑發(fā)生明顯改變。
CA和ROSC后的患者經(jīng)歷了嚴(yán)重的全身缺血再灌注損傷,氧化應(yīng)激始終貫穿于這一病理生理進(jìn)程中,被認(rèn)為是導(dǎo)致CA患者死亡的重要原因?;钚匝酰╮eactive oxygen species, ROS)的產(chǎn)生和清除失衡,引發(fā)級(jí)聯(lián)放大的氧化應(yīng)激反應(yīng),對(duì)組織細(xì)胞造成損傷,最終出現(xiàn)多器官功能障礙綜合征甚至死亡[8]。磷酸戊糖途徑是在生物界中普遍存在的糖分解代謝途徑之一,參與NADPH的產(chǎn)生[9],葡萄糖6-磷酸脫氫酶是磷酸戊糖途徑的限速酶。有研究顯示葡萄糖6-磷酸脫氫酶對(duì)小鼠腦缺血再灌注損傷具有保護(hù)作用,其作用機(jī)制可能是通過(guò)增強(qiáng)磷酸戊糖途徑,提高NADPH水平,使其抑制ROS,從而抑制神經(jīng)細(xì)胞死亡[10]。本研究結(jié)果顯示磷酸戊糖途徑在ROSC后15 min時(shí)變化較大,受到抑制,提示CA患者ROSC過(guò)程的早期嚴(yán)重的氧化應(yīng)激損傷。
牛磺酸是一種游離的含硫β-氨基酸亞磺酸類(lèi)似物,在細(xì)胞內(nèi)含量較高且非常穩(wěn)定,參與滲透平衡的調(diào)控[11]。Ca2+過(guò)度累積對(duì)心臟有細(xì)胞毒性,有研究證實(shí)?;撬峥赏ㄟ^(guò)其抗氧化活性和調(diào)控細(xì)胞內(nèi)Ca2+水平減輕缺血再灌注損傷[12-13]。?;撬嵩谌毖俟嘧⑵陂g通過(guò)調(diào)節(jié)細(xì)胞內(nèi)Ca2+移動(dòng)、清除自由基、調(diào)節(jié)滲透壓保持膜穩(wěn)定性來(lái)發(fā)揮其巨大的抗氧化活性[14-15]。在離體大鼠心臟再灌注損傷的研究中,?;撬峥蓽p輕氧化損傷、改善心室功能和減少梗死面積[16]。此外,?;撬徇€可以促進(jìn)胚胎大腦的神經(jīng)發(fā)育,被證實(shí)對(duì)大腦灰質(zhì)和白質(zhì)、對(duì)局灶性腦缺血-再灌注損傷具有保護(hù)作用[17],其在腦缺血損傷中的作用越來(lái)越受到重視。本研究中,與normal組相比,在ROSC后24 h內(nèi)的家兔血清中,?;撬岷匡@著降低,提示增加?;撬釘z入有望減輕CA致心肌細(xì)胞損傷。
心肌是高能量需求的器官。CA患者ROSC過(guò)程中缺血缺氧再灌注造成的能量代謝紊亂,致使心肌功能障礙。肌酸主要以磷酸肌酸(creatine phosphate, PCr)形式存在,負(fù)責(zé)能量的緩沖和運(yùn)輸,在肌酸激酶控制下與三磷酸腺苷(adenosine triphosphate, ATP)可相互轉(zhuǎn)換Cr+ATP?PCr+ADP+H+[18,19]。在心肌缺血時(shí),氧不足以支持通過(guò)氧化磷酸化產(chǎn)生ATP,PCr和ATP水平會(huì)在幾分鐘內(nèi)迅速耗盡,出現(xiàn)能量危機(jī)致心肌細(xì)胞受損[20-21]。本研究中,與normal組相比,血清中肌酸水平在CA家兔ROSC后不同時(shí)點(diǎn)顯著上調(diào),尤其是在ROSC后15min上調(diào)10.61倍,提示在CA家兔ROSC過(guò)程中,ATP耗竭和能量代謝障礙。在CA導(dǎo)致缺血再灌注過(guò)程中,氧供應(yīng)的先中斷后恢復(fù)不僅通過(guò)電子傳遞鏈(electron transport chain, ETC)削弱ATP的產(chǎn)生,而且它還促進(jìn)電子從ETC泄漏,導(dǎo)致高度破壞性的ROS形成,ROS可引起嚴(yán)重氧化應(yīng)激損傷,從而導(dǎo)致氧化還原穩(wěn)態(tài)喪失和心肌細(xì)胞死亡[22],提示CA所致的能量代謝障礙,誘發(fā)氧化應(yīng)激反應(yīng),致使心肌組織功能障礙。一項(xiàng)缺血性心肌研究中發(fā)現(xiàn),外源性PCr可減少細(xì)胞內(nèi)溶血磷脂酰膽堿和溶血磷脂酰乙醇胺的積累,具有穩(wěn)定心肌細(xì)胞膜和保護(hù)心肌細(xì)胞功能的作用[23],增加PCr可以減少缺血/再灌注損傷大鼠心肌組織的炎癥反應(yīng),從而改善心肌功能[24],提示PCr可能是改善CA患者預(yù)后的有效治療靶點(diǎn)。
綜上所述,CA家兔ROSC后的血清代謝組學(xué)存在顯著動(dòng)態(tài)差異,磷酸戊糖途徑和血清代謝物?;撬嵬ㄟ^(guò)調(diào)控氧化應(yīng)激反應(yīng)介導(dǎo)CA家兔ROSC后心臟功能的保護(hù)作用;肌酸水平上調(diào)提示心肌細(xì)胞損傷。
[1]張玉曼, 宋春霞, 鄭曉麗, 等. 心搏驟停患者目標(biāo)體溫管理的最佳證據(jù)總結(jié)[J]. 中華護(hù)理雜志, 2020, 55(4): 621-627.
Zhang YM, Song CX, Zheng XL, et al. Best evidence summary for target temperature management of patients after cardiac arrest[J]. Chin J Nurs, 2020, 55(4):621-627.
[2]沈一鳴, 王秋紅, 王建杰, 等. 不同吸氧時(shí)間對(duì)心臟驟停大鼠復(fù)蘇后神經(jīng)功能的影響[J]. 第三軍醫(yī)大學(xué)學(xué)報(bào), 2020, 42(11):1078-1085.
Sheng YM, Wang QH, Wang JJ, et al. Effect of different durations of post-resuscitation oxygen ventilation on neurological function in rats after cardiac arrest[J]. J Third Mil Med Univ, 2020, 42(11):1078-1085.
[3] Lindon JC, Holmes E, Bollard ME, et al. Metabonomics technologies and their applications in physiological monitoring, drug safety assessment and disease diagnosis[J]. Biomarkers, 2004, 9(1):1-31.
[4] Meybohm P, Gruenewald M, Zacharowski KD, et al. Mild hypothermia alone or in combination with anesthetic post-conditioning reduces expression of inflammatory cytokines in the cerebral cortex of pigs after cardiopulmonary resuscitation[J]. Crit Care, 2010, 14(1):R21.
[5]田永燦, 柳發(fā)有, 郎大夫. 腦氧代謝率評(píng)估心肺復(fù)蘇患者腦功能預(yù)后的價(jià)值[J]. 中國(guó)急救復(fù)蘇與災(zāi)害醫(yī)學(xué)雜志, 2021, 16(4):347-350.
Tian YC, Liu FY, Lang DF. Value of cerebral oxygen metabolism rate in accessing prognosis of ce-rebral function in patients undergoing cardiopulmonary resuscitation[J]. Chin J Emerg Resuscit Disaster Med, 2021, 16(4):347-350.
[6] Dalessio L. Post-cardiac arrest syndrome[J]. AACN Adv Crit Care, 2020, 31(4):383-393.
[7]曹學(xué)鋒, 白振忠, 馬蘭, 等. 慢性高原病患者血清GC-TOF-MS代謝組學(xué)的初步研究[J]. 中國(guó)病理生理雜志, 2017, 33(9):1676-1682.
Cao XF, Bai ZZ, Ma L, et al. Preliminary study of patients with chronic mountain sickness by GC-TOF-MS based serum metabolomics analysis[J]. Chin J Pathophysiol, 2017, 33(9):1676-1682.
[8] Atil K, Halperin HR, Becker LB. Cardiac arrest: resuscitation and reperfusion[J]. Circ Res, 2015, 116(12):2041-2049.
[9] Chen M, Lian H, Zhong ML. Effects of hypothermia on brain oxygen metabolism and nerve function in patients after cardiac arrest[J]. J Med Theory Pract, 2021, 34(13):2226-2228.
[10] 張頂梅. G6PD通過(guò)增強(qiáng)磷酸戊糖途徑在腦缺血再灌注損傷中發(fā)揮保護(hù)作用[D]. 蘇州大學(xué), 2018.
Zhang DM. G6PD plays a neuroprotective role in brain ischemia through promoting pentose phosphate pathway[D]. Soochow University, 2018.
[11] 王麗娟, 徐超, 趙玉梅. 牛磺酸對(duì)大鼠局灶性腦缺血-再灌注損傷的全腦保護(hù)作用[J]. 腦與神經(jīng)疾病雜志, 2017, 25(10):617-622.
Wang LJ, Xu C, Zhao YM. The total brain protection efficacy of taurine during focal cerebral ischemia/reperfusion damage in rat[J]. J Brain Nerv Dis, 2017, 25(10):617-622.
[12] Rasola A, Bernardi P. Mitochondrial permeability transition in Ca2+-dependent apoptosis and necrosis[J]. Cell Calcium, 2011, 50(3):222-233.
[13] Baliou S, Adamaki M, Ioannou P, et al. Protective role of taurine against oxidative stress (review)[J]. Mol Med Rep, 2021, 24(2):605.
[14] Schaffer SW, Jong CJ, Ito T, et al. Effect of taurine on ischemia-reperfusion injury[J]. Amino Acids, 2014, 46(1): 21-30.
[15] Bkaily G, Jazzar A, Normand A, et al. Taurine and cardiac disease: state of the art and perspectives[J]. Can J Physiol Pharmacol, 2020, 98(2):67-73.
[16] Xu YJ, Arneja AS, Tappia PS, et al. The potential health benefits of taurine in cardiovascular disease[J]. Exp Clin Cardiol, 2008, 13(2):57-65.
[17] 王國(guó)華, 姜正林, 李霞, 等. ?;撬崧?lián)合安定治療腦缺血再灌注損傷的實(shí)驗(yàn)研究[J]. 中國(guó)病理生理雜志, 2010, 26(4):737-741.
Wang GH, Jiang ZL, Li X, et al. Combination of taurine and diazepam has neuroprotective effect on focal cerebral ischemia-reperfusion in rats[J]. Chin J Pathophysiol, 2010, 26(4):737-741.
[18] Zervou S, Whittington HJ, Russell AJ, et al. Augmentation of creatine in the heart[J]. Mini Rev Med Chem, 2016, 16(1):19-28.
[19] Buford TW, Kreider RB, Stout JR, et al. International Society of Sports Nutrition position stand: creatine supplementation and exercise[J]. J Int Soc Sports Nutr, 2007, 4:6.
[20] Balestrino M. Role of creatine in the heart: health and disease[J]. Nutrients, 2021, 13(4):1215.
[21] 李芳, 李輝, 朱世軍, 等. 磷酸肌酸對(duì)大鼠心肌缺氧、復(fù)氧心肌線粒體肌酸激酶肌膜型亞基mRNA表達(dá)水平的影響[J]. 中國(guó)病理生理雜志, 2000, 16(2):143-145.
Li F, Li H, Zhu SJ, et al. The influence of phosphocreatine on expression of mitochondrial sarcomeric creatine kinase mRNA of myocardium ischemia and reperfusion in rats[J]. Chin J Pathophysiol, 2000, 16(2):143-145.
[22] Li X, Arslan F, Ren Y, et al. Metabolic adaptation to a disruption in oxygen supply during myocardial ischemia and reperfusion is underpinned by temporal and quantitative changes in the cardiac proteome[J]. J Proteome Res, 2012, 11(4):2331-2346.
[23] Gaddi AV, Galuppo P, Yang J. Creatine phosphate administration in cell energy impairment conditions: a summary of past and present research[J]. Heart Lung Circ, 2017, 26(10):1026-1035.
[24] Zhang W, Zhang H, Xing Y. Protective effects of phosphocreatine administered post- treatment combined with ischemic post-conditioning on rat hearts with myocardial ischemia/reperfusion injury[J]. J Clin Med Res, 2015, 7(4):242-247.
Serum metabolomic characteristics of rabbits with return of spontaneous circulation after cardiac arrest
LIANG Ming-yu1, FENG Yang1, LIU Ya-rong1, LI Shu-tong1, OUYANG Jie-lin1, CHEN Fang2, ZHU Yi-min2, ZOU Lian-hong1,2△, JIANG Yu2△
(1,,410013,;2,,410005,)
To investigate and analyze the dynamic changes of serum metabolomic characteristics in cardiac arrest (CA) rabbit model with return of spontaneous circulation (ROSC).The rabbit model of CA was induced by asphyxiation. Blood samples were collected at different time points including before CA, or 15 min, 3 h, 6 h and 24 h after ROSC. The metabolites in serum were determined by gas chromatography-mass spectrometer (GC-MS). Simca P software was used to analyze the serum metabolic profile characteristics by principal component analysis (PCA) and orthogonal partial least squares discrimination analysis (OPLS-DA). T-test, volcano plot, cluster heat map analysis and KEGG of MetaboAnalyst 5.0 software were used to analyze the differential metabolites and metabolic pathways.Compared with normal group, the characteristics of serum metabolic profiles at 15 min, 3 h, 6 h and 24 h after ROSC were significantly changed. There were 50, 44, 58 and 78 differential metabolites at these four time points. Concentrations of sorbose, lysine, ethanolamine, 2'-deoxycytidine 5'-triphosphate and putrescine were down-regulated (<0.05), while shikimic acid,-phosphoserine,-methyl-L-glutamic acid, 4-hydroxy-3-methoxybenzyl alcohol, tagatose, aminomalonic acid, lactulose, indole-3-acetic acid, sedoheptulose and creatine were up-regulated (<0.05). Taurine was decreased at 15 min, 6 h and 24 h after ROSC (<0.05), and was recovered at 3 h after ROSC. Compared with normal group, 8, 8, 12 and 15 differential metabolic pathways were captured at 15 min, 3 h, 6 h and 24 h after ROSC, respectively. The biosynthesis of phenylalanine, tyrosine and tryptophan was down-regulated after ROSC. The metabolism of arginine and proline was down-regulated at 15 min and 3 h after ROSC, while it was up-regulated at 6 and 24 h after ROSC. Pentose phosphate pathway was inhibited at 15 min after ROSC, but there was no difference at other time points.Significant dynamic differences in serum metabolomics were observed after ROSC in CA rabbit model. Restricted pentose phosphate pathway and decreased taurine may be caused by the injury after ROSC. Increased creatine indicates myocardial cell injury.
Cardiac arrest; Return of spontaneous circulation; Metabonomics
R363; R446
A
10.3969/j.issn.1000-4718.2022.03.007
1000-4718(2022)03-0434-08
2022-01-06
2022-02-22
[基金項(xiàng)目]湖南省重大專(zhuān)項(xiàng)(No. 2020SK1010)
Tel: 0731-83929129; E-mail: zoulh1986@hunnu.edu.cn(鄒聯(lián)洪); jiangyu@hunnu.edu.cn(蔣宇)
(責(zé)任編輯:盧萍,余小慧)