国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

水通道蛋白1在切應(yīng)力調(diào)節(jié)血管內(nèi)皮細(xì)胞遷移和血管生成中的作用及機(jī)制*

2022-03-28 02:22張敏孫玉杜大鵬王小波于建新王漢琴
中國(guó)病理生理雜志 2022年3期
關(guān)鍵詞:層流磷酸化內(nèi)皮細(xì)胞

張敏, 孫玉, 杜大鵬, 王小波, 于建新, 王漢琴△

水通道蛋白1在切應(yīng)力調(diào)節(jié)血管內(nèi)皮細(xì)胞遷移和血管生成中的作用及機(jī)制*

張敏1,2, 孫玉1, 杜大鵬1,2, 王小波1, 于建新1, 王漢琴1,2△

(1湖北醫(yī)藥學(xué)院附屬隨州醫(yī)院轉(zhuǎn)化醫(yī)學(xué)研究中心,湖北 隨州 441300;2湖北醫(yī)藥學(xué)院基礎(chǔ)醫(yī)學(xué)院解剖學(xué)教研室,湖北 十堰 442000)

探討流體切應(yīng)力作用下水通道蛋白1(AQP1)的表達(dá)對(duì)血管內(nèi)皮細(xì)胞遷移和血管生成的影響及可能的機(jī)制。取雄性C57BL/6小鼠主動(dòng)脈弓和胸主動(dòng)脈血管壁組織,用qPCR和Western blot檢測(cè)體內(nèi)不同切應(yīng)力作用部位血管壁AQP1表達(dá)的差異。原代培養(yǎng)人臍靜脈內(nèi)皮細(xì)胞(HUVECs),體外采用平行平板流動(dòng)腔系統(tǒng)給HUVECs分別加載層流(LF,15 dyn/cm2單向?qū)忧袘?yīng)力)和擾流[DF,(0.5±4) dyn/cm2振蕩切應(yīng)力],用特異性小干擾RNA(siRNA)轉(zhuǎn)染技術(shù)沉默基因,采用Transwell實(shí)驗(yàn)和Matrigel小管形成實(shí)驗(yàn)檢測(cè)HUVECs遷移和血管生成能力;用Western blot檢測(cè)內(nèi)皮型一氧化氮合酶(eNOS)Ser1177和Ser633磷酸化水平。在體胸主動(dòng)脈中AQP1的mRNA和蛋白表達(dá)顯著高于主動(dòng)脈弓(<0.05)。HUVECs靜態(tài)下敲減可以顯著抑制細(xì)胞遷移和血管生成(<0.01)。與DF組相比,LF顯著上調(diào)HUVECs中AQP1的mRNA和蛋白表達(dá)(<0.05),促進(jìn)HUVECs遷移(<0.01)和血管生成能力(<0.05),同時(shí)顯著增加eNOS Ser1177(<0.01)和Ser633(<0.05)磷酸化水平。轉(zhuǎn)染siAQP1后,LF誘導(dǎo)的AQP1表達(dá)增強(qiáng)被抑制(<0.01),HUVECs的遷移和血管生成能力也隨之降低(<0.01),同時(shí)eNOS Ser1177和Ser633的磷酸化水平降低(<0.05或<0.01)。eNOS抑制劑G-硝基-L-精氨酸甲酯(L-NAME)預(yù)處理HUVECs后,LF誘導(dǎo)的細(xì)胞遷移和血管生成能力被抑制(<0.01)。AQP1在流體切應(yīng)力調(diào)節(jié)血管內(nèi)皮細(xì)胞遷移和血管生成中發(fā)揮作用,其機(jī)制可能和eNOS信號(hào)有關(guān)。

水通道蛋白1;切應(yīng)力;血管生成;血管內(nèi)皮細(xì)胞;內(nèi)皮型一氧化氮合酶

水通道蛋白1(aquaporin 1, AQP1)是細(xì)胞膜上的疏水跨膜蛋白,也是目前唯一發(fā)現(xiàn)在內(nèi)皮有表達(dá)的水通道蛋白[1]。研究表明,AQP1在惡性腫瘤的微血管內(nèi)皮高表達(dá),能促進(jìn)內(nèi)皮細(xì)胞遷移影響腫瘤血管形成[2];還有研究證實(shí)AQP1與血管內(nèi)皮生長(zhǎng)因子各自獨(dú)立地調(diào)節(jié)視網(wǎng)膜微血管內(nèi)皮細(xì)胞的血管新生[3]。除微血管內(nèi)皮外,AQP1表達(dá)水平顯著影響體外培養(yǎng)的小鼠主動(dòng)脈內(nèi)皮細(xì)胞遷移和血管生成能力[2]。顯然,AQP1對(duì)血管內(nèi)皮細(xì)胞的功能調(diào)節(jié)值得深入探討。

在人體生理狀態(tài)下,血流在動(dòng)脈直段流體多為層流(laminar flow, LF),對(duì)血管內(nèi)皮有保護(hù)作用,能抵抗動(dòng)脈粥樣硬化發(fā)生;而在動(dòng)脈分支、分叉和彎曲等處血流為擾流(disturbed flow, DF),易損傷內(nèi)皮,誘發(fā)動(dòng)脈粥樣硬化發(fā)生[4]。Fontijn等[5]在動(dòng)物實(shí)驗(yàn)中觀察到AQP1在沒(méi)有斑塊發(fā)生的血管內(nèi)膜高表達(dá),而在有斑塊的內(nèi)膜表達(dá)缺失。體外實(shí)驗(yàn)顯示,12 dyn/cm2的LF切應(yīng)力可以上調(diào)人臍靜脈內(nèi)皮細(xì)胞(human umbilical vein endothelial cells, HUVECs)中AQP1的表達(dá),并在細(xì)胞遷移中起作用[6]。近期還發(fā)現(xiàn)靜水壓力通過(guò)AQP1促進(jìn)HUVECs小管形成[7]。以上研究都說(shuō)明了機(jī)械應(yīng)力對(duì)血管內(nèi)皮細(xì)胞AQP1表達(dá)的調(diào)節(jié)作用,但是,AQP1對(duì)流體切應(yīng)力的響應(yīng)及下游的信號(hào)機(jī)制尚不完全清楚。

本研究利用平行平板流動(dòng)腔系統(tǒng),對(duì)體外原代培養(yǎng)的HUVECs施加流體切應(yīng)力刺激,LF為加載15 dyn/cm2單向?qū)忧袘?yīng)力(laminar shear stress),DF為加載(0.5±4) dyn/cm2振蕩切應(yīng)力(oscillatory shear stress),檢測(cè)AQP1的表達(dá)與HUVECs遷移和血管生成能力的改變,并觀察內(nèi)皮型一氧化氮合酶(endothelial nitric oxide synthase, eNOS)信號(hào)的激活,從力學(xué)生物學(xué)角度進(jìn)一步探討AQP1對(duì)血管內(nèi)皮功能的調(diào)節(jié)作用。

材料和方法

1 主要試劑

胎牛血清(fetal bovine serum, FBS)和M199培養(yǎng)液購(gòu)自Gibco;酸性成纖維細(xì)胞生長(zhǎng)因子(acidic fibroblast growth factor, aFGF)購(gòu)自Sigma;Trizol和Lipofectamine? 3000購(gòu)自Invitrogen;逆轉(zhuǎn)錄試劑盒K1621購(gòu)自Thermo;iTaqTMUniversal SYBR Green Supermix購(gòu)自Bio-Rad。G-硝基-L-精氨酸甲酯(G-nitro-L-arginine methyl ester, L-NAME)購(gòu)自TargetMol;AQP1抗體購(gòu)自GeneTex;總eNOS抗體和p-eNOS (Ser1177)抗體購(gòu)自Novus;p-eNOS (Ser633)抗體購(gòu)自BD;β-actin抗體和BCIP/NBT堿性磷酸酶顯色試劑盒購(gòu)自上海碧云天生物技術(shù)有限公司。Matrigel購(gòu)自BD;Transwell小室購(gòu)自Corning。

2 方法

2.1HUVECs的培養(yǎng)及鑒定采用我們既往報(bào)道方法[8]。取新鮮新生兒臍帶(湖北醫(yī)藥學(xué)院附屬隨州醫(yī)院產(chǎn)科提供,標(biāo)本采集經(jīng)過(guò)患者家屬知情同意及醫(yī)院倫理委員會(huì)批準(zhǔn))。找到臍靜脈后用0.125%胰酶消化,將細(xì)胞懸液接種在已用0.1 g/L多聚賴氨酸包被的培養(yǎng)瓶中,加入內(nèi)皮細(xì)胞培養(yǎng)液(含20% FBS的M199培養(yǎng)液中加入100 mmol/L HEPES、10 nmol/L胸苷、2 mmol/L谷氨酰胺、4 g/L aFGF和5 000 U/L肝素),置于5% CO2、37 ℃培養(yǎng)箱中靜置8 h,待細(xì)胞貼壁后換液,大約7 d長(zhǎng)至融合狀態(tài)。胰酶消化后傳代,血管性血友病因子(von Willebrand factor, vWF)免疫熒光鑒定,取第2~4代用于實(shí)驗(yàn)。

2.2動(dòng)物及取材6~8周齡SPF級(jí)雄性C57BL/6小鼠28只,體質(zhì)量18~22 g,由湖北醫(yī)藥學(xué)院實(shí)驗(yàn)動(dòng)物中心提供,許可證號(hào)為SCXK(鄂)2017-0012。用戊巴比妥鈉經(jīng)腹腔注射麻醉后,固定、充分暴露小鼠胸腔,剪開(kāi)右心耳分離出主動(dòng)脈,取胸主動(dòng)脈直段和主動(dòng)脈弓小彎側(cè)血管壁組織,用EP管置于液氮中保存。

2.3流體切應(yīng)力加載平行平板流動(dòng)腔系統(tǒng)(購(gòu)自上海泉眾機(jī)電科技有限公司)用于流體切應(yīng)力加載。該系統(tǒng)包括恒流泵、儲(chǔ)液瓶、管道及流室,細(xì)胞沿中軸方向種植于7.62 cm×2.54 cm×0.12 cm(長(zhǎng)×寬×高)經(jīng)過(guò)用0.1 g/L多聚賴氨酸包被的載玻片上。載玻片置入流室后,在載玻片上方形成高度0.02 cm、寬度2.30 cm的流道,采用=6/2計(jì)算切應(yīng)力強(qiáng)度。為壁面切應(yīng)力(Pa),為流量(cm3/s),為液體黏度(Pa·s),和分別為流動(dòng)腔的寬和高(cm)。其中和恒定,平行平板流動(dòng)腔系統(tǒng)所用灌流液均為含1%FBS的M199。通過(guò)調(diào)節(jié)恒流泵改變值,達(dá)到實(shí)驗(yàn)所需15 dyn/cm2單向?qū)忧袘?yīng)力(LF組);在灌流液進(jìn)入流室前,增加一個(gè)擾流泵,通過(guò)調(diào)節(jié)擾流泵往復(fù)頻率,獲得(0.5±4) dyn/cm2振蕩切應(yīng)力(DF組)。

2.4Transwell遷移實(shí)驗(yàn)將預(yù)先處理好的HUVECs以每孔2×104的數(shù)量(總體積200 μL,含1%FBS)接種于Transwell小室的上室,下室每孔加入500 μL含20% FBS的M199完全培養(yǎng)液,常規(guī)培養(yǎng)12 h后取出小室,PBS清洗小室2遍,用棉簽輕輕擦去微孔膜上層未遷移的細(xì)胞。將遷移的細(xì)胞用4%多聚甲醛固定20 min,結(jié)晶紫染色10 min,三蒸水漂洗3次,晾干,倒置相差顯微鏡觀察并拍照計(jì)數(shù)。

2.5Matrigel小管形成實(shí)驗(yàn)在96孔板中加入50 μL提前稀釋的Matrigel,放入37 ℃培養(yǎng)箱孵育30 min,盡可能避免氣泡產(chǎn)生。將預(yù)先處理好的HUVECs消化后用含1% FBS的M199培養(yǎng)液制成細(xì)胞懸液,以每孔2×104個(gè)細(xì)胞的密度接種于96孔板,置于37 ℃、5% CO2培養(yǎng)箱中孵育4 h,顯微鏡下觀察小管形成、拍照,使用ImageJ軟件測(cè)量成管數(shù)量、長(zhǎng)度。

2.6siRNA干擾實(shí)驗(yàn)依據(jù)GenBank中人基因全長(zhǎng)cDNA序列,委托廣州銳博生物科技有限公司合成特異性靶向基因的siRNA片段。待HUVECs生長(zhǎng)融合至80%時(shí),用Lipofectamine? 3000介導(dǎo)siRNA轉(zhuǎn)染,實(shí)驗(yàn)方法按說(shuō)明書(shū)進(jìn)行。轉(zhuǎn)染后36 h用qPCR檢測(cè)。陰性對(duì)照RNA(scrambled siRNA,siScr)序列正義鏈為5'-UUCUCCGAACGUGUCACGUTT-3',反義鏈為5'-ACGUGACACGUUCGGAGAATT-3'。篩選出最佳siAQP1序列正義鏈為5'-UGGCUGUACUCAUCUACGAdTdT-3',反義鏈為5'-UCGUAGAUGAGUACAGCCAdTdT-3'。

2.7實(shí)驗(yàn)分組加載15 dyn/cm2單向?qū)忧袘?yīng)力(LF組)為實(shí)驗(yàn)組,加載(0.5±4) dyn/cm2振蕩切應(yīng)力(DF組)為對(duì)照組。HUVECs分別轉(zhuǎn)染陰性對(duì)照亂序RNA(siScr)和有效干擾序列(siAQP1)后,移入流動(dòng)腔系統(tǒng),siScr+LF和siAQP1+LF為實(shí)驗(yàn)組,siScr+DF和siAQP1+DF為平行對(duì)照組。HUVECs用L-NAME(20 μmol/L)和DMSO孵育30 min后,移入流動(dòng)腔系統(tǒng),DMSO+LF和L-NAME+LF為實(shí)驗(yàn)組,DMSO+DF和L-NAME+DF為平行對(duì)照組。

2.8qPCR實(shí)驗(yàn)使用Trizol試劑從細(xì)胞或組織中分離總RNA,使用逆轉(zhuǎn)錄試劑盒獲得cDNA,采用SYBR Green PCR試劑盒進(jìn)行qPCR。GAPDH用于標(biāo)準(zhǔn)化AQP1的相對(duì)表達(dá),采用2-ΔΔCt法計(jì)算相對(duì)表達(dá)量,每個(gè)樣品設(shè)3個(gè)復(fù)孔。人源AQP1的上游引物序列5'-GGACACCTCCTGGCTATTGA-3',下游引物序列5'-GAATGGCCCCACCCAGAAAA-3';人源GAPDH的上游引物序列5'-ATGGAAATCCCATCACCATCTT-3',下游引物序列5'-CGCCCCACTTGATTTTGG-3'。小鼠源AQP1的上游引物序列5'-GCGCCGAGACTTAGGTGG-3',下游引物序列5'-GCCAGTGTAGTCAATCGCCAG-3';小鼠源GAPDH的上游引物序列5'-GGGTTCCTATAAATACGGACTGC-3',下游引物序列5'-TCTACGGGACGAGGCTGG-3'。

2.9Western blot檢測(cè)將預(yù)先處理好的細(xì)胞,用冷PBS清洗一次(組織用液氮碾磨后),加入蛋白裂解混合液(RIPA裂解液與蛋白酶抑制劑混合物的比例為49∶1),超聲波粉碎變性后備用;用10% SDS-PAGE分離,轉(zhuǎn)膜后用5%牛血清白蛋白室溫封閉至少2 h;Ⅰ抗[AQP1、eNOS、p-eNOS (Ser633)、p-eNOS (Ser1177)和β-actin,均按1∶1 000比例稀釋]4℃搖床孵育過(guò)夜;Ⅱ抗(堿性磷酸酶標(biāo)記的山羊抗兔和山羊抗小鼠IgG,1∶2 000比例稀釋),室溫孵育2 h;TBST清洗膜后加入BCIP/NBT顯色液顯色。β-actin作為內(nèi)參照。

3 統(tǒng)計(jì)學(xué)處理

數(shù)據(jù)以均數(shù)±標(biāo)準(zhǔn)差(mean±SD)表示,應(yīng)用GraphPad Prism 8.0軟件進(jìn)行數(shù)據(jù)處理和分析。實(shí)驗(yàn)數(shù)據(jù)均為至少3次獨(dú)立重復(fù)實(shí)驗(yàn)結(jié)果,兩組間均數(shù)比較采用Student's檢驗(yàn),多組間比較采用單因素方差分析(one-way ANOVA)。以0.05表示差異具有統(tǒng)計(jì)學(xué)意義。

結(jié)果

1 體內(nèi)、體外不同切應(yīng)力對(duì)血管內(nèi)皮細(xì)胞AQP1表達(dá)的影響

如圖1A所示,取C57BL/6小鼠胸主動(dòng)脈直段(受層流作用部位)和主動(dòng)脈弓小彎側(cè)(受擾流作用部位)血管壁組織。qPCR和Western blot結(jié)果顯示,胸主動(dòng)脈直段AQP1的mRNA和蛋白表達(dá)顯著高于主動(dòng)脈弓小彎側(cè)(<0.05),見(jiàn)圖1B。

體外靜態(tài)培養(yǎng)HUVECs(static, ST組),以及加載單向?qū)忧袘?yīng)力刺激(LF組)和振蕩切應(yīng)力刺激(DF組)。首先,從形態(tài)上觀察(圖1C),ST組和DF組細(xì)胞呈現(xiàn)無(wú)規(guī)則排列,而LF組中細(xì)胞沿流體方向整齊排列并被拉長(zhǎng),細(xì)胞狀態(tài)良好;其次,qPCR和Western blot結(jié)果顯示,LF組AQP1的mRNA和蛋白表達(dá)顯著高于DF組和ST組(<0.01或<0.05),見(jiàn)圖1D。

Figure 1.Effect of shear stress on the AQP1 expression in aortic tissues of mice and in HUVECs cultured invitro. A: the diagram of aortic arches and straight segments of thoracic aortas obtained from C57BL/6 mice; B: AQP1 mRNA and protein levels in aortas were detected by qPCR and Western blot, respectively; C: representative morphological images of HUVECs exposed to static control (ST), laminar flow (LF) and disturbed flow (DF) for 24 h (the arrow points to the direction of the force on HUVECs; scale bar=10 μm); D: AQP1 mRNA and protein levels in HUVECs under ST, LF and DF conditions for 8 h. Mean±SD. n=3. △P<0.05 vs aortic arch group; *P<0.05, **P<0.01 vs ST group; #P<0.05 vs LF group.

2 敲減AQP1抑制HUVECs遷移和血管生成

HUVECs轉(zhuǎn)染特異性siRNA(siAQP1),Western blot結(jié)果顯示(圖2A),與siScr組相比較,siAQP1組AQP1蛋白表達(dá)顯著降低(<0.01)。Transwell遷移形成實(shí)驗(yàn)表明(圖2B),siAQP1組HUVECs遷移細(xì)胞數(shù)量顯著低于siScr組(<0.01)。Matrigel小管形成實(shí)驗(yàn)表明(圖2C),siAQP1組細(xì)胞成管數(shù)量顯著少于siScr組(<0.01)。

Figure 2.Effect of AQP1 knockdown on the migration and angiogenesis of HUVECs. HUVECs were treated with siScr or siAQP1 transfection. A: Western blot was used to confirm the down-regulation of AQP1 protein; B: the migration of HUVECs was detected by Transwell assay; C: the angiogenesis of HUVECs was determined by tube formation assay. The scale bar=50 μm. Mean±SD. n=4. **P<0.01 vs siScr group.

3 切應(yīng)力對(duì)HUVECs遷移和血管生成的影響

HUVECs加載DF和LF,Transwell遷移實(shí)驗(yàn)顯示(圖3A),LF組遷移細(xì)胞數(shù)量顯著高于DF組(<0.01);Matrigel小管形成實(shí)驗(yàn)顯示(圖3B),LF組細(xì)胞成管數(shù)量顯著高于DF組(<0.05)。

Figure 3.Effect of shear stress on the migration and angiogenesis of HUVECs. HUVECs were exposed to LF or DF for 8 h. A: Transwell assay was performed to detect the migration of HUVECs; B: tube formation assay was performed to assess the angiogenesis of HUVECs. The scale bar=50 μm. Mean±SD. n=3. *P<0.05, **P<0.01 vs DF group.

4 敲減AQP1對(duì)切應(yīng)力誘導(dǎo)的HUVECs遷移和血管生成的影響

HUVECs轉(zhuǎn)染siAQP1和siScr后,加載LF和DF,Western blot結(jié)果顯示(圖4A),siScr+LF組細(xì)胞AQP1蛋白表達(dá)顯著高于siScr+DF組(<0.01);與siScr+LF組比較,siAQP1+LF組上調(diào)的AQP1蛋白表達(dá)顯著被抑制(<0.01)。Transwell遷移(圖4B)和Matrigel小管形成實(shí)驗(yàn)(圖4C)顯示,siScr+LF組遷移細(xì)胞和成管數(shù)量均顯著高于siScr+DF組(<0.01);而與siScr+LF組比較,siAQP1+LF組遷移細(xì)胞和細(xì)胞成管數(shù)量均顯著被抑制(<0.01)。

Figure 4.Effectof AQP1 knockdown on the migration and angiogenesis of HUVECs induced by LF. HUVECs were treated with siScr or siAQP1 transfection and then exposed to DF or LF for 8 h. A: AQP1 protein level was detected by Western blot; B: the migration of HUVECs was determined by Transwell assay; C: the angiogenesis of HUVECs was assessed by tube formation assay. The scale bar=50 μm. Mean±SD. n=3. **P<0.01 vs siScr+DF group; ##P<0.01 vs siScr+LF group.

5 切應(yīng)力通過(guò)AQP1調(diào)節(jié)eNOS Ser1177和Ser633位點(diǎn)磷酸化

Western blot結(jié)果顯示(圖5A),與DF相比,LF能顯著上調(diào)eNOS Ser1177(<0.01)和Ser633(<0.05)磷酸化水平。HUVECs轉(zhuǎn)染siAQP1和siScr后,再加載LF和DF,Western blot結(jié)果顯示,siScr+LF組eNOS的Ser1177和Ser633磷酸化水平顯著高于siScr+DF組(<0.01);而siAQP1+LF組顯著抑制了siScr+LF組上調(diào)的eNOS Ser1177(<0.05)和Ser633(<0.01)磷酸化水平,見(jiàn)圖5B。

Figure 5.Effectof AQP1 knockdown on LF-induced phosphorylation of eNOS in HUVECs. A: HUVECs were exposed to LF or DF for 8 h, and the phosphorylation of eNOS at Ser1177 and Ser633 was determined by Western blot; B: HUVECs were treated with siScr or siAQP1 transfection and then exposed to DF or LF for 8 h, and the phosphorylation of eNOS at Ser1177 and Ser633 was assessed by Western blot. Mean±SD. n=3. △P<0.05, △△P<0.01 vs DF group; **P<0.01 vs siScr+DF group; #P<0.05, ##P<0.01 vs siScr+LF group.

6 eNOS抑制劑L-NAME對(duì)切應(yīng)力誘導(dǎo)的HUVECs遷移和血管生成的影響

為了進(jìn)一步檢測(cè)eNOS對(duì)HUVECs遷移和血管生成能力的作用。細(xì)胞用eNOS抑制劑L-NAME(20 μmol/L)孵育30 min后,加載LF和DF,Transwell遷移和Matrigel小管形成實(shí)驗(yàn)結(jié)果統(tǒng)計(jì)分析如圖6所示,DMSO+LF組遷移細(xì)胞和成管數(shù)量均顯著高于DMSO+DF組(<0.05,<0.01);而與DMSO+LF組相比較,L-NAME+LF組遷移細(xì)胞和細(xì)胞成管數(shù)量均顯著減少(<0.01)。

Figure 6.Effect of L-NAME on the migration and angiogenesis of HUVECs induced by LF. HUVECs were pretreated with L-NAME or DMSO for 30 min and then exposed to DF or LF for 8 h. A: the migration of HUVECs was determined by Transwell assay; B: the angiogenesis of HUVECs was assessed by tube formation assay. Mean±SD. n=3. *P<0.05, **P<0.01 vs DMSO+DF group; ##P<0.01 vs DMSO+LF group.

討論

既往研究報(bào)道,各種形式的機(jī)械刺激作用血管內(nèi)皮細(xì)胞,比如流體切應(yīng)力[6, 9]、靜水壓力[7, 10]、高血壓[11]等,都可以調(diào)節(jié)AQP1的表達(dá),說(shuō)明AQP1對(duì)機(jī)械應(yīng)力敏感。在人體生理環(huán)境下血管流體切應(yīng)力波動(dòng)較大,動(dòng)脈管壁切應(yīng)力大小在10 dyn/cm2以上,流體為層流,能誘導(dǎo)動(dòng)脈粥樣硬化保護(hù)性基因的表達(dá);在動(dòng)脈分支、分叉和彎曲處等動(dòng)脈粥樣硬化好發(fā)部位,切應(yīng)力低(<4 dyn/cm2)且多為擾流[4]。為了在體外探討流體切應(yīng)力對(duì)血管內(nèi)皮細(xì)胞的影響,本研究選擇以加載15 dyn/cm2單向?qū)忧袘?yīng)力為層流刺激;加載(0.5±4) dyn/cm2(頻率1 Hz)的振蕩切應(yīng)力為擾流刺激,模擬在體血流切應(yīng)力環(huán)境。結(jié)果顯示,和靜止培養(yǎng)的HUVECs相比,層流切應(yīng)力促進(jìn)了AQP1表達(dá),這一點(diǎn)與既往結(jié)果一致[6]??紤]到在體血管內(nèi)皮細(xì)胞始終受到血流刺激,一般不存在完全靜止?fàn)顟B(tài),因此,以(0.5±4) dyn/cm2的振蕩切應(yīng)力為對(duì)照,我們觀察到AQP1在層流組表達(dá)水平顯著高于擾流組,這一點(diǎn)在動(dòng)物體內(nèi)也得到驗(yàn)證(AQP1在受層流刺激的小鼠胸主動(dòng)脈中的表達(dá)顯著高于受擾流刺激的主動(dòng)脈弓)。以上結(jié)果提示,AQP1在具有內(nèi)皮保護(hù)作用的切應(yīng)力刺激下高表達(dá),而在促動(dòng)脈粥樣硬化發(fā)生的擾流作用下表達(dá)被抑制,可能在動(dòng)脈粥樣硬化發(fā)生過(guò)程中發(fā)揮作用。

和已有的研究結(jié)果一致[2, 12],敲減表達(dá)后,我們觀察到HUVECs遷移和血管生成能力均降低。和擾流刺激相比,層流在顯著上調(diào)AQP1表達(dá)的同時(shí),HUVECs遷移和血管生成能力均顯著增強(qiáng),的敲減,會(huì)抑制層流刺激下的HUVECs這些功能。說(shuō)明AQP1的表達(dá)水平在內(nèi)皮細(xì)胞功能變化中起作用,流體切應(yīng)力可以通過(guò)AQP1來(lái)調(diào)節(jié)血管內(nèi)皮細(xì)胞功能。

eNOS在調(diào)節(jié)內(nèi)皮細(xì)胞增殖、遷移和血管生成中發(fā)揮重要作用[13-14]。有研究報(bào)道AQP1參與了人主動(dòng)脈內(nèi)皮細(xì)胞中eNOS的活化[15]。eNOS活性調(diào)節(jié)的一個(gè)重要方式就是磷酸化位點(diǎn)的調(diào)控,其中Ser1177、Ser615、Ser633和Tyr81位點(diǎn)的磷酸化水平增高可使該酶活性增強(qiáng)[8, 16-17]。我們首先檢測(cè)到層流切應(yīng)力在上調(diào)HUVECs中AQP1蛋白表達(dá)同時(shí)還顯著增加磷酸化eNOS(Ser1177和Ser633位點(diǎn))表達(dá),敲減后,層流切應(yīng)力上調(diào)的磷酸化eNOS(Ser1177和Ser633位點(diǎn))均被抑制,這就說(shuō)明層流切應(yīng)力可能通過(guò)AQP1調(diào)節(jié)eNOS活性,而且對(duì)eNOSSer1177和Ser633位點(diǎn)都有調(diào)節(jié)作用。同時(shí),我們用eNOS抑制劑后,發(fā)現(xiàn)層流切應(yīng)力增加的HUVECs遷移和血管生成能力被抑制,說(shuō)明AQP1可能是通過(guò)調(diào)節(jié)eNOS的活化而發(fā)揮作用。當(dāng)然,有關(guān)AQP1對(duì)eNOS不同磷酸化位點(diǎn)的調(diào)控還值得深入研究。

綜上所述,本研究初步證實(shí)了生理層流切應(yīng)力可通過(guò)AQP1調(diào)節(jié)HUVECs遷移和血管生成能力,其中可能與AQP1調(diào)節(jié)eNOS Ser1177和Ser633位點(diǎn)的磷酸化有關(guān)。

[1]李向東, 楊躍進(jìn). 水通道蛋白1與內(nèi)皮細(xì)胞功能[J]. 基礎(chǔ)醫(yī)學(xué)與臨床, 2010, 30(9):995-998.

Li XD, Yang YJ. Aquaporin-1 and endothelial function[J]. Basic Clin Med, 2010, 30(9):995-998.

[2] Saadoun S, Papadopoulos MC, Hara-Chikuma M, et al. Impairment of angiogenesis and cell migration by targeted aquaporin-1 gene disruption[J]. Nature, 2005, 434(7034):786-792.

[3] Kaneko K, Yagui K, Tanaka A, et al. Aquaporin 1 is required for hypoxia-inducible angiogenesis in human retinal vascular endothelial cells[J]. Microvasc Res, 2008, 75(3):297-301.

[4] Hahn C, Schwartz MA. Mechanotransduction in vascular physiology and atherogenesis[J]. Nat Rev Mol Cell Biol, 2009, 10(1):53-62.

[5] Fontijn RD, Volger OL, van der Pouw-Kraan TC, et al. Expression of nitric oxide-transporting aquaporin-1 is controlled by KLF2 and marks non-activated endothelium[J]. PLoS One, 2015, 10(12):e0145777.

[6] Mun GI, Jang SI, Boo YC. Laminar shear stress induces the expression of aquaporin 1 in endothelial cells involved in wound healing[J]. Biochem Biophys Res Commun, 2013, 430(2):554-559.

[7] Yoshino D, Funamoto K, Sato K, et al. Hydrostatic pressure promotes endothelial tube formation through aquaporin 1 and Ras-ERK signaling[J]. Commun Biol, 2020, 3(1):152.

[8]張敏, 孫玉, 唐平靜, 等. 切應(yīng)力通過(guò)Pim1/eNOS途徑調(diào)節(jié)人臍靜脈內(nèi)皮細(xì)胞NO分泌[J]. 中國(guó)病理生理雜志, 2020, 36(1):17-21.

Zhang M, Sun Y, Tang PJ, et al.Shear stress regulates NO production in vascular endothelial cells through Pim1/eNOS pathway[J]. Chin J Pathophysiol, 2020, 36(1):17-21.

[9] Ryu JY, Kim YH, Lee JS, et al. Oscillatory shear stress promotes angiogenic effects in arteriovenous malformations endothelial cells[J]. Mol Med, 2021, 27(1):31.

[10] Nguyen T, Toussaint J, Xue Y, et al. Aquaporin-1 facilitates pressure-driven water flow across the aortic endothelium[J]. Am J Physiol Heart Circ Physiol, 2015, 308(9):H1051-H1064.

[11] Toussaint J, Raval CB, Nguyen T, et al. Chronic hypertension increases aortic endothelial hydraulic conductivity by upregulating endothelial aquaporin-1 expression[J]. Am J Physiol Heart Circ Physiol, 2017, 313(5):H1063-H1073.

[12] 張紅旭,張明昌, 陳宏. RNA干擾抑制水通道蛋白1對(duì)血管內(nèi)皮細(xì)胞遷移影響的研究[J]. 中華眼科雜志, 2008, 44(8):741-744.

Zhang HX, Zhang MC, Cheng H. RNA interference targeting aquaporin-1 on inhibition of human vascular endothelial cell migration[J]. Chin J Ophthalmol, 2008, 44(8):741-744.

[13] Tanaka M, Nakamura S, Maekawa M, et al. ANKFY1 is essential for retinal endothelial cell proliferation and migration via VEGFR2/Akt/eNOS pathway[J]. Biochem Biophys Res Commun, 2020, 533(4):1406-1412.

[14] Ishii M, Nakahara T, Ikeuchi S, et al. β-Amyrin induces angiogenesis in vascular endothelial cells through the Akt/endothelial nitric oxide synthase signaling pathway[J]. Biochem Biophys Res Commun, 2015, 467(4):676-682.

[15] Madonna R, Pieragostino D, Rossi C, et al. Simulated hyperglycemia impairs insulin signaling in endothelial cells through a hyperosmolar mechanism[J]. Vascul Pharmacol, 2020, 130:106678.

[16] Garcia V,Sessa WC. Endothelial NOS: perspective and recent developments[J]. Br J Pharmacol, 2019, 176(2):189-196.

[17] 秦思, 張倩, 王敬杰, 等. 蛋白磷酸酶4在棕櫚酸降低人臍靜脈內(nèi)皮細(xì)胞eNOS Ser633位點(diǎn)磷酸化中的作用[J]. 中國(guó)病理生理雜志, 2020, 36(5):803-809.

Qin S, Zhang Q, Wang JJ, et al. Roles of protein phosphatase 4 in down-regulation of eNOS Ser633 phosphorylation induced by palmitic acid in human umbilical vein endothelial cells[J]. Chin J Pathophysiol, 2020, 36(5):803-809.

Role of aquaporin 1 in shear stress-regulated endothelial cell migration and angiogenesis

ZHANG Min1,2, SUN Yu1, Du Da-peng1,2, WANG Xiao-bo1, YU Jian-xin1, WANG Han-qin1,2△

(1,,,441300,;2,,,442000,)

To investigate the role of aquaporin 1 (AQP1) in shear stress-regulated migration and angiogenesis of endothelial cells, and to explore the underlying mechanisms.The aortic arches and straight segments of thoracic aortas were obtained from C57BL/6 mice. Human umbilical vein endothelial cells (HUVECs) were isolated from fresh human umbilical cord. The parallel plate flow chamber system was used to load unidirectional laminar flow (LF, 15 dyn/cm2laminar shear stress) and disturbed flow [DF, (0.5±4) dyn/cm2oscillatory shear stress] on HUVECs. qPCR and Western blot were used to detect the expression of AQP1 at mRNA and protein levels, respectively. Silencing ofwas performed by-specific siRNA. Assays of Transwell and tube formation in Matrigel were performed to detect cell migration and angiogenesis. The protein levels of endothelial nitric oxide synthase (eNOS) and phosphorylated eNOS at Ser633 and Ser1177 were measured by Western blot.The mRNA and protein expression of AQP1 was up-regulated in the straight thoracic aorta compared with the inner of the aortic arch (<0.05). Knockdown ofin HUVECs at static condition markedly reduced cell migration and angiogenesis (<0.01). Exposure of HUVECs to LF for 8 h obviously induced AQP1 expression and promoted HUVEC migration and angiogenesis (<0.05 or<0.01). LF also significantly increased eNOS phosphorylation both at Ser1177 (<0.05) and Ser633 (<0.01). As expected,silencing abolished the above effects of LF-stimulated HUVECs (<0.05 or<0.01).G-nitro-L-arginine methyl ester (L-NAME), an eNOS inhibitor, also prevented LF-induced HUVEC migration and angiogenesis (<0.01).AQP1 plays a crucial role in the regulation of migration and angiogenesis in shear stress-stimulated endothelial cells, and its mechanism may be related to the eNOS signaling pathway.

Aquaporin 1; Shear stress; Angiogenesis; Endothelial cells; Endothelial nitric oxide synthase

R363.2; R329.2+5

A

10.3969/j.issn.1000-4718.2022.03.003

1000-4718(2022)03-0403-09

2021-09-07

2022-01-04

[基金項(xiàng)目]國(guó)家自然科學(xué)基金資助項(xiàng)目(No. 31670961);湖北醫(yī)藥學(xué)院研究生科技創(chuàng)新項(xiàng)目(No. YC2019038)

Tel: 0722-3252556; E-mail: hanqin.wang@hbmu.edu.cn

(責(zé)任編輯:盧萍,羅森)

猜你喜歡
層流磷酸化內(nèi)皮細(xì)胞
有氧運(yùn)動(dòng)和精氨酸補(bǔ)充對(duì)高血壓的干預(yù)作用及其與內(nèi)皮細(xì)胞功能的關(guān)系
土槿皮乙酸對(duì)血管內(nèi)皮細(xì)胞遷移和細(xì)胞骨架的影響
摻氫對(duì)二甲醚層流燃燒特性的影響
T69E模擬磷酸化修飾對(duì)Bcl-2與Nur77相互作用的影響
上調(diào)SIRT1減少同型半胱氨酸誘導(dǎo)的血管內(nèi)皮細(xì)胞凋亡
GDM孕婦網(wǎng)膜脂肪組織中Chemerin的表達(dá)與IRS-1及其酪氨酸磷酸化分析
HMGB1基因?qū)Ω咛钦T導(dǎo)的血管內(nèi)皮細(xì)胞損傷的影響
神奇的層流機(jī)翼
磷酸化肽富集新方法研究進(jìn)展
超臨界層流翼型優(yōu)化設(shè)計(jì)策略
普洱| 青岛市| 比如县| 贵南县| 海宁市| 南澳县| 阿勒泰市| 孟州市| 腾冲县| 东丰县| 高雄市| 玉环县| 安福县| 长沙县| 古丈县| 石门县| 潜江市| 太仓市| 天长市| 微博| 吉木乃县| 互助| 昭觉县| 丰都县| 临江市| 绥江县| 扶余县| 织金县| 东辽县| 隆昌县| 北京市| 苍南县| 富川| 贵溪市| 安阳县| 青川县| 西宁市| 延寿县| 宁城县| 安康市| 自治县|