陳玥, 郝磊, 劉書翊, 曾育琦, 范勇, 趙振華, 陳騏, 李永坤△
動脈內腦局部低溫聯(lián)合再灌注治療急性缺血性卒中大鼠*
陳玥1, 郝磊2, 劉書翊1, 曾育琦3, 范勇4, 趙振華1, 陳騏5, 李永坤1△
(1福建醫(yī)科大學省立臨床醫(yī)學院神經內科,福建 福州 350001;2徐州醫(yī)科大學附屬第二醫(yī)院神經內科,江蘇 徐州 221006;3福建醫(yī)科大學附屬協(xié)和醫(yī)院神經內科,福建 福州 350001;4福建醫(yī)科大學附屬福州市第一醫(yī)院中心實驗室,福建 福州 350009;5福建省師范大學生命科學院,中國南方生化研究中心,福建省天然免疫重點實驗室,福建 福州 350117)
研究動脈內腦局部低溫聯(lián)合再灌注對急性缺血性卒中(AIS)大鼠腦組織的保護作用及其機制。將雄性SD大鼠隨機分為假手術(sham)組、缺血(I,大腦中動脈永久閉塞)組、缺血再灌注(I/R,大腦中動脈閉塞后再灌注)組及低溫(H,動脈內腦局部低溫聯(lián)合再灌注)組,每組24只。H組再灌注后經頸內動脈灌注約6.7 mL 4 ℃的生理鹽水,灌注流量0.33 mL/min,灌注時間20 min。缺血24 h后對各組大鼠進行神經功能缺損評分(mNSS),2,3,5-氯化三苯基四氮唑(TTC)染色和核磁共振檢測腦梗死體積,干濕重法測量腦組織含水量;通過伊文思藍(EB)示蹤法測定血腦屏障通透性,使用Western blot法檢測緊密連接蛋白ZO-1、閉鎖蛋白(occludin)、密封蛋白5(claudin-5)及水通道蛋白4(AQP4)和基質金屬蛋白酶2和9(MMP2和MMP9)的蛋白表達水平。缺血24 h后,與I和I/R組相比,H組大鼠的mNSS、腦梗死體積、腦含水量及EB滲透量均顯著降低(<0.05)。H組大鼠的ZO-1、occludin和claudin-5蛋白表達水平均顯著高于I/R組(<0.05),MMP2和MMP9蛋白表達水平顯著低于I/R組(<0.05)。動脈內腦局部低溫聯(lián)合再灌注對AIS大鼠具有腦保護作用,可能與其抑制MMP2和MMP9蛋白的表達、減少緊密連接蛋白降解、維持血腦屏障完整性有關。
急性缺血性卒中;動脈內腦局部低溫;再灌注損傷;血腦屏障;緊密連接蛋白;基質金屬蛋白酶
急性期開通閉塞血管,挽救缺血腦組織,已成為急性缺血性卒中(acute ischemia stroke, AIS)的標準治療方法,但仍有近半數(shù)的患者血管再通后神經功能缺損并未改善甚至反而加重,其原因主要與缺血/再灌注(ischemia/reperfusion, I/R)損傷有關[1]。因此亟需找尋有效的腦保護策略聯(lián)合再灌注治療,在恢復腦血流灌注的同時減輕腦I/R損傷。
既往研究顯示,治療性低溫可作用于I/R損傷的多個病理生理環(huán)節(jié),如降低細胞代謝、抑制興奮性毒性、細胞凋亡及減輕炎癥等[2]。全身性低溫因降溫效率低且副作用多[3],限制了其臨床應用[4-5]。動脈內腦局部低溫(intra-arterial local brain hypothermia, IAH)可實現(xiàn)局部腦組織快速降溫,對全身體溫影響很小,減少全身性低溫帶來的副作用。近年來,血管內取栓技術的成熟使得IAH聯(lián)合再灌注治療成為可能[6]。既往研究通過計算機模擬、動物模型,對IAH的臨床可行性和安全性進行研究,提示IAH是安全可行的[7]。
本項工作通過構建大鼠大腦中動脈閉塞(middle cerebral artery occlusion, MCAO)模型,在閉塞血管再通同時采用動脈內腦局部低溫治療,研究IAH聯(lián)合再灌注對AIS大鼠的腦保護作用,并探究其可能機制,為IAH聯(lián)合再灌注治療急性缺血性腦梗死的臨床轉化提供實驗依據。
無特定病原體(SPF)級的Sprague-Dawley(SD)大鼠96只,雄性,8周齡,240~265 g,由上海斯萊克實驗動物有限責任公司提供,許可證號為SYXK(滬)2017-0008。所有大鼠均按照實驗動物飼養(yǎng)規(guī)范進行飼養(yǎng),飼養(yǎng)溫度保持在(25±1 ℃)范圍內,維持正常晝夜,明暗視野12 h交替(8:00開燈,20:00熄燈)。本研究經福建師范大學實驗動物倫理委員會批準,對實驗動物的所有操作均依據《實驗動物管理與使用指南》進行。
伊文思藍(Evans blue, EB)購于北京索萊寶科技有限公司;大鼠抗大鼠緊密連接蛋白ZO-1(zonula occludens-1)單克隆抗體和兔抗大鼠密封蛋白5(claudin-5)多克隆抗體購于Millipore;兔抗大鼠閉鎖蛋白(occludin)單克隆抗體、兔抗大鼠水通道蛋白(aquaporin-4, AQP4)單克隆抗體及兔抗大鼠基質金屬蛋白酶2(mtrix metalloproteinase 2, MMP2)多克隆抗體購于Abcam;羊抗大鼠基質金屬蛋白酶9(matrix metalloproteinase 9, MMP9)多克隆抗體購于Santa Cruz Biotechnology;兔抗大鼠GAPDH單克隆抗體購于Cell Signaling Technology;II抗IRDye 800CW驢抗兔IgG(H+L)、IRDye 680CW驢抗羊IgG(H+L)和IRDye 680CW驢抗大鼠IgG(H+L)購于LI-COR。
3.1動物分組、模型制備及低溫干預采用隨機數(shù)字表法將96只SD大鼠分為假手術(sham operation, sham)組、缺血(ischemia, I)組(大腦中動脈永久閉塞)、I/R組(大腦中動脈閉塞后再灌注)及低溫(hypothermia, H)組(動脈內腦局部低溫聯(lián)合再灌注),每組24只。大鼠術前禁食12 h,禁水6 h,取大鼠稱重,以2%戊巴比妥鈉(3 mL/100 kg)腹腔注射麻醉成功后,sham組僅暴露右側頸總動脈(common carotid artery, CCA)、頸外動脈(external carotid artery, ECA)及頸內動脈(internal carotid artery, ICA),不做其他處理;I、I/R及H組均采用改良的Longa線栓法并稍加改進制備右側MCAO模型[8]。備皮后取仰臥位頸正中切口,暴露右側CCA、ECA及ICA。血管夾臨時夾閉CCA和ICA并結扎ECA遠心端,然后于結扎處近心端剪一“V”型切口,插入線栓至頸內勁外動脈分叉處,剪斷ECA遠端,將ECA與CCA平行,雙手持顯微鑷配合將線栓經ECA插入ICA,松開ICA的血管夾,繼續(xù)將線栓送入約18~20 mm,有阻力感時停止推送線栓。用6-0外科手術縫合線在ECA殘端打一活結,松開CCA的血管夾。I組不再取出線栓,I/R組缺血2 h后取出線栓,用電凝筆將ECA血管殘端閉合,4-0外科手術縫合線逐層縫合傷口,醫(yī)用酒精消毒。H組大鼠實施MCAO后腹腔注射肝素(500 U/kg)進行全身肝素化,并將微導絲、微導管消毒后備用;待缺血2 h后,靜脈夾夾閉CCA,小心撤出線栓,并臨時夾閉ICA;然后以0.008 in. (0.203 mm)或 0.014 in. (0.3556 mm)微導絲引導,經ECA殘端將1.5 F (0.5 mm)微導管送入ICA內,松開ICA上的靜脈夾,使微導管進入ICA約0.8~1.2 cm。用靜脈夾夾閉ECA殘端,松開CCA上的靜脈夾,退出微導絲,將微導管連接微注泵,以0.33 mL/min泵入4 ℃生理鹽水,持續(xù)灌注20 min。灌注期間使用動物加熱墊維持大鼠體表溫度恒定在(37.0±0.5) ℃。灌注結束后撤出微導管,結扎ECA殘端,縫合頸部皮膚。各組大鼠待完全蘇醒后將其放回飼養(yǎng)籠中,使其正?;顒语嬍?。缺血24 h,I和I/R組大鼠的死亡率約為15%,H組大鼠的死亡率約為10%,實驗結果已排除24 h內死亡及收集腦樣本時發(fā)現(xiàn)蛛網膜下腔出血的大鼠。實驗分組、造模及IAH流程見圖1。
Figure 1.Flow chart of animal grouping, establishing model, and intra-arterial local brain hypothermia (IAH). Sham: sham operation group; I: ischemia group (permanent middle cerebral artery occlusion); I/R: ischemia/reperfusion group (middle cerebral artery ischemia/reperfusion); H: hypothermia group (IAH combined with reperfusion); MACO: middle cerebral artery occlusion; mNSS: modified neurological severity score; TTC: 2,3,5-triphenyltetrazolium chloride; MRI: magnetic resonance imaging.
3.2神經功能缺損評估缺血后24 h采用改良神經功能缺損評分(modified neurological severity score, mNSS)評估各組大鼠的運動、感覺、平衡和反射行為[9]。神經功能評分區(qū)間為0~18分,評分越高表示大鼠的神經功能損傷越嚴重。
3.3腦梗死體積測定缺血24 h后進行大鼠腦部核磁共振成像(magnetic resonance imaging, MRI)檢測,采用福建中醫(yī)藥大學的3.0T動物線圈核磁共振檢測儀對各組大鼠腦部進行影像學檢測(T2和DWI序列),并比較各組腦梗死體積。大鼠做完MRI后,參照潘宋斌等[10]的方法進行2,3,5-氯化三苯基四氮唑(2,3,5-triphenyltetrazolium chloride, TTC)染色,將大鼠麻醉處死取腦,去除嗅球和小腦,清除軟腦膜,將腦組織置于-80 ℃冰箱冷凍8~10 min,將腦組織冠狀連續(xù)等距切取6個冠狀腦片,片厚約2 mm,置于新鮮配制的0.1% TTC中染色,37 ℃孵育20 min,采用TTC染色顯示梗死區(qū)域。染色期間將腦片翻轉一次,正常非梗死組織被染成深紅色,梗死組織未被染紅呈白色。染色完成后將腦片放入4%多聚甲醛中固定,拍照后用ImageJ (National Institutes of Health)軟件進行圖像分析,采用簡單積分法測定腦梗死體積,計算公式為:梗死體積百分比(%)=梗死面積/腦片面積×100%。
3.4腦組織含水量參照喬建新等的方法[11],缺血24 h后麻醉處死取腦,去除嗅球和小腦,清除軟腦膜,用冷生理鹽水沖洗腦表面,濾紙吸干水分,稱取濕重,隨后放入100 ℃恒溫烤箱中烘烤24 h,稱取干重。按照以下公式計算腦組織含水量,從而反映腦組織水腫程度:腦組織含水量(%)=(濕重-干重)/濕質量×100%。
3.5EB示蹤染色將2 mg EB溶于100 mL二甲基甲酰胺中配制成母液,然后用二甲基甲酰胺將母液0.02 g/L EB稀釋成不同濃度(0.4、0.8、1.6、3.2、6.4 mg/L),使用分光光度計(620 nm)測定吸光度()值,并繪制EB含量與值之間的標準曲線,得出標準曲線方程。參考陳朝暉等[12]的方法,在處死前1 h,用含2% EB的生理鹽水進行靜脈注射。將大鼠麻醉處死,斷頭取腦,去除嗅球和小腦,清除軟腦膜,沿矢狀縫分離大腦半球,稱重后將其按照 1 mL甲酰胺溶液/100 mg腦組織的比例放入甲酰胺溶液中,60 ℃環(huán)境中浸泡24 h。取上清溶液用分光光度計(620 nm)進行值檢測。并根據標準曲線方程對腦組織EB含量進行定量計算。
3.6Western blot缺血24 h后將大鼠麻醉處死取腦,用配制好的裂解液(RIPA裂解液∶蛋白酶抑制劑∶磷酸酶抑制劑=100∶1∶2)裂解腦組織,離心后取上清,BCA法進行蛋白定量,統(tǒng)一蛋白濃度,添加上樣緩沖液后進行蛋白變性。使用SDS-PAGE,將分離好的蛋白質電轉至硝酸纖維素(nitrocellulose, NC)膜上。使用5%牛血清白蛋白封閉液將NC膜封閉2 h后,在4 ℃下與以下I抗孵育過夜:ZO-1(1∶2 000)、occludin(1∶1 000)、claudin-5(1∶1 000)、AQP4(1∶1 000)、MMP2(1∶1 000)、MMP9(1∶1 000)。使用TBST洗滌3次后,Ⅱ抗(1∶15 000)室溫下孵育2 h,隨后TBST洗滌3次。用雙色紅外激光成像儀拍照,觀察保存結果圖片。使用ImageJ對蛋白條帶的灰度值進行定量分析。
采用SPSS 21.0軟件進行統(tǒng)計分析。符合正態(tài)分布的數(shù)據以均數(shù)±標準差(mean±SD)來表示。多組數(shù)據采用單因素方差分析,多組間的兩兩比較采用Tukey檢驗t。以<0.05為有統(tǒng)計學意義。
通過mNSS評分檢測各組大鼠神經功能缺損程度,結果顯示:與sham組相比,I組的mNSS評分顯著升高(<0.01);I/R組的mNSS評分相較I組顯著降低(<0.05);與I/R組相比,H組的mNSS評分顯著降低(<0.05),見圖2。
Figure 2.Comparison of modified neurological severity scores of rats in each group. Mean±SD. n=24. **P<0.01 vs sham group; &P<0.05 vs I group; #P<0.05 vs I/R group.
TTC染色定量分析結果顯示,除sham組外其余幾組均出現(xiàn)白色梗死區(qū)域;與sham組相比,I組的腦梗死體積顯著升高(<0.01);I/R組的腦梗死體積相較I組顯著升高(<0.05);與I/R組相比,H組的腦梗死體積顯著下降(<0.01),見圖3A。
使用干濕重量法檢測各組大鼠腦組織含水量,結果顯示,與sham組相比,I組的腦含水量顯著升高(<0.01);I/R組的腦含水量相較I組降低,但無顯著差異(>0.05);與I/R組比較,H組的腦組織含水量顯著下降(<0.01),見圖3B。
Figure 3.Comparison of rats brain infarction volume and brain water content in each group. A: the representative images of the infarct regions stained with TTC and comparison of cerebral infraction volume of rats in each group; C: comparison of brain water content of rats in each group. Mean±SD. n=7. **P<0.01 vs sham group; &P<0.05 vs I group; ##P<0.01 vs I/R group.
MRI結果顯示,除sham組外其余幾組的T2和DWI序列的影像均出現(xiàn)高信號區(qū)域;與sham組相比,I組在T2和DWI序列中的腦梗死體積均顯著升高(<0.01);在T2序列中I/R的腦梗死體積相較I組顯著升高(0.05),而在DWI序列中升高,但無顯著差異(>0.05);與I組和I/R組比較,H組在T2和DWI序列中的腦梗死體積顯著下降(<0.01),見圖4。
Figure 4.Brain MRI images of rats in each group. A: the representative MRI images (T2) and comparison of cerebral infraction volume of rats in each group; B: the representative MRI images (DWI) and comparison of cerebral infraction volume of rats in each group. The white high-signaling areas represent ischemic infarction in MRI images. Mean±SD. n=7. **P<0.01 vs sham group; ##P<0.01 vs I/R group.
腦組織EB含量定量分析結果顯示,與sham組相比,I組的腦組織EB含量顯著升高(<0.01);I/R組的腦組織EB含量相較I組顯著降低(<0.01);與I/R組相比,H組的EB含量顯著降低(<0.01),見圖5。
Figure 5.Comparison of BBB permeability of rats in each group. The representative images of the Evans blue extravasation in each group were shown, and comparison of Evans blue content of rats in each group were performed. Mean±SD. n=7. **P<0.01 vs sham group; &&P<0.01 vs I group; ##P<0.01 vs I/R group.
Western blot檢測各組腦組織中血腦屏障相關結構蛋白表達水平,結果顯示,相較sham組,I組的ZO-1、occludin和claudin-5蛋白表達均顯著降低(<0.01),而AQP4蛋白表達顯著升高(<0.01);相較I組,I/R組的ZO-1蛋白表達顯著升高(<0.05),occludin和claudin-5蛋白表達升高,但無顯著差異(>0.05),而AQP4蛋白表達顯著下降(<0.05);與I/R組相比,H組的ZO-1、occludin和claudin-5蛋白表達均顯著升高(<0.05或<0.01),AQP4蛋白表達呈下降趨勢,但無顯著差異(0.05),見圖6。
Figure 6.The protein expression levels of ZO-1, occludin, claudin-5 and AQP4 in brain tissue of rats in each group were detected by Western blot. Mean±SD. n=3. **P<0.01 vs sham group; &P<0.05 vs I group; #P<0.05, ##P<0.01 vs I/R group.
Western blot檢測各組腦組織中MMP2和MMP9蛋白的表達水平,結果顯示,與sham組相比,I組MMP-2和MMP-9蛋白表達水平均顯著升高(<0.01);相較I組,I/R組MMP2蛋白表達顯著降低(<0.01),而MMP9蛋白表達降低,但無顯著差異(0.05);與I/R組相比,H組MMP2和MMP9蛋白表達均顯著降低(<0.05),見圖7。
Figure 7.The protein expression levels of MMP2 and MMP9 in brain tissue of rats in each group were detected by Western blot. Mean±SD. n=3. **P<0.01 vs sham group; &&P<0.01 vs I group; #P<0.05 vs I/R group.
AIS的治療原則是盡早開通閉塞血管,挽救缺血腦組織;但血管再通后會出現(xiàn)I/R損傷,造成繼發(fā)性腦損傷。因此,AIS患者亟需可聯(lián)合再灌注的神經保護方法,減輕I/R損傷。治療性低溫是有效的腦保護策略,而相比于其它低溫方式,IAH是一種可高效降低腦局部溫度的方式,它的降溫速度更快且更具有安全性、有效性[13]。Omileke等[14]和Kurisu等[15]的研究表明,相較于全身低溫灌注,大鼠缺血腦組織進行局部低溫灌注可有效減小梗死體積、腦水腫程度及改善神經功能。本研究探索了IAH聯(lián)合再灌注(下文簡稱聯(lián)合治療)對AIS大鼠的保護作用及其機制。實驗結果顯示,聯(lián)合治療可改善AIS大鼠的神經功能,減少腦梗死體積,減輕腦水腫程度,其作用可能與減少MMP2和MMP9蛋白的表達、減少緊密連接蛋白的降解,維持BBB完整性有關。
AIS大鼠在經歷再灌注過程中,可觸發(fā)有害的病理生理過程,即I/R損傷,并抵消再灌注的有益作用。Aronowski等[16]的研究顯示,相較于腦局部缺血24h的大鼠,缺血2h再灌注22h的大鼠腦梗死體積增加。本實驗結果顯示,AIS大鼠血管再通可有效改善AIS大鼠的神經功能,但卻無法減少腦梗死體積及腦含水量;因此,單一再灌注可能不是AIS大鼠腦保護的優(yōu)選方案,仍需尋找聯(lián)合再灌注的神經保護方案,減輕I/R損傷。
既往IAH相關研究雖然已證明具有腦保護作用,但研究選用的灌注條件多數(shù)是根據經驗設置[7]。然而,IAH對AIS的腦保護作用效果,取決于降溫速度、降溫程度和持續(xù)時間[2-3, 17]。本課題組的前期使用正交實驗設計研究MCAO大鼠的IAH最佳灌注溫度、速度和持續(xù)時間,結果顯示最佳灌注條件為:4 ℃生理鹽水,0.33 mL/min,20 min;該灌注條件可使腦局部組織溫度可在數(shù)分鐘內降至35 ℃以下,并維持亞低溫狀態(tài)15 min左右,且對全身核心體溫并無顯著影響(結果尚未發(fā)表)。因此,本研究選用的IAH方法可安全、快速、有效降溫。缺血再灌注早期是腦組織發(fā)生缺血再灌注損害的關鍵時期;聯(lián)合治療可在再灌注早期快速降低局部腦組織的溫度,不僅可以沖刷炎癥因子等有害分子,還能有效阻斷級聯(lián)損傷網絡的多種機制,如降低細胞代謝、抑制損傷蛋白合成,減少自由基產生等[18]。因此,腦組織局部低溫時間雖然短暫,但理論上可能具有很好的腦保護作用。本研究顯示較于單一的再灌注,聯(lián)合治療可有效改善AIS大鼠的神經功能缺損、腦梗死體積和腦水腫程度。
BBB主要由微血管內皮細胞及細胞連接構成[19],是可阻止物質自由進出腦組織的屏障結構,而I/R損傷可對血腦屏障的完整性進行破壞[20];本實驗結果顯示,聯(lián)合治療相較于單一的再灌注治療,可有效維持BBB結構完整性。
緊密連接蛋白,如occludin、claudin-5和ZO-1蛋白是血腦屏障功能破壞的敏感指標。Nitta等[21]的研究表明,敲除小鼠的基因,血腦屏障的分子大小選擇功能會受到影響;Yan等[22]報道,降低ZO-1蛋白的表達水平可增加內皮細胞的滲透性。實驗結果表明,聯(lián)合治療可維持血腦屏障的完整性,而其原因可能是由于IAH可有效抑制occludin、claudin-5和 ZO-1蛋白的降解。Li等[23]的相關研究同樣證實了治療性低溫對緊連接蛋白的維持作用。此外,有研究表明I/R損傷引起的細胞毒性水腫與AQP4蛋白的表達上調有關[24],敲除基因可減輕腦水腫程度[25]。本研究結果顯示,與單純再灌注治療相比,聯(lián)合治療不能有效抑制AQP4蛋白的表達,因而IAH可能不是通過調節(jié)AQP4蛋白減輕腦水腫程度。
MMP2和MMP9蛋白屬于基質金屬蛋白酶家族,它們在BBB破壞中發(fā)揮著重要的作用[26]。Xin等[27]的研究表明,在大鼠腦缺血再灌注模型中抑制MMP2/9蛋白的表達可減少claudin-5和occludin蛋白的降解,從而減少血腦屏障通透性;我們實驗表明,聯(lián)合治療可有效抑制MMP2和MMP9蛋白的表達,與Hamann等[28]的大鼠腦缺血再灌注的低溫研究結論一致,提示聯(lián)合治療可能通過抑制MMP9及MMP2蛋白的表達發(fā)揮對血腦屏障的保護作用。
綜上所述,在大鼠MACO模型中,相較于單一再灌注,IAH聯(lián)合再灌注治療可有效減輕AIS大鼠的腦損傷,減輕腦水腫,改善神經功能,減少腦梗死體積,其機制可能與抑制MMP2、MMP9蛋白的表達,減少緊密連接蛋白降解,維持血腦屏障完整性有關。本研究結果可為IAH聯(lián)合再灌注治療AIS大鼠的研究提供安全、可行的具體操作方法,對于IAH的臨床轉化和實踐具有一定參考意義。
[1] Chamorro á, Lo EH, Renú A, et al. The future of neuroprotection in stroke[J]. J Neurol Neurosurg Psychiatry, 2021, 92(2):129-135.
[2] Yenari MA, Han HS. Neuroprotective mechanisms of hypothermia in brain ischaemia[J].Nat Rev Neurosci, 2012, 13(4):267-278.
[3] Cattaneo G, Meckel S. Review of selective brain hypothermia in acute ischemic stroke therapy using an intracarotid, closed-loop cooling catheter[J]. Brain Circ, 2019, 5(4):211-217.
[4] Connolly JE, Boyd RJ, Calvin JW. The protective effect of hypothermia in cerebral ischemia: experimental and clinical application by selective brain cooling in the human[J]. Surgery, 1962, 52:15-24.
[5] Zhang JN, Wood J, Bergeron AL, et al. Effects of low temperature on shear-induced platelet aggregation and activation[J]. J Trauma, 2004, 57(2):216-223.
[6] Ma LL, Song L, Yu XD, et al. The clinical study on the treatment for acute cerebral infarction by intra-arterial thrombolysis combined with mild hypothermia[J]. Eur Rev Med Pharmacol Sci, 2017, 21(8):1999-2006.
[7] Esposito E, Ebner M, Ziemann U, et al. In cold blood: intraarteral cold infusions for selective brain cooling in stroke[J]. J Cereb Blood Flow Metab, 2014, 34(5):743-752.
[8] Longa EZ, Weinstein PR, Carlson S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats[J]. Stroke, 1989, 20(1):84-91.
[9] Chen J, Sanberg PR, Li Y, et al. Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats[J]. Stroke, 2001, 32(11):2682-2688.
[10]潘宋斌, 萬琳, 邵衛(wèi), 等. 黃角顆粒對腦缺血再灌注損傷大鼠JAK2/STAT3信號通路的影響[J]. 中國病理生理雜志, 2018, 34(9):1715-1719.
Pan SB, Wan L, Shao W, et al. Effect of Huangjiao granule on JAK2/STAT3 signaling pathway in rats with cerebral ischemia/reperfusion injury[J]. Chin J Pathophysiol, 2018, 34(9):1715-1719.
[11]喬建新, 劉熙鵬, 劉明, 等. 甲磺酸加貝酯對腦缺血再灌注大鼠血腦屏障保護作用的研究[J]. 中國病理生理雜志, 2020, 36(12):2190-2197.
Qiao JX, Liu XP, Liu M, et al. Protective effect of gabexatemesilate on blood-brain barrier in rats with cerebral ischemia-reperfusion[J]. Chin J Pathophysiol, 2020, 36(12):2190-2197.
[12] 陳朝暉, 洪溪屏, 蘭頻, 等. TTP減輕大鼠蛛網膜下腔出血后早期腦損傷[J]. 中國病理生理雜志, 2018, 34(2): 287-293.
Chen CH, Hong XP, Lan P, et al. Tristetraprolin attenuates subarachnoid hemorrhage-induced early braininjury in rats[J]. Chin J Pathophysiol, 2018, 34(2):287-293.
[13] Sun H, Tang Y, Guan X, et al. Effects of selective hypothermia on blood-brain barrier integrity and tight junction protein expression levels after intracerebral hemorrhage in rats[J]. Biol Chem, 2013, 394(10):1317-1324.
[14] Omileke D, Azarpeykan S, Bothwell S W, et al. Short-duration hypothermia completed prior to reperfusion prevents intracranial pressure elevation following ischaemic stroke in rats[J]. Sci Rep, 2021, 11(1):22354.
[15] Kurisu K, Abumiya T, Ito M, et al. Transarterial regional hypothermia provides robust neuroprotection in a rat model of permanent middle cerebral artery occlusion with transient collateral hypoperfusion[J]. Brain Res, 2016, 1651: 95-103.
[16] Aronowski J, Strong R, Grotta JC. Reperfusion injury: demonstration of brain damage produced by reperfusion after transient focal ischemia in rats[J]. J Cereb Blood Flow Metab, 1997, 17(10):1048-1056.
[17] Omileke D, Pepperall D, Bothwell S W, et al. Ultra-short duration hypothermia prevents intracranial pressure elevation following ischaemic stroke in rats[J]. Front Neurol, 2021, 12:684353.
[18] Ding Y, Li J, Rafols JA, et al. Prereperfusion saline infusion into ischemic territory reduces inflammatory injury after transient middle cerebral artery occlusion in rats[J]. Stroke, 2002, 33(10):2492-2498.
[19] Zhao Z, Nelson AR, Betsholtz C, et al. Establishment and dysfunction of the blood-brain barrier[J]. Cell, 2015, 163(5):1064-1078.
[20] Khatri R, Mckinney AM, Swenson B, et al. Blood-brain barrier, reperfusion injury, and hemorrhagic transformation in acute ischemic stroke[J]. Neurology, 2012, 79(13 Suppl 1):S52-S57.
[21] Nitta T, Hata M, Gotoh S, et al. Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice[J]. J Cell Biol, 2003, 161(3):653-660.
[22] Yan J, Zhang Z, Shi H. HIF-1 is involved in high glucose-induced paracellular permeability of brain endothelial cells[J]. Cell Mol Life Sci, 2012, 69(1):115-128.
[23] Li J, Li C, Yuan W, et al. Mild hypothermia alleviates brain oedema and blood-brain barrier disruption by attenuating tight junction and adherens junction breakdown in a swine model of cardiopulmonary resuscitation[J]. PLoS One, 2017, 12(3):e0174596.
[24] Taya K, Marmarou CR, Okuno K, et al. Effect of secondary insults upon aquaporin-4 water channels following experimental cortical contusion in rats[J]. J Neurotrauma, 2010, 27(1):229-239.
[25] Manley GT, Fujimura M, Ma T, et al. Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke[J]. Nat Med, 2000, 6(2):159-163.
[26] Guilfoyle MR, Carpenter KL, Helmy A, et al. Matrix metalloproteinase expression in contusionaltraumatic brain injury: apairedmicrodialysisstudy[J]. J Neurotrauma, 2015, 32(20):1553-1559.
[27] Xin H, Liang W, Mang J, et al. Relationship of gelatinases-tight junction proteins and blood-brain barrier permeability in the early stage of cerebral ischemia and reperfusion[J]. Neural Regen Res, 2012, 7(31):2405-2412.
[28] Hamann GF, Burggraf D, Martens HK, et al. Mild to moderate hypothermia prevents microvascular basal lamina antigen loss in experimental focal cerebral ischemia[J]. Stroke, 2004, 35(3):764-769.
Effects of intra-arterial local brain hypothermia combined with reperfusion on acute ischemic stroke rats
CHEN Yue1, HAO Lei2, LIU Shu-yi1, ZENG Yu-qi3, FAN Yong4, ZHAO Zhen-hua1, CHEN Qi5, LI Yong-kun1△
(1,,,350001,;2,,221006,;3,,350001,;4,,350009,;5,,,,350117,)
To explore the effect of intra-arterial local brain hypothermia combined with reperfusion on acute ischemic stroke (AIS) rats and its mechanisms.The male SD rats were randomly divided into 4 groups: sham operation (sham) group, ischemia (I, permanent middle cerebral artery occlusion) group, middle cerebral arterial ischemia/reperfusion (I/R) group and hypothermia (H, intra-arterial local brain hypothermia combined with reperfusion) group, with 24 rats in each group. After reperfusion, the rats in H group was infused with 6.7 mL of normal saline (4 ℃, 0.33 mL/min) via internal carotid artery for 20 min. Neurological deficits were evaluated by the modified neurological severity score (mNSS) 24 h after ischemia, brain infarction volume was measured by 2,3,5-triphenyltetrazolium chloride (TTC) staining and magnetic resonance imaging, and brain water content was measured by dry and wet weight method. The integrity of the blood-brain barrier was evaluated by detecting the Evans blue (EB) leakage rate. The protein levels of zonula occludens-1 (ZO-1), occludin, claudin-5, aquaporin-4 and matrix metalloproteinase-2/9 (MMP2 and MMP9) were detected by Western blot.Compared with I and I/R groups, the mNSS, cerebral infarct volume, cerebral water content and EB leakage volume in H group were significantly decreased 24 h after ischemia (<0.05). The expression levels of ZO-1, occludin and claudin5 in H group were significantly higher than those in I/R group (<0.05), while the expression levels of MMP2 and MMP9 were significantly lower than those in I/R group (<0.05).Intra-arterial local brain hypothermia combined with reperfusion can protect the brain of AIS rats, which may be related to the inhibition of the expression of MMP2 and MMP9 proteins as well as decreased degradation of tight junction proteins.
Acute ischemic stroke; Intra-arterial local brain hypothermia; Reperfusion injury; Blood-brain barrier; Tight junction proteins; Matrix metalloproteinases
R743.3; R363.2
A
10.3969/j.issn.1000-4718.2022.03.009
1000-4718(2022)03-0448-09
2021-12-09
2022-02-05
[基金項目]國家自然科學基金資助項目(No. 81670455);福建省科技創(chuàng)新聯(lián)合基金重點項目(No. 2019Y9024);福建省自然科學基金資助項目(No. 2020J011060)
Tel: 13599081830; E-mail: liyongkun721@139.com
(責任編輯:林白霜,羅森)