王萍,鄭晨飛,王嬌,胡璋健,邵淑君,師愷
番茄轉(zhuǎn)錄因子SlNAC29在調(diào)控植株衰老中的作用及機(jī)理
王萍,鄭晨飛,王嬌,胡璋健,邵淑君,師愷
浙江大學(xué)農(nóng)業(yè)與生物技術(shù)學(xué)院,杭州 310058
【背景】番茄()作為連續(xù)發(fā)芽分化和坐果的重要園藝作物,早衰是限制其生長(zhǎng)期長(zhǎng)短、產(chǎn)量和品質(zhì)的重要因素。NAC(NAM、ATAF1/2和CUC2)轉(zhuǎn)錄因子家族參與調(diào)控?cái)M南芥、水稻等多種植物衰老進(jìn)程,但在番茄中的研究尚不深入。目前已知,SlNAP2(NAC-like, activated by apetala3/pistillata)參與番茄植株衰老進(jìn)程。【目的】為的同源基因,對(duì)其在番茄植株衰老中的功能及調(diào)控機(jī)制進(jìn)行研究,以期為園藝栽培中番茄的衰老調(diào)控及種質(zhì)創(chuàng)新提供科學(xué)依據(jù)。【方法】以野生型番茄(condine red,CR)為背景,采用qRT-PCR技術(shù)明確在不同衰老階段葉片中的相對(duì)表達(dá)量,并分別利用CRISPR/Cas9基因編輯技術(shù)和基因過(guò)表達(dá)技術(shù)構(gòu)建純合突變體及OE:穩(wěn)定過(guò)表達(dá)植株。在此基礎(chǔ)上,在自然生長(zhǎng)狀態(tài)下和黑暗處理誘導(dǎo)衰老條件下,對(duì)野生型、突變體和OE:過(guò)表達(dá)植株的生長(zhǎng)、葉綠素含量、光合作用、葉片衰老和葉綠素降解相關(guān)基因的相對(duì)表達(dá)量等參數(shù)進(jìn)行分析,明確SlNAC29轉(zhuǎn)錄因子在調(diào)控番茄植株衰老中的生物學(xué)功能;進(jìn)一步利用聚類熱圖分析過(guò)表達(dá)植株OE:中29個(gè)衰老相關(guān)基因、葉綠素降解基因以及ABA合成/信號(hào)轉(zhuǎn)導(dǎo)相關(guān)基因的相對(duì)表達(dá)量。并選取在黑暗誘導(dǎo)衰老條件下不同株系植株中表達(dá)差異明顯的4個(gè)基因進(jìn)行凝膠遷移阻滯分析(electrophoretic mobility shift analysis,EMSA),以鑒定SlNAC29直接轉(zhuǎn)錄調(diào)控的靶標(biāo)基因及其與衰老調(diào)控的關(guān)系?!窘Y(jié)果】在初老葉和衰老葉片中的相對(duì)表達(dá)量較嫩葉和成熟葉顯著上升。自然生長(zhǎng)狀態(tài)下,突變體材料與野生型長(zhǎng)勢(shì)以及光合速率無(wú)明顯差異,而過(guò)表達(dá)材料OE:株高則顯著低于野生型植株,葉綠素含量和光合速率分別是野生型植株的25%和50%。在黑暗誘導(dǎo)衰老的條件下,野生型植株葉片明顯變黃,葉綠素含量顯著下降。突變緩解了葉片衰老程度,葉片無(wú)明顯變黃,葉綠素含量是野生型的3倍,衰老相關(guān)基因(senescence-associated genes,SAGs)和葉綠素降解基因的表達(dá)量均較低。OE:則相反,葉片衰老程度比野生型和突變體均明顯嚴(yán)重?;蚓垲惙治霰砻鞫鄠€(gè)衰老相關(guān)基因和葉綠素降解基因在OE:植株中顯著上調(diào)表達(dá)。EMSA鑒定到SlNAC29能夠直接與衰老相關(guān)基因家族SAGs成員()啟動(dòng)子綁定,且在OE:中的相對(duì)表達(dá)量較野生型和突變體顯著增加?!窘Y(jié)論】轉(zhuǎn)錄因子SlNAC29調(diào)控番茄植株的衰老,促進(jìn)番茄葉片在黑暗誘導(dǎo)條件下的衰老進(jìn)程。SlNAC29直接綁定衰老相關(guān)基因啟動(dòng)子區(qū)域調(diào)控其轉(zhuǎn)錄表達(dá)。
番茄;SlNAC29;轉(zhuǎn)錄調(diào)控;衰老;
【研究意義】植物衰老是指植株在生長(zhǎng)發(fā)育過(guò)程中由外部環(huán)境和內(nèi)部遺傳因素共同控制導(dǎo)致生理功能衰退,最終自然死亡的過(guò)程[1]。葉片衰老是植物葉片生長(zhǎng)發(fā)育的最后階段,是植物衰老的直接體現(xiàn)。提早衰老(即早衰)嚴(yán)重影響作物的光合作用、營(yíng)養(yǎng)吸收和物質(zhì)轉(zhuǎn)運(yùn)等過(guò)程。番茄是連續(xù)發(fā)育多葉片多節(jié)間植物,早衰在其長(zhǎng)季節(jié)栽培中尤為突出,極大地限制了番茄產(chǎn)量和品質(zhì)潛力的發(fā)揮[2]。植物衰老是基因控制的程序化衰亡,轉(zhuǎn)錄因子是其中重要的調(diào)控因子。相對(duì)于模式植物擬南芥而言,人們對(duì)早衰問(wèn)題較為嚴(yán)重的番茄作物的衰老關(guān)鍵轉(zhuǎn)錄因子及其調(diào)控過(guò)程還知之甚少。對(duì)其開(kāi)展研究,對(duì)于延長(zhǎng)番茄生育期,提高作物產(chǎn)量和品質(zhì),具有重要的理論和現(xiàn)實(shí)意義?!厩叭搜芯窟M(jìn)展】植物NAC(NAM、ATAF1/2和CUC2)家族是調(diào)控植株衰老的重要轉(zhuǎn)錄因子[3]。擬南芥自然衰老進(jìn)程中,30余個(gè)NAC基因表達(dá)量增強(qiáng)[4]。過(guò)表達(dá)擬南芥NAC轉(zhuǎn)錄因子、、、、等會(huì)引起植株早衰,敲除這些基因則可以延緩衰老[5-8]。與此相似,過(guò)表達(dá)水稻顯著加速了植株衰老進(jìn)程,而敲除該基因可明顯延緩衰老[9]。在棉花中,通過(guò)RNAi方法降低NAC轉(zhuǎn)錄因子亞家族成員的表達(dá)量可延緩植株衰老,提高棉花產(chǎn)量和纖維質(zhì)量[10]。番茄早衰相關(guān)的研究也有一定報(bào)道,與擬南芥AtNAC2同源的NAC轉(zhuǎn)錄因子SlORE1s()的RNAi株系衰老延遲,碳同化增強(qiáng),果實(shí)數(shù)量和可溶性固形物含量增加[11]。此外,在黑暗環(huán)境誘導(dǎo)衰老條件下,與同源的過(guò)表達(dá)番茄植株相較于野生型對(duì)照提早衰老。RNAi抑制則延緩其衰老進(jìn)程,提高了果實(shí)產(chǎn)量和含糖量[12]。進(jìn)一步探究發(fā)現(xiàn),SlNAP2能夠直接轉(zhuǎn)錄調(diào)控衰老相關(guān)基因()、葉綠素降解基因()和()、ABA合成基因()、轉(zhuǎn)運(yùn)基因()以及降解基因(ABA 8-hydroxylase)?!颈狙芯壳腥朦c(diǎn)】多種植物NAC轉(zhuǎn)錄因子家族成員在調(diào)控植株衰老中發(fā)揮了重要的作用。番茄作為連續(xù)花芽分化和坐果的重要園藝作物,早衰是決定其生長(zhǎng)期長(zhǎng)短、產(chǎn)量高低和品質(zhì)優(yōu)劣的重要因素。目前,已有研究發(fā)現(xiàn)SlNAP2參與調(diào)控衰老及葉綠素降解等相關(guān)基因如、的表達(dá)。為的同源基因,在氨基酸水平有約72.7%的相似度,但其在調(diào)控番茄衰老中的功能及機(jī)制尚不明確,研究番茄SlNAC29在衰老中的功能及其靶標(biāo)基因,有利于增進(jìn)對(duì)番茄衰老及其調(diào)控機(jī)制的認(rèn)識(shí)。【擬解決的關(guān)鍵問(wèn)題】本研究擬在明確在番茄不同衰老階段轉(zhuǎn)錄本變化及亞細(xì)胞定位的基礎(chǔ)上,利用CRISPR/Cas9基因編輯技術(shù)構(gòu)建突變體,利用基因過(guò)表達(dá)技術(shù)構(gòu)建OE:穩(wěn)定過(guò)表達(dá)植株;在自然狀態(tài)及黑暗處理誘導(dǎo)衰老條件下,通過(guò)對(duì)植物葉綠素含量和光合作用相關(guān)參數(shù)的分析,明確SlNAC29在調(diào)控植株衰老中的生物學(xué)功能;利用基因轉(zhuǎn)錄分析和EMSA的方法,鑒定SlNAC29直接轉(zhuǎn)錄調(diào)控的靶標(biāo)基因及其與衰老調(diào)控的關(guān)系,以期為園藝栽培中番茄的衰老調(diào)控及種質(zhì)創(chuàng)新提供科學(xué)依據(jù)。
試驗(yàn)于2019—2020年在浙江大學(xué)農(nóng)業(yè)與生物技術(shù)學(xué)院蔬菜研究所實(shí)驗(yàn)溫室和實(shí)驗(yàn)室進(jìn)行。
供試番茄()材料Condine Red(CR)為野生型對(duì)照(wild-type,WT)。番茄種子置于28℃培養(yǎng)箱,2—3 d后,播種至裝有草炭、蛭石混合基質(zhì)(體積比為3﹕1)的72孔穴盤,待植物長(zhǎng)出2片真葉,移苗至營(yíng)養(yǎng)缽(外徑10 cm,高8.5 cm)中繼續(xù)生長(zhǎng)??刂粕L(zhǎng)環(huán)境條件與番茄適宜的自然生長(zhǎng)條件相一致[13]:光周期16 h/8 h(晝/夜),溫度25℃/21℃(晝/夜),濕度80%左右,光照強(qiáng)度為200 μmol·m-2·s-1,其間觀察植株長(zhǎng)勢(shì)、葉綠素含量和光合作用等指標(biāo)。黑暗是一種被廣泛用以誘導(dǎo)植株衰老的處理方式[14]。黑暗環(huán)境會(huì)引起葉片變黃,光合作用和葉綠素含量的下降,衰老相關(guān)基因的表達(dá)增強(qiáng)[15]。對(duì)于黑暗誘導(dǎo)葉片衰老試驗(yàn),待播種后5周左右,摘取植株第二、三片完全展開(kāi)葉于濕潤(rùn)濾紙上,覆以錫箔紙遮光誘導(dǎo)衰老,7 d后測(cè)定葉綠素含量及相關(guān)基因相對(duì)表達(dá)量。
參照Pan等[16]方法構(gòu)建的CRISPR/ Cas9載體。通過(guò)CRISPR-P 2.0網(wǎng)站設(shè)計(jì)靶序列(5′- TTCGATCCCTGGGTATTACC-3′)[17],將合成的靶序列退火并插入AtUb-sgRNA-AtUBQ-Cas9載體的Ⅰ位點(diǎn),然后連接至雙元表達(dá)載體pCAMBIA1301,轉(zhuǎn)化至根癌農(nóng)桿菌GV3101中,通過(guò)組織培養(yǎng)技術(shù)獲得基因編輯材料[18]。采用DNA測(cè)序?qū)RISPR/Cas9誘導(dǎo)的突變進(jìn)行測(cè)定,進(jìn)一步篩選出2個(gè)純合無(wú)Cas9的T2代突變體株系-1和-2,所用引物見(jiàn)表1。
根據(jù)番茄基因組數(shù)據(jù)庫(kù)(https://solgenomics.net/)獲得(Solyc05g007770)的編碼序列(coding sequence,CDS),利用Primer5軟件設(shè)計(jì)過(guò)表達(dá)特異性引物(表1)。擴(kuò)增并連接到載體pFGC1008-3×HA上,重組質(zhì)粒構(gòu)建成功后,電擊轉(zhuǎn)化至GV3101中,同樣采用植物組織培養(yǎng)的方法將重組載體轉(zhuǎn)化至番茄。組織培養(yǎng)獲得的OE:T0代植株取嫩葉葉片提取蛋白后進(jìn)行Western blot驗(yàn)證,具有目的條帶的T0代株系用于連續(xù)繁種篩選,并獲得2個(gè)純合的T2代株系OE:-1和OE:-2。
將的CDS區(qū)構(gòu)建到C端含綠色熒光蛋白(green fluorescent protein,GFP)標(biāo)簽的載體上,引物序列見(jiàn)表1。將構(gòu)建好的載體轉(zhuǎn)化GV3101,在本氏煙草葉片(帶有紅色熒光蛋白R(shí)FP標(biāo)簽的核定位蛋白煙草)中進(jìn)行瞬時(shí)過(guò)表達(dá),2 d后進(jìn)行激光共聚焦觀察(Zeiss LSM 780)。GFP的激發(fā)光和發(fā)射光為488 nm/500—530 nm,RFP的激發(fā)光和發(fā)射光為561 nm/580—620 nm。
參照TIANGEN RNA Simple Total RNA Kit的試劑盒說(shuō)明書操作步驟提取植物總RNA。參照TOYOBO反轉(zhuǎn)錄試劑盒進(jìn)行cDNA合成。qRT-PCR反應(yīng)條件及體系參見(jiàn)SYBR Green TR-PCR Kit試劑盒(Takara,RR420A),在LightCycler?480Ⅱ Real-Time PCR detection system(Roche,Swiss)中進(jìn)行。以作為內(nèi)標(biāo),相對(duì)基因表達(dá)參照2-ΔΔCT法[19]計(jì)算。候選基因的特異性引物及引物見(jiàn)表1。
選取5周齡左右植株的第二、三片完全展開(kāi)葉,用LI-6400型光合熒光測(cè)量系統(tǒng)(美國(guó)LI-COR公司)測(cè)定番茄凈光合作用速率(n)。測(cè)定條件:光強(qiáng)為500 μmol·m-2·s-1,CO2濃度為400 μL·L-1,葉面溫度為(25±1.5)℃。
選取5周齡左右植株的第二、三片完全展開(kāi)葉,采用英國(guó)Hansatech公司的手持式葉綠素含量測(cè)定儀CL-01 Chlorophyll Content Meter測(cè)量葉片葉綠素含量。
利用MeV(Multiexperiment viewer)聚類分析軟件對(duì)OE:材料中衰老相關(guān)的29個(gè)基因表達(dá)進(jìn)行分析。包括:1)()等衰老直接相關(guān)基因(SAGs);2)()等葉綠素降解相關(guān)基因;3)()等ABA合成和信號(hào)轉(zhuǎn)導(dǎo)相關(guān)基因。
參照Hellman等[20]方法構(gòu)建原核表達(dá)載體pET32a-SlNAC29,將連接產(chǎn)物轉(zhuǎn)化大腸桿菌BL21中。加入終濃度為0.1 mmol·L-1的異丙基硫代半乳糖苷(isopropyl β-D-thiogalactoside,IPTG),6 h后收集菌體,超聲破碎后進(jìn)行SDS-PAGE檢測(cè)。利用Novagen公司的pET蛋白純化體系進(jìn)行蛋白純化。探針的標(biāo)記使用Thermo Fisher Scientific公司的Biotin 3′End DNA Labeling Kit試劑盒,退火為DNA雙鏈。進(jìn)一步利用LightShift? Chemiluminescent EMSA Kit試劑盒進(jìn)行EMSA反應(yīng),最后用Bio-Rad凝膠成像系統(tǒng)進(jìn)行曝光顯色。
試驗(yàn)設(shè)3個(gè)重復(fù),每個(gè)重復(fù)6棵植株。試驗(yàn)結(jié)果均為3次生物學(xué)重復(fù)的平均值。利用Microsoft Excel 2019整理數(shù)據(jù),SAS 9.1 Tukey法進(jìn)行差異顯著性分析,Origin 2019進(jìn)行圖形繪制。
表1 引物
(Solyc05g007770)為(Solyc04g005610)的同源基因,在氨基酸水平約有72.7%的相似度(圖1-A)。為了探究在植株衰老中的作用,參考Ma等[12]試驗(yàn)方法把葉片分為嫩葉(young leaves,YL)、成熟葉(mature leaves,ML)、初老葉(early senescent leaves,ES)和衰老葉(senescent leaves,SL)(圖1-B),并采用qRT-PCR方法分析在不同衰老階段葉片中的基因表達(dá)差異。與成熟葉相比,嫩葉中表達(dá)量無(wú)明顯變化,而初老葉和衰老葉中的基因表達(dá)量均顯著上升,分別是成熟葉的35倍和1 757倍(圖1-B)。對(duì)SlNAC29進(jìn)行亞細(xì)胞定位,發(fā)現(xiàn)SlNAC29-GFP定位在細(xì)胞膜和細(xì)胞核(圖1-C)。
為了探究SlNAC29是否參與植株衰老的調(diào)控,通過(guò)CRISPR/Cas9基因編輯技術(shù)和基因過(guò)表達(dá)技術(shù)分別獲得2個(gè)純合基因突變株系-1和-2以及2個(gè)純合基因過(guò)表達(dá)株系OE:-1和OE:-2。其中,-1的靶序列處缺失7個(gè)堿基,-2的靶序列處缺失11個(gè)堿基,均導(dǎo)致翻譯提前終止(圖2-A),過(guò)表達(dá)株系在C端攜帶的HA蛋白標(biāo)簽?zāi)軌蚶肳estern Blot的方法予以鑒定(圖2-B)。與WT相比,突變體植株的生長(zhǎng)沒(méi)有明顯變化,而OE:植株葉片發(fā)黃、株型矮?。▓D2-C)。在第5周,對(duì)不同植株的第二、三片真葉進(jìn)行葉綠素含量和氣體交換參數(shù)測(cè)定,發(fā)現(xiàn)與WT均無(wú)顯著差異,OE:的葉綠素含量和光合速率(n)分別是WT植株的25%和50%(圖2-D和圖2-E)。以上結(jié)果表明,在自然生長(zhǎng)狀態(tài)下,突變體和WT植株無(wú)明顯差異,而過(guò)表達(dá)則加劇了植株的衰老進(jìn)程。
A:SlNAC29和SlNAP2蛋白序列比對(duì)。*:2種蛋白中相同的氨基酸;B:qRT-PCR檢測(cè)野生型植株不同衰老階段葉片中SlNAC29的表達(dá)量?!铮涸赑<0.05水平上差異顯著(n=3)。YL:嫩葉,ML:成熟葉,ES:初老葉,SL:衰老葉;C:SlNAC29亞細(xì)胞定位。比例尺=50 μm
A:Slnac29突變體基因編輯位點(diǎn)示意圖;B:Western Blot驗(yàn)證SlNAC29 2個(gè)純合過(guò)表達(dá)株系中SlNAC29-HA融合蛋白;C:SlNAC29突變體及過(guò)表達(dá)植株5周齡生長(zhǎng)表型;D:SlNAC29突變體及過(guò)表達(dá)植株葉綠素含量;E:SlNAC29突變體及過(guò)表達(dá)植株光合速率。葉綠素含量及光合速率均測(cè)定5周左右植株第二、三片成熟葉。誤差線表示3次測(cè)量均值的標(biāo)準(zhǔn)差,不同小寫字母表示不同處理組間在P<0.05水平顯著性差異。下同
選取WT、和OE:植株葉片,參考Ma等[12]方法進(jìn)行離體連續(xù)黑暗處理誘導(dǎo)葉片衰老,置于正常光周期的離體葉片作為對(duì)照。7 d后,突變植株葉片衰老程度明顯較輕,OE:植株的葉片衰老較WT更為嚴(yán)重(圖3-A)。植株葉片的葉綠素含量明顯高于WT植株,而OE:植株則相反(圖3-B)。進(jìn)一步對(duì)葉片的基因表達(dá)進(jìn)行分析,發(fā)現(xiàn)黑暗誘導(dǎo)衰老后葉片中衰老相關(guān)基因、以及葉綠素降解相關(guān)基因、表達(dá)量均明顯低于WT植株,而OE:葉片中上述基因表達(dá)量均明顯上升(圖3-C)。此外,正常光周期對(duì)照條件下,中葉綠素含量和衰老相關(guān)基因轉(zhuǎn)錄本與WT沒(méi)有顯著性差異,而過(guò)表達(dá)植株較WT植株同樣具有較低的葉綠素含量和較高的衰老相關(guān)基因轉(zhuǎn)錄本(圖3-C)。以上數(shù)據(jù)表明,在黑暗誘導(dǎo)衰老的條件下,降低了衰老和葉綠素降解相關(guān)基因的表達(dá)量,減輕了葉片衰老程度,而OE:則提高了衰老和葉綠素降解相關(guān)基因的表達(dá),加重了葉片衰老程度。
為了進(jìn)一步闡明SlNAC29在分子水平上調(diào)控衰老的機(jī)制,利用OE:材料對(duì)衰老相關(guān)的29個(gè)基因的相對(duì)表達(dá)量進(jìn)行分析。如圖4-A所示,大部分基因尤其是SAGs和葉綠素降解基因在OE:植株中顯著上調(diào)表達(dá)。進(jìn)一步選取黑暗誘導(dǎo)衰老條件下、OE:及WT植株中明顯差異表達(dá)的、、和4個(gè)基因進(jìn)行凝膠遷移阻滯分析。通常NAC轉(zhuǎn)錄因子的目標(biāo)啟動(dòng)子核心結(jié)合位點(diǎn)為CACG[21],序列分析表明、、和的啟動(dòng)子均具有多個(gè)NAC核心結(jié)合位點(diǎn)(表2)。結(jié)果發(fā)現(xiàn),特異性地與啟動(dòng)子綁定,但未與、和發(fā)生綁定結(jié)合(圖4-B)。此外,在植株水平,株系中的表達(dá)量較WT植株無(wú)差異,但在OE:株系中其表達(dá)量顯著增加(圖4-C)。在分子水平上,SlNAC29直接綁定衰老相關(guān)基因啟動(dòng)子區(qū)域,并正調(diào)控其表達(dá),表明SlAGT1可能在SlNAC29調(diào)控的植株衰老過(guò)程中發(fā)揮一定的作用。
A、B:黑暗誘導(dǎo)葉片衰老表型圖及葉綠素含量;C:對(duì)照與黑暗誘導(dǎo)衰老條件下,葉片中衰老相關(guān)基因的相對(duì)表達(dá)
表2 目標(biāo)基因啟動(dòng)子的SlNAC29靶標(biāo)位點(diǎn)統(tǒng)計(jì)
番茄是中國(guó)栽培面積最大的重要蔬菜作物之一。近年來(lái),隨著長(zhǎng)季節(jié)栽培等技術(shù)的規(guī)模化應(yīng)用,植株早衰導(dǎo)致的產(chǎn)量不高和品質(zhì)不良逐漸成為影響番茄產(chǎn)業(yè)健康發(fā)展的重要瓶頸[22]。因此,研究調(diào)控番茄衰老的關(guān)鍵基因及其調(diào)控機(jī)制對(duì)于延緩番茄衰老進(jìn)程,充分發(fā)揮其生物潛能具有重要意義。
植株衰老由一系列的內(nèi)部和外部信號(hào)觸發(fā),包括植株苗齡、植物激素、弱光/黑暗等環(huán)境壓力和病原體感染等[23-24]。在這套錯(cuò)綜復(fù)雜的調(diào)控網(wǎng)絡(luò)機(jī)制中,轉(zhuǎn)錄因子是其中重要的調(diào)控因子[25]。NAC轉(zhuǎn)錄因子目前被廣泛報(bào)道在植物植株衰老調(diào)控中發(fā)揮重要作用,但是作用機(jī)制尚不清楚[26-27]。已有研究發(fā)現(xiàn)番茄SlNAP2參與調(diào)控植株衰老,作為的同源基因,其在衰老中的作用及機(jī)制尚不清晰。本研究發(fā)現(xiàn)了一個(gè)新的NAC轉(zhuǎn)錄因子SlNAC29調(diào)控植株衰老及其機(jī)制。黑暗誘導(dǎo)條件下,過(guò)表達(dá)呈現(xiàn)早衰,然而突變體能夠顯著減輕植株衰老程度,維持碳同化的正常進(jìn)行。本研究發(fā)現(xiàn)單突變體即可發(fā)揮作用,后續(xù)可以繼續(xù)構(gòu)建和的雙突變體材料,以探究二者共同的作用機(jī)制。此外,同源基因擬南芥已被鑒定為植株衰老的中樞正向調(diào)節(jié)因子。近期有研究發(fā)現(xiàn)即可被多種脅迫強(qiáng)烈誘導(dǎo),過(guò)表達(dá)對(duì)2種細(xì)菌性病害以及干旱的防御能力顯著增強(qiáng)[28]。本研究發(fā)現(xiàn)突變體植株衰老程度顯著減輕,是一種能夠抑制番茄早衰的優(yōu)良種質(zhì)資源。
通常情況下,轉(zhuǎn)錄因子都是通過(guò)直接識(shí)別下游靶基因的啟動(dòng)子區(qū)域,轉(zhuǎn)錄激活或抑制靶基因表達(dá),從而影響植株的生長(zhǎng)發(fā)育[29]。探究轉(zhuǎn)錄因子下游的靶基因?qū)γ鞔_轉(zhuǎn)錄因子的作用機(jī)制至關(guān)重要。據(jù)報(bào)道,擬南芥基因組中約有10%的基因或超過(guò)2 500個(gè)基因在植株衰老過(guò)程中上調(diào)[30-31]。許多衰老相關(guān)基因參與諸如基因調(diào)控、信號(hào)轉(zhuǎn)導(dǎo)、大分子物質(zhì)降解和營(yíng)養(yǎng)物質(zhì)再轉(zhuǎn)化等衰老過(guò)程[32]。本研究中,黑暗誘導(dǎo)衰老條件下,OE:的(如)和葉綠素降解基因(如)顯著上調(diào)表達(dá),在植株中則相反。選取黑暗誘導(dǎo)衰老條件下突變體OE:及WT植株中明顯差異表達(dá)的、、和4個(gè)基因進(jìn)行凝膠遷移阻滯檢測(cè)。其中,特異性地與啟動(dòng)子綁定,但未與、和發(fā)生綁定結(jié)合。在植株體內(nèi),株系中的表達(dá)較WT植株無(wú)差異,但OE:株系中其表達(dá)量顯著增加。前人研究表明番茄SlNAP2能夠激活衰老相關(guān)基因,葉綠素降解基因和等,從而直接調(diào)控葉片衰老。擬南芥中AtNAP能夠直接綁定加速促進(jìn)植株衰老[33]。然而,本研究發(fā)現(xiàn)OE:中衰老相關(guān)基因表達(dá)量與野生型相比無(wú)顯著變化,而表達(dá)量則相對(duì)較高(圖5-A),且其啟動(dòng)子區(qū)域能夠被SlNAC29直接綁定。因此,推測(cè)SlNAC29與NAC家族其他轉(zhuǎn)錄因子的作用機(jī)制有所不同,是一條NAC轉(zhuǎn)錄因子調(diào)控植株衰老的新路徑。作為衰老相關(guān)基因SAGs的成員,在植株衰老進(jìn)程中能夠顯著上調(diào)表達(dá),然而,關(guān)于其調(diào)控植株衰老的具體機(jī)理尚待進(jìn)一步深入研究。
在番茄作物中發(fā)現(xiàn)了一個(gè)重要的NAC家族轉(zhuǎn)錄因子SlNAC29,其在衰老葉片中顯著上調(diào)表達(dá)。黑暗誘導(dǎo)衰老條件下,突變體能夠延緩葉片衰老,而過(guò)表達(dá)OE:葉片衰老程度加劇,表明SlNAC29能夠調(diào)控番茄植株的衰老,促進(jìn)番茄葉片在黑暗誘導(dǎo)條件下的衰老進(jìn)程。進(jìn)一步發(fā)現(xiàn)SlNAC29直接綁定衰老相關(guān)基因啟動(dòng)子區(qū)域調(diào)控其轉(zhuǎn)錄表達(dá)。
[1] GAN S, AMASINO R M. Making sense of senescence: Molecular genetic regulation and manipulation of leaf senescence. Plant Physiology, 1997, 113(2): 313-319.
[2] 張金樹(shù).日光溫室冬春茬番茄的早衰及預(yù)防. 中國(guó)蔬菜, 2001, 1(4): 42-43.
ZHANG J S. Premature senescence and its prevention of tomato in greenhouse at winter and spring. China Vegetables, 2001, 1(4): 42-43. (in Chinese)
[3] 張慧珍, 白雪芹, 曾幼玲. 植物NAC轉(zhuǎn)錄因子的生物學(xué)功能. 植物生理學(xué)報(bào), 2019, 55(7): 915-924.
ZHANG H Z, BAI X Q, ZENG Y L. Biological functions of plant NAC transcription factors. Plant Physiology Journal, 2019, 55(7): 915-924. (in Chinese)
[4] BREEZE E, HARRISON E, MCHATTIE S, HUGHES L, HICKMAN R, HILL C, KIDDLE S, KIM Y S, PENFOLD C A, JENKINS D. High-resolution temporal profiling of transcripts duringleaf senescence reveals a distinct chronology of processes and regulation. The Plant Cell, 2011, 23: 873-894.
[5] KIM Y S, SAKURABA Y, Han S H, YOO S C, PAEK N C. Mutation of theNAC016 transcription factor delays leaf senescence. Plant Cell Physiology, 2013, 54: 1660-1672.
[6] BALAZADEH S, KWASNIEWSKI M, CALDANA C, MEHRNIA M, ZANOR M L, XUE G P, BERND M R. ORS1, an H2O2-responsive NAC transcription factor, controls senescence in. Molecular Plant, 2011, 4: 346-360.
[7] HIRONORI T, KYONOSHIN M, FUMINORI T, MIKI F, TAKUYA Y, KAZUO N, FUMIYOSHI M, KIMINORI T, KAZUKO Y S, KAZUO S. SNAC-As, stress-responsive NAC transcription factors, mediate ABA-inducible leaf senescence. The Plant Journal, 2015, 84: 1114-1123.
[8] BALAZADEH S, SIDDIQUI H, ALLU A D, MATALLANA- RAMIREZ L P, CALDANA C, MEHRNIA M, ZANOR M I, KOHLER B, MUELLER-ROEBER B. A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt-promoted senescence. The Plant Journal, 2010, 62: 250-264.
[9] MAO C J, Lu S C, Lü B, ZHANG B, SHEN J B, HE J M, LUO L Q, XI D D, CHEN X, MING F. A rice NAC transcription factor promotes leaf senescence via ABA biosynthesis. Plant Physiology, 2017, 174(3): 1747-1763.
[10] FAN K, BIBI N, GAN S S, LI F, YUAN S N, NI M, WANG M, SHEN H, WANG X D. A novel NAP member GhNAP is involved in leaf senescence in. Journal of Experimental Botany, 2015, 66: 4669-4682.
[11] LIRA B S, GRAMEGNA G, TRENCH B A, ALVES F R R, SILVA E M, SILVA G F F, THIRUMALAIKUMAR V P, LUPI A C D, DEMARCO D, PURGATTO E, NOGUEIRA F T S, BALAZADEH S, FRESCHI L, ROSSI M. Manipulation of a senescence-associated gene improves fleshy fruit yield. Plant Physiology, 2017, 175(1): 452.
[12] MA X M, ZHANG Y J, Ture?ková V, XUE G P, FERNIE A R, BERND M R, BALAZADEH S. The NAC transcription factor SlNAP2 regulates leaf senescence and fruit yield in tomato. Plant Physiology, 2018, 177(3): 1286-1302.
[13] MULLER F, XU J M, KRISTENSEN L, WOLTERS-ARTS M, GROOT P, JANSMA S Y, MARIANI C, PARK S H, RIEU I. High-temperature-induced defects in tomato () anther and pollen development are associated with reduced expression of B-class floral patterning genes. Plos One, 2016, 11(12): e0167614.
[14] BUCHANAN-WOLLASTON V, PAGE T, HARRISON E, BREEZE E, LIM P O, NAM H G, LIN J F, WU S H, SWIDZINSKI J, ISHIZAKI K, LEAVER C J. Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in. The Plant Journal, 2005, 42: 567-585.
[15] KEECH O, PESQUET E, AHAD A, ASKNE A, NORDVALL D, VODNALA S M, TUOMINEN H, HURRY V, DIZENGREMEL P, GARDESTROM P. The different fates of mitochondria and chloroplasts during dark-induced senescence inleaves. Plant Cell & Environment, 2007, 30: 1523-1534.
[16] PAN C T, YE L, QIN L, LIU X, HE Y J, WANG J, CHEN L F, LU G. CRISPR/Cas9-mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations. Scientific Reports, 2016, 7: 46916.
[17] LEI Y, LU L, LIU H Y, LI S, XING F, CHEN L L. CRISPR-P: a web tool for synthetic single-guide RNA design of CRISPR-system in plants. Molecular Plant, 2014, 7(9): 1494-1496.
[18] FILLATTI J J, KISER J, ROSE R, COMAI L. Efficient transfer of a glyphosate tolerance gene into tomato using a binarytumefacien vector. Nature Biotechnology, 1987, 5: 726-730.
[19] KENNETH J L, THOMAS D S. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCTmethod. Methods, 2002, 25: 402-408.
[20] HELLMAN L M, FRIED M G. Electrophoretic mobility shift assay (EMSA) for detecting protein–nucleic acid interactions. Nature Protocols, 2007, 2(8): 1849-1861.
[21] TRAN L.S, NAKASHIMA K, SAKUMA Y, SIMPSON S D, FUJITA Y, MATUYAMA K, FUJITA M, SEKI M, SHINOZAKI K, KAZUKO Y S. Isolation and functional analysis ofstress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. The Plant Cell, 2004, 16: 2481-2498.
[22] GREGERSEN P L, CULETIC A, BOSCHIAN L, KRUPINSKA K. Plant senescence and crop productivity. Plant Molecular Biology, 2013, 82: 603-622.
[23] GUIBOILEAU A, SORMANI R, MEYER C, MASCLAUX- DAUBRESSE C. Senescence and death of plant organs: nutrient recycling and developmental regulation. Comptes Rendus Biologies, 2010, 333: 382-391.
[24] LIM P O, KIM H J, NAM H G. Leaf senescence. Annual Review of Plant Biology, 2007, 58: 115-136.
[25] BALAZADEH S, RIANO-PACHON D M, MUELLER-ROEBER B. Transcription factors regulating leaf senescence in. Plant Biology, 2008, 10 (s1): 63-75.
[26] 楊曉娜, 田云, 盧向陽(yáng). NAC轉(zhuǎn)錄因子在植物生長(zhǎng)發(fā)育中的調(diào)控作用. 化學(xué)與生物工程, 2014, 31(1): 1.
YANG X N, TIAN Y, LU X Y. The regulation role of NAC transcription factors in plant growth and development. Chemistry and Bioengineering, 2014, 31(1):1. (in Chinese)
[27] KIM H J, NAM H G, LIM P O. Regulatory network of NAC transcription factors in leaf senescence. Current Opinion in Plant Biology, 2016, 33: 48-56.
[28] WANG J, ZHENG C F, SHAO X Q, HU Z J, LI J X, WANG P, WANG A R, YU J Q, SHI K. Transcriptomic and genetic approaches reveal an essential role of the NAC transcription factor SlNAP1 in the growth and defense response of tomato. Horticulture Research, 2020, 209: 1-11.
[29] 劉強(qiáng), 張貴友, 陳受宜. 植物轉(zhuǎn)錄因子的結(jié)構(gòu)與調(diào)控作用.科學(xué)通報(bào), 2000(14): 1465-1474.
LIU Q, ZHANG G Y, CHEN S Y. Structure and regulatory function of plant transcription factors. Chinese Science Bulletin, 2000(14): 1465-1474. (in Chinese)
[30] GUO Y, CAI Z Y, GAN S S. Transcriptome ofleaf senescence. Plant Cell & Environment, 2004, 27: 521-549.
[31] BREEZE E, HARRISON E, MCHATTIE S, HUGHES L, HICKMAN R, HILL C, KIDDLE S, KIM Y S, PENFOLD C A, JENKINS D. High-resolution temporal profiling of transcripts duringleaf senescence reveals a distinct chronology of processes and regulation. The Plant Cell, 2011, 23: 873-894.
[32] HE Y H, TANG W N, SWAIN J D, GREEN A L, JACK T P, GAN S S. Networking senescence-regulating pathways by usingenhancer trap lines. Plant Physiology, 2001, 126: 707-716.
[33] ZHANG K W, XIA X Y, ZHANG Y Y, GAN S S. An ABA-regulated and Golgi-localized protein phosphatase controls water loss during leaf senescence in. The Plant Journal, 2012, 69(4): 667-678.
The Role and Mechanism of Tomato SlNAC29 Transcription Factor in Regulating Plant Senescence
WANG Ping, ZHENG ChenFei, WANG Jiao, HU ZhangJian, SHAO ShuJun, SHI Kai
College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058
【Background】Tomato()is an important horticultural crop with continuous flower bud differentiation and fruiting. Premature senescence seriously limits tomato plants growth period, crop yield and fruit quality. NAC (NAM, ATAF1/2 and CUC2) transcription factor family regulates leaf senescence process in Arabidopsis, rice and other plants. Nevertheless, the roles of tomato NAC transcription factor in the regulation of leaf senescence have not been well understood. SlNAP2 (NAC-like, activated by apetala3/pistillata) is known to be involved in the regulation of tomato leaf senescence. 【Objective】SlNAC29 transcription factor is the homologous gene of SlNAP2 in tomato, while its function remains largely unclear. In this study, the role of SlNAC29 and its underlying mechanism in leaf senescence was investigated, which can provide some scientific basis for tomato senescence regulation and germplasm innovation.【Method】Condine Red (CR) was used as the wild-type background in this study. qRT-PCR was used to analyze the relative expression ofhomozygous mutant lines and the OE:stable overexpression lines were generated through CRISPR/Cas9 gene editing and over-expression approaches, respectively. Using these lines, plant growth phenotypes, chlorophyll content, leaf photosynthesis, transcription of senescence- and chlorophyll degradation- related genes were analyzed under both natural and dark-induced senescence conditions. The clustering heat map was used to analyze the relative expression of 29 genes, including senescence-, chlorophyll degradation- and ABA biosynthesis/signaling-associated genes. Based on gene expression profiles, four of them were selected to electrophoretic mobility shift analysis (EMSA) to identify the SlNAC29-target gene during senescence process.【Result】The relative expression ofwas significantly up-regulated in early senescent and senescent leaves, as compared with young and mature leaves. Under natural growth condition, themutant lines showed no differences with the wild-type in terms of plant growth phenotypes and photosynthetic rate. By contrast, the height of OE:plant was shorter than wild-type plants, OE:plants also showed lower chlorophyll content and photosynthetic rate, which were only 25% and 50% of the wild-type control, respectively. Under dark-induced senescence condition, the leaves of wild-type plants turned yellow and the chlorophyll content decreased significantly. The senescent phenotypes were alleviated inmutant lines, which not only have significant higher chlorophyll content, but also showed higher transcript level of senescence-associated genes (SAGs) and chlorophyll degradation-related genes. On the contrary, the dark-induced senescence effect was aggravated in OE:. Cluster analysis showed that several genes, especially SAGs and chlorophyll degradation-related genes,,and, were significantly up-regulated in OE:plants. The EMSA analysis showed that SlNAC29 could directly bind to the promoter of(), a member of. Moreover, the relative expression ofwas significantly higher than that of wild-type andplants. 【Conclusion】SlNAC29 transcription factor is involved in the regulation of leaf senescence in tomato plants, which promotes the senescence process under dark conditions. SlNAC29 may directly bind to the promoter region of the senescence-related geneto regulate its transcriptional expression.
tomato; SlNAC29; transcription regulation; senescence;
2021-02-06;
2021-05-03
國(guó)家自然科學(xué)基金優(yōu)青項(xiàng)目(31822046)、浙江省重點(diǎn)研究發(fā)展計(jì)劃(2021C02040)、國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃(2019YFD1000300)
王萍,E-mail:11916061@zju.edu.cn。通信作者師愷,E-mail:kaishi@zju.edu.cn
(責(zé)任編輯 李莉)
中國(guó)農(nóng)業(yè)科學(xué)2021年24期