龐文博 徐世威 張一慧
摘要 近年來,隨著三維微電子器件及微系統(tǒng)技術(shù)的迅速發(fā)展,微小型化逐漸成為機器人領(lǐng)域最重要的發(fā)展趨勢之一。薄膜類微型機器人具有體積小、重量輕、魯棒性高、柔韌性好、與平面制備工藝兼容等優(yōu)點,因而是一類極具潛力的微型機器人,具有重要的研究價值。本文首先綜述了薄膜類柔性微型機器人的代表性制備方法,隨后,較為全面地回顧了基于不同驅(qū)動機制的薄膜類機器人,并對該領(lǐng)域所面臨的機遇與挑戰(zhàn)進行了展望與討論。
關(guān) 鍵 詞 薄膜類機器人;微型機器人;三維微組裝;柔性機器人
中圖分類號 TP242? ? ?文獻標志碼 A
Abstract With rapid development of three-dimensional (3D) microelectronics and microsystems technologies in recent years, the miniaturization of robots has received increasingly growing attention. Thin-film-based miniaturized robots represents a very promising research direction, since these robots combine versatile features of small size, lightweight, good robustness, high flexibility and excellent compatibility with modern planar technologies. This article reviews the fabrication methods of thin-film-based flexible miniaturized robots, followed by discussions on the various actuation mechanisms exploited by flexible miniaturized robots. Finally, more opportunities and challenges in this research area are discussed.
Key words Thin-film-based robots; miniaturized robots; microscale 3D assembly; flexible robots
0 引言
微型機器人通常指身軀長度小于15 cm、質(zhì)量小于20 g的機器人[1]。這類機器人通常具有體積小、重量輕、靈活性高等優(yōu)點,能夠順利進入一些特殊的非結(jié)構(gòu)化環(huán)境中執(zhí)行任務[2-4]。目前,微型機器人已在眾多領(lǐng)域中展現(xiàn)出其巨大的應用潛力,如生物醫(yī)療領(lǐng)域的靶向藥物輸送[4-5]和微創(chuàng)外科手術(shù)[6]、救援領(lǐng)域用于搜救的飛行器和危險環(huán)境中的任務執(zhí)行等[7-9]。另一方面,軟體機器人由于其柔軟的身軀、靈活的自由度、良好的環(huán)境適應性和魯棒性以及友好的人機交互等特點,也越來越受到研究者的關(guān)注。目前,軟體機器人通常由一些彈性模量較低的軟材料構(gòu)成,然而,較低的身軀彈性模量也會帶來一些額外的挑戰(zhàn)[10]。例如,與剛性機器人相比,其控制性較弱;將控制電路、傳感元件、電源和其他功能模塊有效集成到軟材料中也是一個不小的挑戰(zhàn);微納米尺度下軟材料結(jié)構(gòu)的制備無法很好地兼容傳統(tǒng)微納制備工藝[11]。因此,如何將微型機器人與軟體機器人有效結(jié)合,一直是研究者努力的方向之一。
當前,細微觀尺度下的三維成型工藝正在蓬勃發(fā)展,其在生物醫(yī)療器件、微尺度機器人等功能器件[12]的制備中發(fā)揮著重要的作用?,F(xiàn)有的相關(guān)三維成型工藝大致有兩類:直接三維成型法和間接三維組裝法。其中,間接三維組裝法是在傳統(tǒng)的平面圖案化工藝基礎(chǔ)上,利用“二維到三維”的組裝過程來實現(xiàn)。相比于直接三維成型法(如3D打印技術(shù)、三維激光直寫等方法),三維組裝技術(shù)的主要優(yōu)點在于可以制備復雜的三維高性能材料(如半導體、石墨烯等)骨架,且制備過程往往是并行的,這將使其在制備速度和材料兼容性方面具有更大的優(yōu)勢[13]?;谌S組裝成型技術(shù),以薄膜類機器人為代表的微型機器人也受到越來越多的關(guān)注,其特點是身軀或關(guān)鍵驅(qū)動單元由薄膜型結(jié)構(gòu)組成[14]。以薄膜為主要骨架的微型機器人具有更低的彎曲剛度,即使結(jié)構(gòu)本身采用較剛硬的材料制備,也可以獲得很好的柔韌性[15]。
本文分3個部分詳細闡述薄膜類柔性微型機器人的研究進展。首先,介紹薄膜類柔性微型機器人的主要制備方法,包括二維圖案化工藝和相關(guān)三維組裝技術(shù);隨后,較為全面地回顧了基于不同驅(qū)動機制的薄膜類柔性微型機器人;最后,對該領(lǐng)域所面臨的機遇與挑戰(zhàn)進行展望與討論,并對全文進行總結(jié)。
1 薄膜類柔性微型機器人的制備方法
傳統(tǒng)剛性機器人的制備主要依賴于數(shù)控機床等加工設備。與之不同的是,薄膜類柔性微型機器人的制備通常分為兩步:薄膜的二維圖案化制備和二維到三維的組裝。下面將依次對這兩部分進行詳細介紹。
1.1 用于薄膜類柔性微型機器人的平面圖案化工藝
在薄膜類機器人領(lǐng)域,常見的平面圖案化工藝包括:
1)直寫技術(shù)。根據(jù)直寫原理的不同一般可以將其分為減成法和加成法兩類,該技術(shù)無需掩模板,周期短、材料利用率較高。其中,減成法主要指的是激光刻蝕直寫技術(shù)(也稱激光切割),該技術(shù)利用激光使材料氣化或融化燃燒,從而對平面材料進行圖案化切割。加成法可以根據(jù)不同的需求在基底表面沉積不同成分的膜層,靈活度高,節(jié)約原料。其中加成法主要包括噴墨打印、微流動沉積直寫、激光直寫等。目前,常用于薄膜類機器人二維圖案化的直寫技術(shù)是激光切割[28-29]和噴墨打印技術(shù)[30]。
2)光刻工藝。光刻工藝是微尺度薄膜機器人圖案化成型最常用的手段,該工藝利用光刻膠敏感度的不同,在光照下發(fā)生物理化學反應,從而將圖案從光掩模板轉(zhuǎn)移到基板上。該方法具有對準和套刻精度高、掩模板制作簡單、工藝條件成熟等優(yōu)點。微尺度下薄膜機器人的結(jié)構(gòu)和電路的圖案化制備大多離不開光刻工藝[14,31-33]。
3)軟刻蝕工藝。軟刻蝕工藝也稱軟光刻,最早由美國哈佛大學Whitesides等[34]于1993年提出。通過彈性圖章、模具和光掩模進行圖形復制和轉(zhuǎn)移,利用表面特性實現(xiàn)圖案化。軟刻蝕工藝是建立在光刻的基礎(chǔ)上發(fā)展而來的,具備傳統(tǒng)光刻工藝的諸多優(yōu)點。同時,軟刻蝕工藝的制備成本更加低廉、操作更加簡便、材料兼容性更好,且適用于柔性和剛性基板上的非平面、大面積圖案化。一些利用壓力等驅(qū)動方式的薄膜類機器人常利用軟刻蝕工藝[25,35-36]來制備。
4)電離印刷工藝。電離印刷工藝(Ionoprinting)[37-38]常被用于制備一些特殊凝膠類薄膜機器人,該工藝利用圖案化金屬印章將金屬離子通過電離的方式,圖案化地精確滲透到凝膠材料內(nèi)部,進而改變凝膠的局部交聯(lián)網(wǎng)絡,該局部區(qū)域的密度、剛度和熱響應等性質(zhì)都會隨之產(chǎn)生變化。利用該工藝可以進一步實現(xiàn)凝膠材料的可編程變形。
5)澆注成型。對于一些利用軟材料(凝膠等)制備的薄膜機器人[39-41]來說,平面澆注成型技術(shù)是較為常見的圖案化手段。該方法通過將液體狀態(tài)下的軟材料倒入硬質(zhì)模具表面來實現(xiàn)軟材料的圖案化。
6)3D打印技術(shù)。3D打印技術(shù)是一種常用的直接三維成型工藝,適用于各種構(gòu)型的二維/三維結(jié)構(gòu)制備。在過去的數(shù)年中,利用3D 打印技術(shù)制造的軟體機器人受到廣泛關(guān)注[42-49]。 3D打印技術(shù)可以制備由凝膠、流體、功能聚合物等軟/硬質(zhì)材料構(gòu)成的薄膜類機器人。
1.2 用于薄膜類柔性微型機器人的三維組裝技術(shù)
我們將圖案化的二維前驅(qū)體結(jié)構(gòu)組裝成復雜三維構(gòu)型的過程稱為三維結(jié)構(gòu)的組裝。對于一部分宏觀尺度的薄膜機器人來說,其制備方法往往采用手工裝配的方式[17]。這類方法具有方便、快捷、成本低等優(yōu)勢。但對于一些組裝精度要求高、組裝規(guī)模大、構(gòu)型復雜且尺寸小于1 cm的微型機器人來說,手工裝配無法滿足要求。本節(jié)將主要討論微尺度下用于制備薄膜類機器人的三維組裝技術(shù)。
近年來,三維器件的微小型化越來越成為電子系統(tǒng)、機器人等領(lǐng)域重要的發(fā)展趨勢之一。當前,細微觀尺度下的三維組裝技術(shù)是一類間接的三維組裝方法,該技術(shù)基于較為成熟的平面圖案化工藝,經(jīng)歷“二維到三維”的組裝過程,克服了直接三維成型法中的一些技術(shù)局限性[50]。三維組裝技術(shù)不僅可以用于復雜的三維高性能材料(如金屬、半導體、聚合物、壓電薄膜、石墨烯、二硫化鉬等)的制備,還可以與許多智能柔性材料(如功能性凝膠等)兼容[12],這一特點為三維組裝技術(shù)在薄膜機器人的制備奠定了基礎(chǔ)。在眾多三維組裝技術(shù)中,根據(jù)其加載或變形的特點,我們可以將其分為屈曲組裝、卷曲組裝、折疊組裝和共形組裝4類,如圖1所示。其中,屈曲組裝方法[51]主要依賴于可變性的彈性基底,通過彈性基底的機械變形來誘導基底表面二維前驅(qū)體的組裝;卷曲組裝方法[52]一般通過引入內(nèi)部應力梯度或外力來驅(qū)動二維前驅(qū)體結(jié)構(gòu)的整體彎曲變形,用于制備管狀或螺旋狀等三維構(gòu)型;折疊組裝方法與卷曲組裝類似,不同之處在于應力梯度布置的位置,折疊組裝[53]一般只在局部區(qū)域引入應力梯度,使二維前驅(qū)體發(fā)生有折角的彎曲變形,類似于帶鉸鏈機構(gòu)的折疊變形;共形組裝方法[54]側(cè)重于通過高效的轉(zhuǎn)移印刷技術(shù)將二維前驅(qū)體與曲面彈性基底共形貼附,進而形成與彈性基底形貌相同的三維結(jié)構(gòu)。下面的小節(jié)將依次對上述幾種方法進行介紹。
1.2.1 屈曲組裝方法
屈曲組裝方法主要利用可拉伸彈性基底作為組裝平臺,該組裝平臺可以為二維前驅(qū)體的組裝提供必要的驅(qū)動力[51,55]。圖2a)展示了屈曲組裝的過程,其中包括3個關(guān)鍵步驟,即二維前驅(qū)體的制備、轉(zhuǎn)印和力學引導的三維結(jié)構(gòu)屈曲成型。首先,利用平面圖案化工藝制備所需的二維前驅(qū)體結(jié)構(gòu),在宏觀尺度下,我們可以采用激光刻蝕等圖案化工藝制備二維前驅(qū)體,而在微納米尺度下,往往采用光刻等更高精度的平面加工工藝來完成。隨后,采用離子濺射或蒸發(fā)鍍膜的方法制備犧牲層和黏結(jié)點層,其中的黏結(jié)點層主要用于二維前驅(qū)體與后述彈性基底的黏結(jié)。此時,需要依靠彈性印章或水溶性膠帶將二維前驅(qū)體轉(zhuǎn)印到預拉伸后的彈性基底表面,然后對黏結(jié)層進行激活,使二維前驅(qū)體與預拉伸彈性基底實現(xiàn)選擇性強黏接。最后,釋放彈性基底的預應變,由于彈性基底的牽拉作用,二維前驅(qū)體會在黏接部位受到壓縮力作用,發(fā)生屈曲失穩(wěn)而變形為三維結(jié)構(gòu)。在屈曲組裝過程中,有幾個關(guān)鍵的控制因素:二維前驅(qū)體的圖案、彈性基底的應變場分布和應變釋放的路徑。同時,使組裝完成的三維結(jié)構(gòu)順利脫離彈性基底并保持三維構(gòu)型,對薄膜類柔性微型機器人的制備具有重要意義。在這一小節(jié)中,將介紹上述幾個關(guān)鍵控制因素及其相應的設計策略,最后展示幾種常見的三維結(jié)構(gòu)固形方法。
首先介紹二維前驅(qū)體結(jié)構(gòu)的設計策略。我們可以將二維前驅(qū)體圖案大致分為以下4種類型:條帶形結(jié)構(gòu)[58]、剪紙形結(jié)構(gòu)[57]、折紙形結(jié)構(gòu)[56]和多級結(jié)構(gòu)[59]。條帶形結(jié)構(gòu)通常由細長的薄條帶組成,其厚度遠小于寬度,寬度遠小于弧長,如圖2b)左上角實驗圖所示[58]。圖2b)右上角展示的是基于剪紙概念制備的三維結(jié)構(gòu)[57],該策略充分利用了剪紙結(jié)構(gòu)的特點,顯著降低了屈曲過程中結(jié)構(gòu)內(nèi)部的應力集中,可以有效避免一些脆性(半導體材料等)結(jié)構(gòu)的破壞。進一步地,通過對剪紙刻痕圖案的設計,可以進一步增加三維幾何構(gòu)型的豐富性[57]。受折紙藝術(shù)的啟發(fā),通過對二維前驅(qū)體局部剛度的非均勻設計,可以在三維結(jié)構(gòu)中引入折痕,如圖2b)左下角所示[56]。圖2b)右下角則展示了一種多級結(jié)構(gòu),通過對多層二維前驅(qū)體進行多次轉(zhuǎn)印并組裝,可以得到如圖2b)右下角中的幾何構(gòu)型,這類結(jié)構(gòu)往往具有更高的空間密度[59]。
隨后介紹基于基底應變工程的組裝策略,包括:基于機械加載的基底調(diào)控策略和基于智能材料的基底調(diào)控策略。在第一種調(diào)控策略中[61,70],研究者提出利用基底厚度[70]或彈性模量[61]的非均勻分布來實現(xiàn)基底的應變場非均勻分布。非均勻厚度的彈性基底通常采用澆注成型或軟光刻等方式制備,彈性基底在較厚區(qū)域的拉伸應變較小,因此對應區(qū)域的二維前驅(qū)體在組裝過程中的變形也更小。進一步,通過對基底彈性模量的非均勻設計,可以實現(xiàn)更大的應變梯度分布。圖2d)展示了基于該策略的一種棋盤式應變場分布和對應的非均勻三維結(jié)構(gòu)陣列[61]。此外,將剪紙設計概念引入彈性基底,可以使基底在變形過程中產(chǎn)生局部旋轉(zhuǎn)位移[64],如圖2e)所示。利用該策略可以得到一些具有手性特征的三維結(jié)構(gòu)。在基于智能材料的基底調(diào)控策略中,研究者分別將介電彈性體[63]、形狀記憶聚合物[71]、水凝膠[65]和激光誘導石墨烯復合材料[62]用于彈性組裝平臺。圖2h)展示的是利用介電彈性體組裝平臺制備的三維“類青蛙”結(jié)構(gòu),該組裝策略的特點是組裝速度快(1 s內(nèi)完成組裝)、基底應變場可設計性強等。通過將機械加載(釋放預拉伸彈性基底)與電驅(qū)動加載(介電彈性體電致變形)結(jié)合,可以使已成型的三維構(gòu)型發(fā)生再變形,即重構(gòu)。圖2f)展示的是基于激光誘導石墨烯復合材料的組裝策略。利用激光實現(xiàn)在聚酰亞胺薄膜表面改性以產(chǎn)生多孔石墨烯材料,并利用石墨烯電熱效應使結(jié)構(gòu)產(chǎn)生彎曲變形[62]。將這類復合材料作為組裝平臺或二維前驅(qū)體,可以得到如圖2f)所示的可重構(gòu)結(jié)構(gòu)。圖2g)展示了將液晶彈性體(LCE)作為基底的例子[66],LCE具有拉伸應變較大、可逆遠程熱響應等特點。類似地,可以利用形狀記憶聚合物(SMP)作為彈性基底[71],如圖2i)所示。該策略可以將基底與結(jié)構(gòu)作為整體,方便按需組裝與重構(gòu)。圖2j)則展示了利用熱敏水凝膠制備的彈性基底[65],該基底在熱刺激下會發(fā)生面內(nèi)變形,進而誘導二維前驅(qū)體的組裝。
在彈性基底的應變釋放路徑方面,研究者于2018年提出將傳統(tǒng)的壓縮屈曲變形模式轉(zhuǎn)換為拉伸屈曲模式[72],實現(xiàn)了一些特殊結(jié)構(gòu)(蛇形線結(jié)構(gòu)、蜿蜒條帶結(jié)構(gòu)等)的高效組裝。此外,通過改變預拉伸基底的預應變釋放順序,研究者首次提出基于加載路徑調(diào)控的微尺度屈曲組裝策略[60,73],極大地豐富了可重構(gòu)三維結(jié)構(gòu)的幾何構(gòu)型。圖2c)展示了基于該策略實現(xiàn)的具有3個穩(wěn)態(tài)的可重構(gòu)三維結(jié)構(gòu)。
彈性基底在一定程度上限制了所組裝結(jié)構(gòu)的應用領(lǐng)域,因此將屈曲組裝得到的三維構(gòu)型有效固定并脫離基底具有重要意義。圖2k)中展示了幾種不同的固形策略[18,67-69],其中圖2k)(i)中,研究者利用界面光聚合[18],將光刻膠滴到三維結(jié)構(gòu)表面,利用紫外光對光刻膠的固化作用制備硬質(zhì)襯底,用于三維結(jié)構(gòu)的固定,該方法具有廣泛的適用性。圖2k)(ii)展示了一種有效利用金屬塑性變形的固形策略[18]。在二維前驅(qū)體結(jié)構(gòu)中引入金屬材料,當結(jié)構(gòu)組裝完成并與基底脫離后,由于金屬層的塑性作用,三維結(jié)構(gòu)會在小范圍回彈的基礎(chǔ)上保持較好的三維構(gòu)型。圖2k)(iii)中研究者將SMP用于二維前驅(qū)體結(jié)構(gòu)的制備[67],屈曲后的三維結(jié)構(gòu)經(jīng)歷一次溫度循環(huán)后便可有效保持三維構(gòu)型。類似地,將LCE作為二維前驅(qū)體結(jié)構(gòu),利用LCE在紫外光作用下的固形能力也可以較好地實現(xiàn)三維結(jié)構(gòu)的固形,如圖2k)(v)。此外,通過巧妙的結(jié)構(gòu)設計,可以實現(xiàn)基于“鉤子、凸耳”基本單元的“自鎖”三維結(jié)構(gòu)[68],如圖2k)(iv)所示。
1.2.2 卷曲組裝方法
卷曲組裝的過程中二維前驅(qū)體會發(fā)生整體性彎曲變形,這類組裝方法可以較好地實現(xiàn)微尺度下卷筒狀/螺旋狀三維微結(jié)構(gòu)的制備。本小節(jié)將介紹兩種實現(xiàn)卷曲組裝的策略,即由殘余應力誘導的卷曲策略[52,74-76]和基于活性材料的卷曲策略[2, 77-79]。圖3a)展示了利用非外延沉積技術(shù)引入殘余應力的策略[76]。該策略首先需要在低溫下將有預應力的無機納米薄膜沉積到犧牲層表面,然后利用溶劑去除犧牲層,最后納米薄膜在內(nèi)部應力釋放后形成微/納米管(圖3a)左)。圖3a)右側(cè)分別展示了利用該策略制備的Pt和TiO2管狀結(jié)構(gòu)。對于活性材料的卷曲組裝策略,Gladman等[79]通過控制水凝膠復合材料內(nèi)的局部纖維方向,打印了具有局部各向異性膨脹特性的二維前驅(qū)體,在浸入水中時二維結(jié)構(gòu)會發(fā)生復雜的溶脹變形,進而形成三維構(gòu)型。
1.2.3 折疊組裝方法
折疊組裝方法通常利用二維前驅(qū)體在局部區(qū)域的彎曲實現(xiàn)結(jié)構(gòu)的折疊變形,類似于剛性板在鉸鏈處的彎折。其驅(qū)動力包括毛細力、智能材料響應變形、殘余應力等。我們以毛細力為例來介紹折疊組裝策略[82-84]。Py等[84]利用聚二甲基硅氧烷(PDMS)制備了四面體、長方體和六棱錐等三維結(jié)構(gòu)。在該組裝過程中,隨著水分的蒸發(fā),折疊角度會由于毛細力的作用而逐漸增大,最終導致結(jié)構(gòu)完全閉合。從能量角度來看,該過程中的表面能(γA)轉(zhuǎn)化為彈性應變能,最終導致結(jié)構(gòu)的折疊變形。另外,通過采用智能材料,同樣可以形成有折角的三維結(jié)構(gòu)[80,85-86]。圖3b)為室溫在水性緩沖液中組裝得到的微型“類鳥”結(jié)構(gòu)[80]。隨著溫度在22~55 °C之間變化,由聚(N-異丙基丙烯酰胺-共聚-丙烯酸鈉)(PNIPAM)共聚物制成的水凝膠層會在局部區(qū)域發(fā)生膨脹與收縮,進而實現(xiàn)結(jié)構(gòu)在平面與折疊“鳥”構(gòu)型之間的可逆變換。
1.2.4 共形組裝方法
共形組裝方法[81,87-89]是基于轉(zhuǎn)移印刷技術(shù)發(fā)展起來的一類三維共形貼合的組裝方法。在薄膜機器人的制備中,這類組裝方法通常用于制備類球形、環(huán)狀等較為規(guī)則的三維身軀結(jié)構(gòu)[90]。本小節(jié)以圖3c)為例介紹一種典型的三維轉(zhuǎn)移印刷技術(shù)。如圖3c)所示的水轉(zhuǎn)印技術(shù),首先,在水溶性基底上布置導電圖案,然后將基底放入熱的去離子水表面,待薄膜溶解后,將曲面基板浸入水中,圖案會共形貼附到三維基板表面[81]。該策略可以在具有復雜彎曲形狀的一般物體上制備三維圖案化結(jié)構(gòu)。
2 基于不同驅(qū)動機制的薄膜類柔性微型機器人
薄膜類柔性微型機器人的驅(qū)動單元主要由薄膜驅(qū)動器組成。本節(jié)根據(jù)薄膜驅(qū)動器的激勵類型對其進行分類和介紹,其中涉及聚合物、復合材料、功能性軟材料等不同類型的材料。薄膜驅(qū)動器的激勵類型主要包括電響應[15,29-32,37,90-99]、磁響應[2,27,44-48,78,100-115]、熱響應[22-23,62,66,69,116-131]、光響應[20-21,39,41,124,132-170]、化學響應[14,18,40,71,139,171-200]和壓力響應[24,36,201-207]。其中,電、光、磁這樣的驅(qū)動方式可以實現(xiàn)對控制信號幅值、相位、頻率等參數(shù)的精確、快速調(diào)控,同時實現(xiàn)對機器人的無線控制,這對微尺度機器人的控制具有重要意義[11]。電場可以通過有線方式對機器人進行控制,也可以通過電場發(fā)生裝置產(chǎn)生復雜電場分布;磁場可以穿透大多物體,因此,磁驅(qū)動薄膜機器人往往是無線控制;光驅(qū)動也可以用于無線控制,但驅(qū)動效率較低。除此之外,熱驅(qū)動也是薄膜機器人常用的驅(qū)動方式之一,通過內(nèi)部熱應力失配或智能材料的熱響應變形,機器人可以實現(xiàn)高效運動。化學驅(qū)動一般利用內(nèi)部化學成分、濕度或pH值的變化來實現(xiàn)結(jié)構(gòu)的變形,但這類驅(qū)動器往往需要在某些特殊環(huán)境(如液體、密封環(huán)境等)中操作,且響應速度較慢。
2.1 電響應驅(qū)動
目前,能夠?qū)㈦娔苻D(zhuǎn)換為機械能的薄膜型驅(qū)動器有很多,包括壓電薄膜驅(qū)動器、離子型電致活性聚合物驅(qū)動器、功能性凝膠等智能材料驅(qū)動器,也包括利用外加物理場實現(xiàn)的電致變形驅(qū)動器(即靜電力驅(qū)動的薄膜結(jié)構(gòu)和介電彈性體驅(qū)動器)。電響應驅(qū)動的主要優(yōu)勢是能夠?qū)崿F(xiàn)信號相位、幅值和頻率的高效控制與調(diào)制,可以與傳統(tǒng)的電子設備兼容,是機器人標準化控制的首選驅(qū)動方式之一。
2.1.1 壓電功能材料驅(qū)動
材料的壓電效應通常指某些無對稱中心的晶體材料在受到外力時,物體內(nèi)部產(chǎn)生異號電荷或電勢差的現(xiàn)象。相反地,當該材料兩端存在電場時,材料會產(chǎn)生電致變形,這一過程被稱作逆壓電效應[208]。目前,應用于薄膜型微型機器人的壓電材料主要是鋯鈦酸鉛壓電陶瓷(PZT)和聚偏氟乙烯壓電薄膜(PVDF)。在壓電機器人的低頻驅(qū)動方面[28,93,95,209-211],Xiao等[91]于2016年制備了水面運動的仿生機器魚,其中用到了石墨烯/PVDF復合材料。Qu等[95]和Wood 課題組[209,211]分別利用PZT復合材料制備了毫米/厘米尺度薄膜機器人,實現(xiàn)了機器人的精確控制以及爬行、爬墻、飛行等多種運動模式。在壓電機器人的高頻驅(qū)動方面[15,91,212-213],Wu等[15]于2019年設計了一款基于PVDF多層復合材料的薄膜機器人,研究者分析了昆蟲的快速爬行機制,并利用PVDF復合材料的逆壓電效應實現(xiàn)了機器人在高頻電壓驅(qū)動下的快速運動(20身長/s)。該機器人充分體現(xiàn)出薄膜類機器人輕質(zhì)和魯棒性高的特點。
2.1.2 靜電力驅(qū)動
薄膜類靜電驅(qū)動器是一類利用電荷間相互作用實現(xiàn)的驅(qū)動元件,由于其執(zhí)行效率高、響應時間短、功耗低等優(yōu)點,常被用于高頻電壓下的驅(qū)動。但這類驅(qū)動器也有明顯的缺點,包括:驅(qū)動力較小、驅(qū)動電壓較高、工作量程較小、易發(fā)生介質(zhì)電擊穿等。2006年,Donald等[31]基于MEMS微加工工藝和靜電吸附原理,研發(fā)了一款微米尺度的薄膜機器人,通過施加周期性靜電力使機器人身軀發(fā)生不對稱變形,進而實現(xiàn)機器人的沿軌跡爬行。這類機器人雖然實現(xiàn)了無線控制,但依然被束縛在特殊基底表面,且運動速度較慢。2017年,Shigemune等[30]利用噴墨打印工藝和卷曲組裝技術(shù),制備了一款宏觀尺度的三維薄膜機器人。2018年,Taghavi等[99]將單極型靜電驅(qū)動器應用于機器人的重物抬升,借助折紙設計并引入液體介質(zhì),實現(xiàn)了靜電驅(qū)動下人造肌肉較大的驅(qū)動力。2020年,Jin等[17]同樣采用單極型電極設計,制備了運動速度較快的靜電驅(qū)動機器人(0. 7身長/s),如圖4a)所示。該機器人可以實現(xiàn)越障、爬坡等復雜環(huán)境下的爬行,且具有較高的魯棒性。2021年,Wang等[29]開發(fā)了一款毫米尺度的仿肌肉柔性靜電驅(qū)動機器人,采用雙激勵多相靜電驅(qū)動(dual excitation multiphase electrostatic drive)的原理[214],通過在不同層之間施加不同相位的三相交流電,可以實現(xiàn)層間的位錯運動。
2.1.3 電致活性聚合物驅(qū)動
電致活性聚合物(EAPs)指能在電刺激下改變大小和形狀的聚合物,這類材料具有較大電致變形/電驅(qū)動力、低噪音、低模量、高斷裂韌性等特點,并且制備工藝相對簡便[215]。EAPs材料主要分類兩大類:電場型EAPs和離子型EAPs。在這一小節(jié),我們主要討論兩類常被用于薄膜機器人制備的材料:介電彈性體 (DE)和離子導電聚合物 (IEAP) 。其中,DE屬于電場型EAPs,很早便受到了研究者的廣泛關(guān)注[92, 216-217]。IEAP屬于離子型EAPs,在電場作用下其內(nèi)部離子或溶劑會重分布,進而發(fā)生形狀改變[218]。IEAP具有工作電壓低、生物兼容性好、蠕變少、單周期能量密度高、微納米尺度下易制備等優(yōu)勢,但工作壽命較為有限,且大多需要在液體或液體封裝環(huán)境中使用[219]。
目前,薄膜類DE驅(qū)動器主要以雙層復合結(jié)構(gòu)為主[96, 220-222]。圖4b)展示了一種以機械能為動力源的新型摩擦電軟機器人系統(tǒng) (TESR)[16]。TESR是由柔性身軀(DE復合層結(jié)構(gòu))和2個靜電腳掌構(gòu)成,利用摩擦電效應驅(qū)動。圖4c)展示了一種利用預拉伸DE薄膜與被動層相結(jié)合的薄膜型抓手[96]。將抓手表面柔性電極進行圖案化的方法有很多,例如,石墨碳膏/石墨粉一般采用絲網(wǎng)印刷或直接涂抹、銀漿或可拉伸金屬薄膜采用選擇性薄膜沉積或印刷等工藝[223]。
基于MEMS微加工工藝, Jager等[32]于2000年制備了基于聚吡咯-金雙層復合材料的IEAP微米尺度機器人手臂,用于操縱細胞等微米大小的物體。Must等[224]在IEAP材料的表征及IEAP機器人方面做了很多研究工作[90, 225]。圖4d)展示了其在2015年制備的一款基于IEAP復合層結(jié)構(gòu)的厘米尺度機器人,驅(qū)動部分由活性炭基電極和離子液體作為電解質(zhì),利用共形貼附結(jié)合加熱固形的工藝得到圓弧狀三維構(gòu)型,實現(xiàn)了IEAP機器人在干燥環(huán)境中的無線自供電運動。
2.1.4 電響應凝膠驅(qū)動
浸沒于離子溶液中的電響應凝膠可以在電場作用下改變內(nèi)外離子濃度,吸收或釋放大量液體,進而實現(xiàn)凝膠本身體積的巨大變化。這種材料通常在低電壓下便可被驅(qū)動,同時具有較好的生物相容性,但其響應速度慢,且依賴電解質(zhì)溶液,在驅(qū)動過程中也容易產(chǎn)生熱量或氣體[226]。2008年, Kwon等[97]利用電響應凝膠制備了類章魚、精子和多足水生物等仿生機器人(圖4e)),該機器人是采用基于微流控平臺的順序原位光聚合方法,對凝膠材料進行圖案化曝光得到的。2013年,Palleau等[37]提出電離印刷 (ionoprinting)工藝,利用圖案化金屬印章通過電離的方式,將金屬離子快速轉(zhuǎn)移到凝膠體系中,得到了“二維-三維”可逆變形的薄膜類凝膠機器人。2014年,Morales等[98]將兩種變形方向相反的電響應凝膠集成在一個機器人身軀中,實現(xiàn)了機器人的地面雙向爬行。
2.2 磁響應驅(qū)動
利用磁場力或洛倫茲力可以實現(xiàn)對薄膜機器人的有效驅(qū)動。這類磁響應驅(qū)動的特點包括:非接觸遠程控制、可精確操縱、較強可控性等。制備磁響應材料的方法有很多,例如,可以將磁性填料摻入到基體材料中得到組合方式豐富的磁響應材料,也可以利用蒸鍍、濺射等方式將磁性材料直接沉積到基體材料表面。本節(jié)將按照材料種類將磁響應材料分為:磁響應聚合物[2,27,44-46,48,100,102-103,105,107-108,112-113,115,227-229]、磁響應水凝膠[22, 42, 101, 230]、磁響應形狀記憶聚合物[104, 111, 114]和其他磁響應材料,并分別對其進行介紹。
2.2.1 磁響應聚合物驅(qū)動
磁響應聚合物通常指嵌有磁性顆粒的軟/硬聚合物材料,這類材料可以通過3D打印、光刻等工藝制備二維圖案化結(jié)構(gòu)[107-108]。對于磁彈性軟聚合物,在毫米尺度下,Sitti團隊[2]于2018年制備了一款在磁場下具有滾動、行走和跳躍等多種運動模式的機器人,又于2019年設計了毫米尺度仿生游泳機器人[27],如圖5a)所示。該機器人由外部振蕩磁場驅(qū)動,可以完成物體捕獲等功能。此外,有研究者在磁彈性體的微尺度制備方面做了很多工作。2016年, Huang等[100]基于光刻工藝制備出多模式運動的游泳機器人。Cui等[228]于2019年基于電子束光刻制造出納米磁性驅(qū)動器,在不同磁場下具有不同的變形模式。2018年,Zhao團隊[44]基于直接墨水書寫(DIW)技術(shù),打印了一系列具有任意圖案和磁疇分布的薄膜機器人,其在磁場作用下可以快速完成形變。Xu等[48]于2019年利用數(shù)字光處理(DLP)技術(shù)對微米尺度平面結(jié)構(gòu)中的磁性粒子進行磁化編碼,得到兼具抓取、爬行、游泳等多種運動模式的薄膜機器人。
在基于硬質(zhì)磁響應聚合物的薄膜類微型驅(qū)動器研究方面,研究者[102,105,115]利用電子束沉積實現(xiàn)聚合物表面軟磁性薄膜的加工,基于力學引導的屈曲組裝方法實現(xiàn)復雜三維結(jié)構(gòu)的制備。在磁場力/洛倫茲力驅(qū)動下,實現(xiàn)了三維微電子器件的重構(gòu)與精確控制。圖5b)展示了利用該方法得到的類蝴蝶的可重構(gòu)結(jié)構(gòu)。
2.2.2 磁響應水凝膠驅(qū)動
磁響應水凝膠是一種具有親水性聚合物鏈并表現(xiàn)出彈性行為的聚合物,這些聚合物網(wǎng)絡可以包含質(zhì)量超過 90%的水分。由于其低剛度和良好的生物相容性,水凝膠已在生物醫(yī)學應用領(lǐng)域得到廣泛的關(guān)注。磁性粒子的摻入賦予了水凝膠磁響應變形的能力[22, 42, 101, 230]。如圖5c)所示,Breger等[22]于2015年基于光刻工藝制備出微型水凝膠抓手,該機器人通過磁場實現(xiàn)空間移動,同時可以在纖維細胞團中捕獲和切除細胞。2020年,Li等[101]制備了一款磁/光耦合驅(qū)動的機器人,該機器人在磁場控制下可以沿著預定的路徑運動。
2.2.3 磁響應形狀記憶聚合物驅(qū)動
磁響應形狀記憶聚合物(SMP)是基體材料中摻雜有磁性顆粒的SMP材料,其主要原理是在高頻交變磁場下感應加熱磁響應顆粒,進而觸發(fā)SMP的相變和固形[104, 111, 114]。圖5d)中,Ze等[114]報道了一種基于磁響應SMP的可逆變形抓手,實現(xiàn)了驅(qū)動磁場和加熱磁場的獨立控制。將可編程概念引入SMP中也可進一步增加機器人的自由度[111]。
2.2.4 其他磁響應材料驅(qū)動
一些纖維構(gòu)成的材料(如紙張)能夠吸收帶有磁性顆粒的流體[231-232],進而實現(xiàn)磁場對纖維材料變形的控制。Ding等[231]使用紙張吸收鐵磁流體,在磁場下實現(xiàn)了高達40°的偏轉(zhuǎn)和0. 4 N的驅(qū)動力。另外,香港城市大學Shen團隊[113]研發(fā)了一種磁性噴霧“M-spray”,該噴霧可附著于物體表面,在磁場控制下實現(xiàn)物體的變形與運動。這類磁性噴霧可以附著的材料種類很廣泛。
2.3 熱響應驅(qū)動
熱響應薄膜驅(qū)動器包括基于紅外 (IR)、近場紅外 (NIR)、熱輻射和焦耳加熱等原理制備的驅(qū)動器。薄膜結(jié)構(gòu)由于其幾何上的特點,可以有效提高熱驅(qū)動器的驅(qū)動效率和響應速度。下面的小節(jié)將按照材料類型對熱響應薄膜機器人進行介紹。
2.3.1 形狀記憶合金驅(qū)動
形狀記憶合金(SMA)是一類可以在熱循環(huán)下變形并恢復到原始“記憶”形狀的材料。不同溫度下,其晶體結(jié)構(gòu)會在馬氏體和奧氏體之間可逆切換。這類材料在薄膜機器人中應用廣泛[120-121,123,126-127]。受蚱蜢運動啟發(fā), Wang等[127]制備了一款基于SMA的薄膜機器人,電熱驅(qū)動下可實現(xiàn)曲線運動。Jin等[120]報道了一種具有爬行、游泳、抓取等多種功能的SMA機器人。為解決合金冷卻速度慢的問題,Huang等[120]提出一種快速響應的SMA驅(qū)動器制備方法。該驅(qū)動器由U形SMA纖維組成,并介于雙層導熱彈性體之間。圖6a)展示的是利用上述驅(qū)動器制備的可快速變形的跳躍機器人。
2.3.2 形狀記憶聚合物驅(qū)動
SMP大多具有熱響應特性,在熱循環(huán)載荷下可逆地改變?nèi)S構(gòu)型。圖6b)展示了一種基于屈曲組裝方法制備的雙運動模式微型游泳機器人[71]。在不同環(huán)境溫度下,該機器人具有不同的幾何構(gòu)型,可以實現(xiàn)水面直行和沿曲線運動兩種模式的切換。
2.3.3 熱響應液晶彈性體驅(qū)動
當受到熱刺激時,一些熱響應液晶彈性體材料(LCE)會發(fā)生相變(液晶相與非晶各向同性相之間轉(zhuǎn)換),基于這一特性,LCE廣泛用于薄膜機器人中[23, 66, 69, 122, 129]。Kotikian等[122]報道了一種基于LCE 鉸鏈的可逆折疊/展開機構(gòu),并利用該機構(gòu)實現(xiàn)了機器人的滾動前行。圖6c)中Xiao等[129]則利用LCE復合材料薄膜的電熱驅(qū)動,實現(xiàn)了機器人推動物體、爬行等多運動模式。在小尺度下,研究者也將LCE薄膜應用于屈曲組裝方法,將其作為二維前驅(qū)體[69]或彈性基底[66],實現(xiàn)了微尺度三維LCE驅(qū)動器的變形與重構(gòu)。
2.3.4 熱響應凝膠驅(qū)動
熱響應凝膠可在熱刺激下脫水發(fā)生變形。這類材料生物相容性好,在微型藥物輸送/抓取[22, 125]和其他領(lǐng)域[65, 157, 180]中具有重要的應用價值。Malachowski等[125]基于微尺度下殘余應力誘導的卷曲技術(shù)制備了一款微型抓手,可以深入細胞組織,抓取并輸送藥物,如圖6d)所示。圖6e)則展示了利用屈曲組裝方法得到的三維結(jié)構(gòu),利用水凝膠彈性基底的熱響應變形誘導二維前驅(qū)體的組裝,實現(xiàn)了微尺度下豐富的可重構(gòu)三維構(gòu)型[65]。
2.3.5 復合材料熱失配驅(qū)動
復合材料薄膜在溫度變化下,其各層間熱應變的差別引起的應變失配會導致結(jié)構(gòu)的彎曲變形[62, 117, 128, 131]。圖6f)中,Chen等[117]利用碳納米管/聚合物復合材料制備了一種低電壓下快速爬行的薄膜機器人。圖6g)中,研究者則制備得到聚合物/石墨烯/硅膠復合材料體系(LIG),系統(tǒng)研究了LIG電熱薄膜驅(qū)動器的驅(qū)動性能,并探索了其在薄膜型人工肌肉、可重構(gòu)三維微結(jié)構(gòu)及人機交互中的應用[62]。
2.4 光響應驅(qū)動
光響應驅(qū)動具有遠程可控、快速調(diào)制等特點,并且光斑可以輕松聚焦在納米或微米級區(qū)域。這里將按照材料種類來介紹光驅(qū)動薄膜機器人。
2.4.1 光響應凝膠驅(qū)動
光反應基團可以結(jié)合到凝膠網(wǎng)絡中,使凝膠材料在光刺激下發(fā)生膨脹或收縮。目前已有研究人員利用光驅(qū)動水凝膠制備具有爬行[39,145,155]、游泳[157,170]等多種運動模式的機器人。2020年,Li等[145]將螺吡喃基聚合物水凝膠制成薄膜,并用于四足機器人的直線與轉(zhuǎn)向運動。在此基礎(chǔ)上,利用雙層結(jié)構(gòu)驅(qū)動器設計,該團隊制備了一款折紙型爬行機器人[39]。Zhao等[170]則設計了一種在恒定光刺激下持續(xù)振蕩運動的水凝膠驅(qū)動器,能夠在液體表面運動。
2.4.2 光響應液晶彈性體驅(qū)動
光響應液晶彈性體驅(qū)動器具有易加工、耐腐蝕、低成本等優(yōu)點,在光驅(qū)動薄膜機器人中具有較為廣泛的應用[20-21,133,140-141,147-148,150,154,162-164,174,233],其中也不乏復雜的運動模式,如爬行[21, 133, 149, 164, 233]、行走[140-141]、跳躍[133, 144]、游泳[148,153-154]、滾動[20]等。利用該材料在三種波長光源刺激下的復雜變形模式,研究者分別制備出多方向運動[233]和可搬運貨物的微型四足機器人[149],如圖7a)和b)所示。當光線以一定角度入射時,通過合理設計可以實現(xiàn)機器人的變形和運動,進而實現(xiàn)機器人的前進與后退[141]。同時,也有研究者將碳納米管摻雜到液晶彈性體材料中,制備出具有光熱效應的薄膜機器人,實現(xiàn)了爬行、跳躍等運動模式[133],如圖7c)所示。
2.4.3 光響應形狀記憶聚合物驅(qū)動
光化學響應SMP(如含有肉桂基團的聚合物)可以被預先處理為一種特定形狀,并在光照下會恢復到原始形狀[135, 143, 152],常用于醫(yī)療等領(lǐng)域。然而,在薄膜機器人中,摻雜光熱填料的光熱驅(qū)動SMP具有更加廣泛的應用[132, 135, 143, 151, 156, 167, 169],尤其是薄膜類爬行機器人[156, 167, 169]。
2.4.4 其他光響應材料及結(jié)構(gòu)驅(qū)動
通過光響應層與被動層集成得到的復合材料驅(qū)動器可以在光照下發(fā)生變形,具有靈敏度高、可編程性強、兼容性好、魯棒性好等優(yōu)點,且易于制備[132, 136-138, 142-144, 147, 158, 159]。研究人員利用不同復合片層實現(xiàn)了許多有趣的機器人設計。圖7d)展示的是一種由石墨烯(SGA)/聚乙烯(PE)雙層薄膜制備的機器人,可以在紅外照射下實現(xiàn)滾動[158]。也有研究者利用碳納米管/PDMS雙層驅(qū)動器得到人造肌肉驅(qū)動部件[165]。
還有一些特殊的驅(qū)動機制,例如,Park等[41]受黃貂魚的啟發(fā)制造了一種生物混合驅(qū)動機器人,可以在光刺激下于水中波動前行。Andrén等[134]利用光機械效應構(gòu)造的光學超表面載體,實現(xiàn)了微觀粒子的長距離可控運動。Miskin等[234]基于光-電-化學驅(qū)動原理,實現(xiàn)了尺寸小于0. 1 mm的薄膜機器人的制備和運動。
2.5 化學響應驅(qū)動
化學響應驅(qū)動器在施加液體或蒸汽形式的刺激后會發(fā)生變形,其包含多種物理化學機制。我們按照其驅(qū)動方式可以分為:濕度驅(qū)動、pH驅(qū)動、表面張力驅(qū)動以及其他類型驅(qū)動。
2.5.1 濕度響應驅(qū)動
濕度響應驅(qū)動器可以在環(huán)境濕度改變時發(fā)生構(gòu)型變化,這類驅(qū)動器適用于很多材料,且有不少有趣的濕度驅(qū)動薄膜機器人被報道[139, 172-173, 175, 180, 182, 185, 187-190, 194, 196-197, 200]。2017年, Liu等[188]設計了基于還原氧化石墨烯/氧化石墨烯(GO)的雙層驅(qū)動器,利用其對水分子吸收能力的差異,制作了濕度驅(qū)動爬行機器人。Zhang等[19]利用氧化石墨烯納米薄片制備機器人,這類材料可以顯著促進水分的吸收,如圖8a)所示?;谠摬牧系念愹隍急∧C器人,具有反應速度快、變形程度大、變形復雜、可預測等特點。Shin等[194]于2018年利用靜電紡絲技術(shù)制備了納米纖維復合薄膜,通過復合薄膜不同層對濕度響應的差異,制備得到由環(huán)境濕度驅(qū)動的自主爬行機器人。
2.5.2 pH響應驅(qū)動
pH響應驅(qū)動器是由材料官能團的 pH 依賴性電離和電荷之間的靜電排斥引起,常用于“芯片實驗室”和微流體等環(huán)境[171, 174, 177, 179, 184, 186, 191, 198-199],有望應用于藥物特異性輸送和腫瘤治療等領(lǐng)域[186, 199]。Meng等[191]設計的一款水凝膠微型機器人在磁場作用下移動到目標位置后,利用pH變化將包裹在內(nèi)部的珠子狀物體釋放,且該機器人對人體細胞沒有毒性,具有較好的生物相容性。
2.5.3 表面張力驅(qū)動
在基于液體表面張力驅(qū)動的薄膜機器人中,有代表性的工作包括梅永豐教授團隊于2021年報道的一種類水黽的水面運動薄膜機器人[40],可以持續(xù)運動長達3.5 h。該機器人由具有疏水和親水基團的活性水凝膠制備而成,在水表面的潤濕過程中,利用親水和疏水部分表面張力的差別來實現(xiàn)機器人的運動。
2.5.4 化學反應驅(qū)動
一些化學反應會產(chǎn)生氣泡,進而為機器人帶來推進力,典型的反應為過氧化氫的分解。利用這一原理可以制備很多水面運動的薄膜機器人[14, 18, 71]。其中,Schmidt教授團隊[14]于2020年制備了微米尺度的多功能水面運動機器人,基于光刻工藝集成控制電路和無線功能模塊,利用催化反應可以實現(xiàn)機器人的可控運動,同時利用局部加熱的方式也可以實現(xiàn)微小物體的抓取。另外,也有研究者利用三維結(jié)構(gòu)的屈曲組裝方法,得到了圖8b)和c)中的液體表面運動機器人[18, 71]。這類機器人利用屈曲組裝的方法實現(xiàn)微尺度下機器人結(jié)構(gòu)的制備,并利用鉑電極的圖案化布置和可變形基底的調(diào)控,實現(xiàn)在過氧化氫液體表面的運動。其中,機器人的幾何重構(gòu)為運動模式的切換帶來了可能(直線和曲線運動)。
另外,有些特殊材料會在有機化學物質(zhì)的刺激下產(chǎn)生響應。Lin課題組[176]于2017年的一個工作中,利用激光直寫方法對PVDF晶相進行了調(diào)控,并利用PVDF制備了多層復合材料薄膜。該薄膜在丙酮蒸汽的作用下會發(fā)生不對稱膨脹。利用這一原理,研究者得到了具有較快驅(qū)動速度的大變形薄膜機器人[176, 200]。
2.6 壓力驅(qū)動
壓力驅(qū)動在軟體機器人中較為常見。一些微型薄膜類軟材料制備的機器人,同樣可以采用壓力驅(qū)動的方式[202, 207, 235-237]。這類薄膜壓力驅(qū)動器具有重量輕、效率高、無污染、環(huán)境適應性強等優(yōu)點[25, 201, 238-241],在生物醫(yī)療等領(lǐng)域展現(xiàn)出巨大的應用前景[36, 202, 205, 207, 242]。這里將按照氣壓驅(qū)動與液壓驅(qū)動分別進行介紹。
氣壓驅(qū)動方面,OK等[242]于2006年基于光刻技術(shù)制造出適用于各種環(huán)境的氣動微型籠。同年,Lu等[205]制備了一款微型抓手,如圖9a)所示。該抓手可以精確抓取微型生物體和生物組織。除了微尺度下制備的薄膜機器人外,宏觀尺度氣動機器人應用更加廣泛[201]。圖9b)展示的是Kumar等[25]于2021年基于軟光刻工藝開發(fā)的機器人,在氣壓驅(qū)動下可以實現(xiàn)機器人在水面的快速運動。同時該機器人具有溫度感知、酸度感知等功能。
液壓驅(qū)動的研究相對較少,主要集中在利用封裝液體實現(xiàn)薄膜類柔性關(guān)節(jié)的驅(qū)動。Kellaris等[203]、Wood課題組[204]在這方面都進行了相關(guān)研究。
3 總結(jié)與展望
平面圖案化微加工工藝與三維微電子系統(tǒng)組裝技術(shù)的蓬勃發(fā)展催生出眾多薄膜類的柔性微型機器人。這類微型機器人已在生物醫(yī)療、救援等多個領(lǐng)域展現(xiàn)出巨大的應用潛力。從本文中展示的薄膜類機器人可以發(fā)現(xiàn),該類機器人可以采用電、熱、磁、光、壓力、化學等多種激勵方式來驅(qū)動,在魯棒性、小型化、器件集成度、功能多樣化等多個方面具有獨特的優(yōu)勢。但目前,薄膜類機器人構(gòu)型的復雜度與傳統(tǒng)剛性機器人或軟體機器人相比,仍較為單一,多以單層薄膜或較為簡單的可變形結(jié)構(gòu)組成,這在一定程度上限制了薄膜類機器人在多運動模式、多功能器件集成等方面的發(fā)展。以屈曲組裝為代表的三維微結(jié)構(gòu)組裝技術(shù)可以制備幾何構(gòu)型復雜的三維功能性電子系統(tǒng),且適用于半導體、聚合物、金屬、二維材料、功能性軟材料等多種材料的組裝。利用微尺度組裝技術(shù)來制備薄膜類柔性微型機器人,可以使薄膜機器人具有更豐富的幾何構(gòu)型、更高的器件集成度和更多樣的運動模式。
參考文獻:
[1]? ? CHEN Y F,DOSHI N,GOLDBERG B,et al. Controllable water surface to underwater transition through electrowetting in a hybrid terrestrial-aquatic microrobot[J]. Nature Communications,2018,9:2495.
[2]? ? HU W Q,LUM G Z,MASTRANGELI M,et al. Small-scale soft-bodied robot with multimodal locomotion[J]. Nature,2018,554(7690):81-85.
[3]? ? SITTI M. Voyage of the microrobots[J]. Nature,2009,458(7242):1121-1122.
[4]? ? SITTI M,CEYLAN H,HU W Q,et al. Biomedical applications of untethered mobile milli/microrobots[J]. Proceedings of the IEEE,2015,103(2):205-224.
[5]? ? ALAPAN Y,YASA O,SCHAUER O,et al. Soft erythrocyte-based bacterial microswimmers for cargo delivery[J]. Science Robotics,2018,3(17):eaar4423.
[6]? ? NELSON B J,KALIAKATSOS I K,ABBOTT J J. Microrobots for minimally invasive medicine[J]. Annual Review of Biomedical Engineering,2010,12:55-85.
[7]? ? FLOREANO D,WOOD R J. Science,technology and the future of small autonomous drones[J]. Nature,2015,521(7553):460-466.
[8]? ? GRAULE M A,CHIRARATTANANON P,F(xiàn)ULLER S B,et al. Perching and takeoff of a robotic insect on overhangs using switchable electrostatic adhesion[J]. Science,2016,352(6288):978-982.
[9]? ? JAFFERIS N T,HELBLING E F,KARPELSON M,et al. Untethered flight of an insect-sized flapping-wing microscale aerial vehicle[J]. Nature,2019,570(7762):491-495.
[10]? EL-ATAB N,MISHRA R B,AL-MODAF F,et al. Soft actuators for soft robotic applications:a review[J]. Advanced Intelligent Systems,2020,2(10):2070102.
[11]? YANG J,ZHANG C,WANG X D,et al. Development of micro- and nanorobotics:a review[J]. Science China Technological Sciences,2019,62(1):1-20.
[12]? CHENG X,ZHANG Y H. Micro/nanoscale 3D assembly by rolling,folding,curving,and buckling approaches[J]. Advanced Materials,2019,31(36):1901895.
[13]? HUANG G S,MEI Y F. Assembly and self-assembly of nanomembrane materials—from 2D to 3D[J]. Small,2018,14(14):1703665.
[14]? BANDARI V K,NAN Y,KARNAUSHENKO D,et al. A flexible microsystem capable of controlled motion and actuation by wireless power transfer[J]. Nature Electronics,2020,3(3):172-180.
[15]? WU Y C,YIM J K,LIANG J M,et al. Insect-scale fast moving and ultrarobust soft robot[J]. Science Robotics,2019,4(32):eaax1594.
[16]? LIU Y,CHEN B D,LI W,et al. Bioinspired triboelectric soft robot driven by mechanical energy[J]. Advanced Functional Materials,2021:2104770.
[17]? JIN C R,ZHANG J H,XU Z,et al. Tunable,flexible,and resilient robots driven by an electrostatic actuator[J]. Advanced Intelligent Systems,2020,2(3):2070030.
[18]? YAN Z,HAN M D,SHI Y,et al. Three-dimensional mesostructures as high-temperature growth templates,electronic cellular scaffolds,and self-propelled microrobots[J]. PNAS,2017,114(45):E9455-E9464.
[19]? ZHANG Y L,LIU Y Q,HAN D D,et al. Actuators:quantum-confined-superfluidics-enabled moisture actuation based on unilaterally structured graphene oxide papers [J]. Advanced Materials,2019,31(32):1970231.
[20]? CHENG Y C,LU H C,LEE X,et al. Kirigami-based light-induced shape-morphing and locomotion[J]. Advanced Materials,2020,32(7):1906233.
[21]? ZENG H,WANI O M,WASYLCZYK P,et al. Light-driven,caterpillar-inspired miniature inching robot[J]. Macromolecular Rapid Communications,2018,39(1):1700224.
[22]? BREGER J C,YOON C,XIAO R,et al. Self-folding thermo-magnetically responsive soft microgrippers[J]. ACS Applied Materials & Interfaces,2015,7(5):3398-3405.
[23]? WANG C J,SIM K,CHEN J,et al. Adaptive soft robots:soft ultrathin electronics innervated adaptive fully soft robots [J]. Advanced Materials,2018,30(13):1870087.
[24]? RANZANI T,RUSSO S,BARTLETT N W,et al. Increasing the dimensionality of soft microstructures through injection-induced self-folding[J]. Advanced Materials,2018,30(38):1802739.
[25]? KUMAR V,KO U H,ZHOU Y L,et al. Microengineered materials with self-healing features for soft robotics[J]. Advanced Intelligent Systems,2021,3(7):2100005.
[26]? LU H J,HONG Y,YANG Y Y,et al. Battery-less soft millirobot that can move,sense,and communicate remotely by coupling the magnetic and piezoelectric effects[J]. Advanced Science,2020,7(13):2000069.
[27]? REN Z Y,HU W Q,DONG X G,et al. Multi-functional soft-bodied jellyfish-like swimming[J]. Nature Communications,2019,10:2703.
[28]? GOLDBERG B,ZUFFEREY R,DOSHI N,et al. Power and control autonomy for high-speed locomotion with an insect-scale legged robot[J]. IEEE Robotics and Automation Letters,2018,3(2):987-993.
[29]? WANG H Q,YORK P,CHEN Y F,et al. Biologically inspired electrostatic artificial muscles for insect-sized robots[J]. The International Journal of Robotics Research,2021,40(6/7):895-922.
[30]? SHIGEMUNE H,MAEDA S,CACUCCIOLO V,et al. Printed paper robot driven by electrostatic actuator[J]. IEEE Robotics and Automation Letters,2017,2(2):1001-1007.
[31]? DONALD B R,LEVEY C G,MCGRAY C D,et al. An untethered,electrostatic,globally controllable MEMS micro-robot[J]. Journal of Microelectromechanical Systems,2006,15(1):1-15.
[32]? JAGER E W,INGAN?S O,LUNDSTR?M I. Microrobots for micrometer-size objects in aqueous media:potential tools for single-cell manipulation[J]. Science,2000,288(5475):2335-2338.
[33]? 尹周平,黃永安. 柔性電子制造:材料、器件與工藝[M]. 北京:科學出版社,2016:1.
[34]? KUMAR A,WHITESIDES G M. Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ‘ink’ followed by chemical etching[J]. Applied Physics Letters,1993,63(14):2002-2004.
[35]? MORAES C,SUN Y,SIMMONS C A. Solving the shrinkage-induced PDMS alignment registration issue in multilayer soft lithography[J]. Journal of Micromechanics and Microengineering,2009,19(6):065015.
[36]? RUSSO S,RANZANI T,WALSH C J,et al. An additive millimeter-scale fabrication method for soft biocompatible actuators and sensors[J]. Advanced Materials Technologies,2017,2(10):1700135.
[37]? PALLEAU E,MORALES D,DICKEY M D,et al. Reversible patterning and actuation of hydrogels by electrically assisted ionoprinting[J]. Nature Communications,2013,4:2257.
[38]? MORALES D,PODOLSKY I,MAILEN R,et al. Ionoprinted multi-responsive hydrogel actuators[J]. Micromachines,2016,7(6):98.
[39]? LI C,XUE Y G,HAN M D,et al. Synergistic photoactuation of bilayered spiropyran hydrogels for predictable origami-like shape change[J]. Matter,2021,4(4):1377-1390.
[40]? ZHU H,XU B R,WANG Y,et al. Self-powered locomotion of a hydrogel water strider[J]. Science Robotics,2021,6(53):eabe7925.
[41]? PARK S J,GAZZOLA M,PARK K S,et al. Phototactic guidance of a tissue-engineered soft-robotic ray[J]. Science,2016,353(6295):158-162.
[42]? CHEN Z,ZHAO D H,LIU B H,et al. 3D printing of multifunctional hydrogels[J]. Advanced Functional Materials,2019,29(20):1900971.
[43]? GUL J Z,SAJID M,REHMAN M M,et al. 3D printing for soft robotics – a review[J]. Science and Technology of Advanced Materials,2018,19(1):243-262.
[44]? KIM Y,YUK H,ZHAO R K,et al. Printing ferromagnetic domains for untethered fast-transforming soft materials[J]. Nature,2018,558(7709):274-279.
[45]? LANTEAN S,BARRERA G,PIRRI C F,et al. 3D printing of magnetoresponsive polymeric materials with tunable mechanical and magnetic properties by digital light processing[J]. Advanced Materials Technologies,2019,4(11):1900505.
[46]? ROH S,OKELLO L B,GOLBASI N,et al. 3D-printed silicone soft architectures with programmed magneto-capillary reconfiguration[J]. Advanced Materials Technologies,2019,4(4):1800528.
[47]? WU S,HU W Q,ZE Q J,et al. Multifunctional magnetic soft composites:a review[J]. Multifunctional Materials,2020,3(4):042003.
[48]? XU T Q,ZHANG J C,SALEHIZADEH M,et al. Millimeter-scale flexible robots with programmable three-dimensional magnetization and motions[J]. Science Robotics,2019,4(29):eaav4494.
[49]? ZHAO R K,KIM Y,CHESTER S A,et al. Mechanics of hard-magnetic soft materials[J]. Journal of the Mechanics and Physics of Solids,2019,124:244-263.
[50]? ZHANG Y H,ZHANG F,YAN Z,et al. Printing,folding and assembly methods for forming 3D mesostructures in advanced materials[J]. Nature Reviews Materials,2017,2(4):1-17.
[51]? XU S,YAN Z,JANG K I,et al. Assembly of micro/nanomaterials into complex,three-dimensional architectures by compressive buckling[J]. Science,2015,347(6218):154-159.
[52]? PRINZ V Y. A new concept in fabricating building blocks for nanoelectronic and nanomechanic devices[J]. Microelectronic Engineering,2003,69(2/3/4):466-475.
[53]? CHO J H,AZAM A,GRACIAS D H. Three dimensional nanofabrication using surface forces[J]. Langmuir,2010,26(21):16534-16539.
[54]? KIM J B,ZAEHRES H,WU G M,et al. Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors[J]. Nature,2008,454(7204):646-650.
[55]? YAN Z,HAN M D,YANG Y Y,et al. Deterministic assembly of 3D mesostructures in advanced materials via compressive buckling:a short review of recent progress[J]. Extreme Mechanics Letters,2017,11:96-104.
[56]? YAN Z,ZHANG F,WANG J C,et al. 3D assembly:controlled mechanical buckling for origami-inspired construction of 3D microstructures in advanced materials (adv. funct. mater. 16/2016)[J]. Advanced Functional Materials,2016,26(16):2586.
[57]? ZHANG Y H,YAN Z,NAN K W,et al. A mechanically driven form of Kirigami as a route to 3D mesostructures in micro/nanomembranes[J]. Proceeding National Academy of Sciences of the United States of America,2015,112(38):11757-11764.
[58]? XU B X,MUELLER R,KLASSEN M,et al. On electromechanical stability analysis of dielectric elastomer actuators[J]. Applied Physics Letters,2010,97(16):162908.
[59]? YAN Z,ZHANG F,LIU F,et al. Mechanical assembly of complex,3D mesostructures from releasable multilayers of advanced materials[J]. Science Advances,2016,2(9):e1601014.
[60]? FU H R,NAN K W,BAI W B,et al. Morphable 3D mesostructures and microelectronic devices by multistable buckling mechanics[J]. Nature Materials,2018,17(3):268-276.
[61]? LUAN H W,CHENG X,WANG A,et al. Design and fabrication of heterogeneous,deformable substrates for the mechanically guided 3D assembly[J]. ACS Applied Materials & Interfaces,2019,11(3):3482-3492.
[62]? LING Y,PANG W B,LI X P,et al. Laser-induced graphene for electrothermally controlled,mechanically guided,3D assembly and human–soft actuators interaction[J]. Advanced Materials,2020,32(17):1908475.
[63]? PANG W B,CHENG X,ZHAO H J,et al. Electro-mechanically controlled assembly of reconfigurable 3D mesostructures and electronic devices based on dielectric elastomer platforms[J]. National Science Review,2020,7(2):342-354.
[64]? ZHAO H B,LI K,HAN M D,et al. Buckling and twisting of advanced materials into morphable 3D mesostructures[J]. PNAS,2019,116(27):13239-13248.
[65]? ZHANG C,DENG H,XIE Y C,et al. Stimulus responsive 3D assembly for spatially resolved bifunctional sensors[J]. Small,2019,15(51):1904224.
[66]? LI Y,LUO C Q,YU K,et al. Remotely controlled,reversible,on-demand assembly and reconfiguration of 3D mesostructures via liquid crystal elastomer platforms[J]. ACS Applied Materials & Interfaces,2021,13(7):8929-8939.
[67]? WANG X J,GUO X G,YE J L,et al. Freestanding 3D mesostructures,functional devices,and shape-programmable systems based on mechanically induced assembly with shape memory polymers[J]. Advanced Materials,2019,31(2):1805615.
[68]? PARK Y,LUAN H W,KWON K,et al. 4D electronic systems:transformable,freestanding 3D mesostructures based on transient materials and mechanical interlocking (adv. funct. mater. 40/2019)[J]. Advanced Functional Materials,2019,29(40):1970277.
[69]?; LI Y,YU H B,YU K,et al. Reconfigurable three-dimensional mesotructures of spatially programmed liquid crystal elastomers and their ferromagnetic composites[J]. Advanced Functional Materials,2021,31(23):2100338.
[70]? NAN K W,LUAN H W,YAN Z,et al. Engineered elastomer substrates for guided assembly of complex 3D mesostructures by spatially nonuniform compressive buckling[J]. Advanced Functional Materials,2017,27(1):1604281.
[71]? PARK J K,NAN K W,LUAN H W,et al. Remotely triggered assembly of 3D mesostructures through shape-memory effects[J]. Advanced Materials,2019,31(52):1905715.
[72]? GUO X G,WANG X J,OU D P,et al. Controlled mechanical assembly of complex 3D mesostructures and strain sensors by tensile buckling[J]. Npj Flexible Electronics,2018,2(1):1-7.
[73]? BAI K,CHENG X,XUE Z G,et al. Geometrically reconfigurable 3D mesostructures and electromagnetic devices through a rational bottom-up design strategy[J]. Science Advances,2020,6(30):eabb7417.
[74]? BELL D J,DONG L,NELSON B J,et al. Fabrication and characterization of three-dimensional InGaAs/GaAs nanosprings[J]. Nano Letters,2006,6(4):725-729.
[75]? SCHMIDT O G,EBERL K. Thin solid films roll up into nanotubes[J]. Nature,2001,410(6825):168.
[76]? MEI Y F,HUANG G S,SOLOVEV A A,et al. Versatile approach for integrative and functionalized tubes by strain engineering of nanomembranes on polymers[J]. Advanced Materials,2008,20(21):4085-4090.
[77]? SAWA Y,URAYAMA K,TAKIGAWA T,et al. Shape and chirality transitions in off-axis twist nematic elastomer ribbons[J]. Physical Review E,2013,88(2):022502.
[78]? WEI H,ZHANG Q,YAO Y,et al. Direct-write fabrication of 4D active shape-changing structures based on a shape memory polymer and its nanocomposite[J]. ACS Applied Materials & Interfaces,2017,9(1):876-883.
[79]? GLADMAN A S,MATSUMOTO E A,NUZZO R G,et al. Biomimetic 4D printing[J]. Nature Materials,2016,15(4):413-418.
[80]? NA J H,EVANS A A,BAE J,et al. Programming reversibly self-folding origami with micropatterned photo-crosslinkable polymer trilayers[J]. Advanced Materials,2015,27(1):79-85.
[81]? SAADA G,LAYANI M,CHERNEVOUSKY A,et al. Hydroprinting conductive patterns onto 3D structures[J]. Advanced Materials Technologies,2017,2(5):1600289.
[82]? BASSIK N,STERN G M,GRACIAS D H. Microassembly based on hands free origami with bidirectional curvature[J]. Applied Physics Letters,2009,95(9):091901.
[83]? VACCARO P O,KUBOTA K,F(xiàn)LEISCHMANN T,et al. Valley-fold and mountain-fold in the micro-origami technique[J]. Microelectronics Journal,2003,34(5/6/7/8):447-449.
[84]? PY C,REVERDY P,DOPPLER L,et al. Capillary origami[J]. Physics of Fluids,2007,19(9):091104.
[85]? KOBAYASHI K,OH S H,YOON C,et al. Multitemperature responsive self-folding soft biomimetic structures[J]. Macromolecular Rapid Communications,2018,39(4):1700692.
[86]? JAMAL M,ZARAFSHAR A M,GRACIAS D H. Differentially photo-crosslinked polymers enable self-assembling microfluidics[J]. Nature Communications,2011,2:527.
[87]? LE BORGNE B,DE SAGAZAN O,CRAND S,et al. Conformal electronics wrapped around daily life objects using an original method:water transfer printing[J]. ACS Applied Materials & Interfaces,2017,9(35):29424-29429.
[88]? PARK H,CHO H,KIM J,et al. Multiscale transfer printing into recessed microwells and on curved surfaces via hierarchical perfluoropolyether stamps[J]. Small,2014,10(1):52-59.
[89]? XU X,DAVANCO M,QI X F,et al. Direct transfer patterning on three dimensionally deformed surfaces at micrometer resolutions and its application to hemispherical focal plane detector arrays[J]. Organic Electronics,2008,9(6):1122-1127.
[90]? MUST I,KAASIK F,P?LDSALU I,et al. Ionic and capacitive artificial muscle for biomimetic soft robotics[J]. Advanced Engineering Materials,2015,17(1):84-94.
[91]? XIAO P S,YI N B,ZHANG T F,et al. Construction of a fish-like robot based on high performance graphene/PVDF bimorph actuation materials[J]. Advanced Science,2016,3(6):1500438.
[92]? ANDERSON I A,GISBY T A,MCKAY T G,et al. Multi-functional dielectric elastomer artificial muscles for soft and smart machines[J]. Journal of Applied Physics,2012,112(4):041101.
[93]? BAISCH A T,OZCAN O,GOLDBERG B,et al. High speed locomotion for a quadrupedal microrobot[J]. The International Journal of Robotics Research,2014,33(8):1063-1082.
[94]? CHANG Y C,KIM W J. Aquatic ionic-polymer-metal-composite insectile robot with multi-DOF legs[J]. IEEE/ASME Transactions on Mechatronics,2013,18(2):547-555.
[95]? QU J H,CHOI J,OLDHAM K R. Dynamic structural and contact modeling for a silicon hexapod microrobot[J]. Journal of Mechanisms and Robotics,2017,9(6):061006.
[96]? KOFOD G,WIRGES W,PAAJANEN M,et al. Energy minimization for self-organized structure formation and actuation[J]. Applied Physics Letters,2007,90(8):081916.
[97]? KWON G H,PARK J Y,KIM J Y,et al. Biomimetic soft multifunctional miniature aquabots[J]. Small,2008,4(12):2148-2153.
[98]? MORALES D,PALLEAU E,DICKEY M D,et al. Electro-actuated hydrogel walkers with dual responsive legs[J]. Soft Matter,2014,10(9):1337-1348.
[99]? TAGHAVI M,HELPS T,ROSSITER J. Electro-ribbon actuators and electro-origami robots[J]. Science Robotics,2018,3(25):eaau9795.
[100]HUANG H W,SAKAR M S,PETRUSKA A J,et al. Soft micromachines with programmable motility and morphology[J]. Nature Communications,2016,7:12263.
[101]LI C,LAU G C,YUAN H,et al. Fast and programmable locomotion of hydrogel-metal hybrids under light and magnetic fields[J]. Science Robotics,2020,5(49):eabb9822. .
[102]LI Y,AVIS S J,CHEN J B,et al. Reconfiguration of multistable 3D ferromagnetic mesostructures guided by energy landscape surveys[J]. Extreme Mechanics Letters,2021,48:101428.
[103]LUM G Z,YE Z,DONG X G,et al. Shape-programmable magnetic soft matter[J]. PNAS,2016,113(41):E6007-E6015. DOI:10. 1073/pnas. 1608193113.
[104]MA C P,WU S,ZE Q J,et al. Magnetic multimaterial printing for multimodal shape transformation with tunable properties and shiftable mechanical behaviors[J]. ACS Applied Materials & Interfaces,2021,13(11):12639-12648.
[105]MIAO L M,SONG Y,REN Z Y,et al. 3D temporary-magnetized soft robotic structures for enhanced energy harvesting[J]. Advanced Materials,2021:2102691.
[106]MITSUMATA T,OHORI S. Magnetic polyurethane elastomers with wide range modulation of elasticity[J]. Polymer Chemistry,2011,2(5):1063-1067.
[107]MIYASHITA S,GUITRON S,LI S G,et al. Robotic metamorphosis by origami exoskeletons[J]. Science Robotics,2017,2(10):eaao4369.
[108]MIYASHITA S,GUITRON S,LUDERSDORFER M,et al. An untethered miniature origami robot that self-folds,walks,swims,and degrades[C]//2015 IEEE International Conference on Robotics and Automation (ICRA). May 26-30,2015,Seattle,WA,USA. IEEE,2015:1490-1496.
[109]PETERS C,HOOP M,PANé S,et al. Degradable magnetic composites for minimally invasive interventions:device fabrication,targeted drug delivery,and cytotoxicity tests[J]. Advanced Materials,2016,28(3):533-538.
[110]TOTTORI S,ZHANG L,QIU F M,et al. Magnetic helical micromachines:fabrication,controlled swimming,and cargo transport[J]. Advanced Materials,2012,24(6):811-816.
[111]WANG L,RAZZAQ M Y,RUDOLPH T,et al. Reprogrammable,magnetically controlled polymeric nanocomposite actuators[J]. Materials Horizons,2018,5(5):861-867.
[112]WU S,ZE Q J,ZHANG R D,et al. Symmetry-breaking actuation mechanism for soft robotics and active metamaterials[J]. ACS Applied Materials & Interfaces,2019,11(44):41649-41658.
[113]YANG X,SHANG W F,LU H J,et al. An agglutinate magnetic spray transforms inanimate objects into millirobots for biomedical applications[J]. Science Robotics,2020,5(48):eabc8191.
[114]ZE Q J,KUANG X,WU S,et al. Shape memory polymers:magnetic shape memory polymers with integrated multifunctional shape manipulation [J]. Advanced Materials,2020,32(4):2070025.
[115]ZHANG F,LI S P,SHEN Z M,et al. Rapidly deployable and morphable 3D mesostructures with applications in multimodal biomedical devices[J]. Proceeding National Academy of Sciences of the United States of America,2021,118(11):e2026414118.
[116]YAN D J,CHANG J H,ZHANG H,et al. Soft three-dimensional network materials with rational bio-mimetic designs[J]. Nature Communications,2020,11(1):1-11.
[117]CHEN L Z,WENG M C,ZHOU Z W,et al. Large-deformation curling actuators based on carbon nanotube composite:advanced-structure design and biomimetic application[J]. ACS Nano,2015,9(12):12189-12196.
[118]CHEN T,BILAL O R,SHEA K,et al. Harnessing bistability for directional propulsion of soft,untethered robots[J]. PNAS,2018,115(22):5698-5702.
[119]FELTON S M,TOLLEY M T,SHIN B,et al. Self-folding with shape memory composites[J]. Soft Matter,2013,9(32):7688.
[120]HUANG X N,KUMAR K,JAWED M K,et al. Highly dynamic shape memory alloy actuator for fast moving soft robots[J]. Advanced Materials Technologies,2019,4(4):1800540.
[121]JIN H,DONG E B,XU M,et al. Soft and smart modular structures actuated by shape memory alloy (SMA) wires as tentacles of soft robots[J]. Smart Materials and Structures,2016,25(8):085026.
[122]KOTIKIAN A,MCMAHAN C,DAVIDSON E C,et al. Untethered soft robotic matter with passive control of shape morphing and propulsion[J]. Science Robotics,2019,4(33):eaax7044.
[123]LEE J H,CHUNG Y S,RODRIGUE H. Long shape memory alloy tendon-based soft robotic actuators and implementation as a soft gripper[J]. Scientific Reports,2019,9(1):11251.
[124]LIU Y,BOYLES J K,GENZER J,et al. Self-folding of polymer sheets using local light absorption[J]. Soft Matter,2012,8(6):1764-1769.
[125]MALACHOWSKI K,BREGER J,KWAG H R,et al. Stimuli-responsive theragrippers for chemomechanical controlled release[J]. Angewandte Chemie International Edition,2014,53(31):8045-8049.
[126]WANG W,KIM N G,RODRIGUE H,et al. Modular assembly of soft deployable structures and robots[J]. Materials Horizons,2017,4(3):367-376.
[127]WANG W,LEE J Y,RODRIGUE H,et al. Locomotion of inchworm-inspired robot made of smart soft composite (SSC)[J]. Bioinspiration & Biomimetics,2014,9(4):046006.
[128]WANG Y,LI K,LI X G,et al. Electro-thermally driven flexible robot arms based on stacking-controlled graphite nanocomposites[J]. Carbon,2019,152:873-881.
[129]XIAO Y Y,JIANG Z C,TONG X,et al. Biomimetic locomotion of electrically powered “Janus” soft robots using a liquid crystal polymer[J]. Advanced Materials,2019,31(36):1903452.
[130]ZHANG Y F,ZHANG N B,HINGORANI H,et al. Soft robots:fast-response,stiffness-tunable soft actuator by hybrid multimaterial 3D printing [J]. Advanced Functional Materials,2019,29(15):1970098.
[131]ZHU Y,BIRLA M,OLDHAM K R,et al. Elastically and plastically foldable electrothermal micro-origami for controllable and rapid shape morphing[J]. Advanced Functional Materials,2020,30(40):2003741.
[132]AHIR S V,TERENTJEV E M. Photomechanical actuation in polymer–nanotube composites[J]. Nature Materials,2005,4(6):491-495.
[133]AHN C,LIANG X D,CAI S Q. Bioinspired design of light-powered crawling,squeezing,and jumping untethered soft robot[J]. Advanced Materials Technologies,2019,4(7):1900185.
[134]ANDRéN D,BARANOV D G,JONES S,et al. Microscopic metavehicles powered and steered by embedded optical metasurfaces[J]. Nature Nanotechnology,2021,16(9):970-974.
[135]BEHL M,LENDLEIN A. Shape-memory polymers[J]. Materials Today,2007,10(4):20-28.
[136]CHEN Y H,YANG J J,ZHANG X,et al. Light-driven bimorph soft actuators:design,fabrication,and properties[J]. Materials Horizons,2021,8(3):728-757.
[137]DENG H,ZHANG C,SU J W,et al. Bioinspired multi-responsive soft actuators controlled by laser tailored graphene structures[J]. Journal of Materials Chemistry B,2018,6(34):5415-5423.
[138]DONG X,XU J W,XU X Z,et al. Sunlight-driven continuous flapping-wing motion[J]. ACS Applied Materials & Interfaces,2020,12(5):6460-6470.
[139]GAO Y Y,ZHANG Y L,HAN B,et al. Gradient assembly of polymer nanospheres and graphene oxide sheets for dual-responsive soft actuators[J]. ACS Applied Materials & Interfaces,2019,11(40):37130-37138.
[140]GE F J,YANG R,TONG X,et al. A multifunctional dye-doped liquid crystal polymer actuator:light-guided transportation,turning in locomotion,and autonomous motion[J]. Angewandte Chemie,2018,130(36):11932-11937.
[141]GELEBART A H,JAN MULDER D,VARGA M,et al. Making waves in a photoactive polymer film[J]. Nature,2017,546(7660):632-636.
[142]HAN B,ZHANG Y L,ZHU L,et al. Soft robotics:plasmonic-assisted graphene oxide artificial muscles [J]. Advanced Materials,2019,31(5):1970029.
[143]HERATH M,EPAARACHCHI J,ISLAM M,et al. Light activated shape memory polymers and composites:a review[J]. European Polymer Journal,2020,136:109912.
[144]HU Y,LIU J Q,CHANG L F,et al. Electrically and sunlight-driven actuator with versatile biomimetic motions based on rolled carbon nanotube bilayer composite[J]. Advanced Functional Materials,2017,27(44):1704388.
[145]LI C,ISCEN A,SAI H,et al. Supramolecular-covalent hybrid polymers for light-activated mechanical actuation[J]. Nature Materials,2020,19(8):900-909.
[146]LIU Y,SHAW B,DICKEY M D,et al. Sequential self-folding of polymer sheets[J]. Science Advances,2017,3(3):e1602417.
[147]LV P,YANG X,BISOYI H K,et al. Stimulus-driven liquid metal and liquid crystal network actuators for programmable soft robotics[J]. Materials Horizons,2021,8(9):2475-2484.
[148]MA S D,LI X,HUANG S,et al. A light-activated polymer composite enables on-demand photocontrolled motion:transportation at the liquid/air interface[J]. Angewandte Chemie,2019,131(9):2681-2685.
[149]PILZ D A CUNHA M,AMBERGEN S,DEBIJE M G,et al. A soft transporter robot fueled by light[J]. Advanced Science,2020,7(5):1902842.
[150]PILZ D A CUNHA M,DEBIJE M G,SCHENNING A P H J. Bioinspired light-driven soft robots based on liquid crystal polymers[J]. Chemical Society Reviews,2020,49(18):6568-6578.
[151]QIAN W Q,SONG Y F,SHI D J,et al. Photothermal-triggered shape memory polymer prepared by cross-linking porphyrin-loaded micellar particles[J]. Materials,2019,12(3):496.
[152]ROSE A,ZHU Z G,MADIGAN C F,et al. Sensitivity gains in chemosensing by lasing action in organic polymers[J]. Nature,2005,434(7035):876-879.
[153]SHAHSAVAN H,AGHAKHANI A,ZENG H,et al. Bioinspired underwater locomotion of light-driven liquid crystal gels[J]. Proceeding National Academy of Sciences of the United States of America,2020,117(10):5125-5133.
[154]TIAN H,WANG Z,CHEN Y,et al. Polydopamine-coated main-chain liquid crystal elastomer as optically driven artificial muscle[J]. ACS Applied Materials & Interfaces,2018,10(9):8307-8316.
[155]WANG E,DESAI M S,LEE S W. Light-controlled graphene-elastin composite hydrogel actuators[J]. Nano Letters,2013,13(6):2826-2830.
[156]WANG K J,ZHU X X. Two-way reversible shape memory polymers containing polydopamine nanospheres:light actuation,robotic locomotion,and artificial muscles[J]. ACS Biomaterials Science & Engineering,2018,4(8):3099-3106.
[157]WANG L,LIU Y,CHENG Y,et al. A bioinspired swimming and walking hydrogel driven by light-controlled local density[J]. Advanced Science,2015,2(6):1500084.
[158]WANG S,GAO Y,WEI A R,et al. Asymmetric elastoplasticity of stacked graphene assembly actualizes programmable untethered soft robotics[J]. Nature Communications,2020,11(1):1-12.
[159]WANG X D,JIAO N D,TUNG S,et al. Photoresponsive graphene composite bilayer actuator for soft robots[J]. ACS Applied Materials & Interfaces,2019,11(33):30290-30299.
[160]WANG X,YANG B S,TAN D,et al. Bioinspired footed soft robot with unidirectional all-terrain mobility[J]. Materials Today,2020,35:42-49.
[161]WANG X Q,CHAN K H,CHENG Y,et al. Somatosensory,light-driven,thin-film robots capable of integrated perception and motility[J]. Advanced Materials,2020,32(21):2000351.
[162]WANI O M,ZENG H,PRIIMAGI A. A light-driven artificial flytrap[J]. Nature Communications,2017,8:15546.
[163]XIAO Y Y,JIANG Z C,ZHAO Y. Liquid crystal polymer-based soft robots[J]. Advanced Intelligent Systems,2020,2(12):2000148.
[164]YAMADA M,KONDO M,MIYASATO R,et al. Photomobile polymer materials—various three-dimensional movements[J]. J Mater Chem,2009,19(1):60-62.
[165]YANG L L,CHANG L F,HU Y,et al. Autonomous soft actuators:an autonomous soft actuator with light-driven self-sustained wavelike oscillation for phototactic self-locomotion and power generation (adv. funct. mater. 15/2020)[J]. Advanced Functional Materials,2020,30(15):2070095.
[166]YANG Y Y,ZHANG M,LI D F,et al. Graphene-based light-driven soft robot with snake-inspired concertina and serpentine locomotion[J]. Advanced Materials Technologies,2019,4(1):1800366.
[167]YENPECH N,INTASANTA V,CHIRACHANCHAI S. Laser-triggered shape memory based on thermoplastic and thermoset matrices with silver nanoparticles[J]. Polymer,2019,182:121792.
[168]ZENG H,WASYLCZYK P,WIERSMA D S,et al. Light robots:bridging the gap between microrobotics and photomechanics in soft materials[J]. Advanced Materials,2018,30(24):1703554.
[169]ZHANG H,ZHAO Y. Polymers with dual light-triggered functions of shape memory and healing using gold nanoparticles[J]. ACS Applied Materials & Interfaces,2013,5(24):13069-13075.
[170]ZHAO Y S,XUAN C,QIAN X S,et al. Soft phototactic swimmer based on self-sustained hydrogel oscillator[J]. Science Robotics,2019,4(33):eaax7112. .
[171]CHEN H M,LI Y,LIU Y,et al. Highly pH-sensitive polyurethane exhibiting shape memory and drug release[J]. Polym Chem,2014,5(17):5168-5174.
[172]CHEN X,GOODNIGHT D,GAO Z H,et al. Scaling up nanoscale water-driven energy conversion into evaporation-driven engines and generators[J]. Nature Communications,2015,6(1):1-7.
[173]DAI M,PICOT O T,VERJANS J M N,et al. Humidity-responsive bilayer actuators based on a liquid-crystalline polymer network[J]. ACS Applied Materials & Interfaces,2013,5(11):4945-4950.
[174]DE HAAN L T,GIMENEZ-PINTO V,KONYA A,et al. Accordion-like actuators of multiple 3D patterned liquid crystal polymer films[J]. Advanced Functional Materials,2014,24(9):1251-1258.
[175]DE HAAN L T,VERJANS J M,BROER D J,et al. Humidity-responsive liquid crystalline polymer actuators with an asymmetry in the molecular trigger that bend,fold,and curl[J]. Journal of the American Chemical Society,2014,136(30):10585-10588.
[176]DENG H,DONG Y,ZHANG C,et al. An instant responsive polymer driven by anisotropy of crystal phases[J]. Materials Horizons,2018,5(1):99-107.
[177]DONG L,AGARWAL A K,BEEBE D J,et al. Adaptive liquid microlenses activated by stimuli-responsive hydrogels[J]. Nature,2006,442(7102):551-554.
[178]DONG Y,WANG J,GUO X K,et al. Multi-stimuli-responsive programmable biomimetic actuator[J]. Nature Communications,2019,10:4087.
[179]HAN X J,DONG Z Q,F(xiàn)AN M M,et al. pH-induced shape-memory polymers[J]. Macromolecular Rapid Communications,2012,33(12):1055-1060.
[180]HAO X P,XU Z,LI C Y,et al. Kirigami-design-enabled hydrogel multimorphs with application as a multistate switch[J]. Advanced Materials,2020,32(22):2000781.
[181]IONOV L. Hydrogel-based actuators:possibilities and limitations[J]. Materials Today,2014,17(10):494-503.
[182]JI Z Y,YAN C Y,YU B,et al. 3D printing of hydrogel architectures with complex and controllable shape deformation[J]. Advanced Materials Technologies,2019,4(4):1800713.
[183]KHODAPARAST S,BOULOGNE F,POULARD C,et al. Water-based peeling of thin hydrophobic films[J]. Physical Review Letters,2017,119(15):154502.
[184]LEE B P,KONST S. Novel hydrogel actuator inspired by reversible mussel adhesive protein chemistry[J]. Advanced Materials,2014,26(21):3415-3419.
[185]LEE H,XIA C G,F(xiàn)ANG N X. First jump of microgel:actuation speed enhancement by elastic instability[J]. Soft Matter,2010,6(18):4342-4345.
[186]LI H,GO G,KO S Y,et al. Magnetic actuated pH-responsive hydrogel-based soft micro-robot for targeted drug delivery[J]. Smart Materials and Structures,2016,25(2):027001.
[187]LIU Y Q,CHEN Z D,HAN D D,et al. Bioinspired soft robots based on the moisture-responsive graphene oxide[J]. Advanced Science,2021,8(10):2002464.
[188]LIU Y Q,MA J N,LIU Y,et al. Facile fabrication of moisture responsive graphene actuators by moderate flash reduction of graphene oxides films[J]. Optical Materials Express,2017,7(7):2617-2625.
[189]LV C,XIA H,SHI Q,et al. Sensitively humidity-driven actuator based on photopolymerizable PEG-DA films[J]. Advanced Materials Interfaces,2017,4(9):1601002.
[190]MA Y,ZHANG Y Y,WU B S,et al. Polyelectrolyte multilayer films for building energetic walking devices[J]. Angewandte Chemie,2011,123(28):6378-6381.
[191]MENG H,ZHENG J,WEN X F,et al. pH- and sugar-induced shape memory hydrogel based on reversible phenylboronic acid-diol ester bonds[J]. Macromolecular Rapid Communications,2015,36(6):533-537.
[192]PY C,REVERDY P,DOPPLER L,et al. Capillary origami:spontaneous wrapping of a droplet with an elastic sheet[J]. Physical Review Letters,2007,98(15):156103.
[193]ROMAN B,BICO J. Elasto-capillarity:deforming an elastic structure with a liquid droplet[J]. Journal of Physics Condensed Matter,2010,22(49):493101.
[194]SHIN B,HA J,LEE M,et al. Hygrobot:a self-locomotive ratcheted actuator powered by environmental humidity[J]. Science Robotics,2018,3(14):eaar2629. .
[195]SONG S W,LEE S,CHOE J K,et al. Direct 2D-to-3D transformation of pen drawings[J]. Science Advances,2021,7(13):eabf3804. DOI:10. 1126/sciadv. abf3804.
[196]TACCOLA S,GRECO F,SINIBALDI E,et al. Toward a new generation of electrically controllable hygromorphic soft actuators[J]. Advanced Materials,2015,27(10):1668-1675.
[197]WU T F,F(xiàn)RYDRYCH M,O’KELLY K,et al. Poly(glycerol sebacate urethane)-cellulose nanocomposites with water-active shape-memory effects[J]. Biomacromolecules,2014,15(7):2663-2671.
[198]YE C H,NIKOLOV S V,CALABRESE R,et al. Self-(un)rolling biopolymer microstructures:rings,tubules,and helical tubules from the same material[J]. Angewandte Chemie International Edition,2015,54(29):8490-8493.
[199]YOON C,XIAO R,PARK J,et al. Functional stimuli responsive hydrogel devices by self-folding[J]. Smart Materials and Structures,2014,23(9):094008.
[200]ZHAO Q,DUNLOP J W C,QIU X L,et al. An instant multi-responsive porous polymer actuator driven by solvent molecule sorption[J]. Nature Communications,2014,5:4293.
[201]AMIRI MOGHADAM A A,ALAIE S,DEB NATH S,et al. Laser cutting as a rapid method for fabricating thin soft pneumatic actuators and robots[J]. Soft Robotics,2018,5(4):443-451.
[202]DE VOLDER M,REYNAERTS D. Pneumatic and hydraulic microactuators:a review[J]. Journal of Micromechanics and Microengineering,2010,20(4):043001.
[203]KELLARIS N,ROTHEMUND P,ZENG Y,et al. Spider-inspired electrohydraulic actuators for fast,soft-actuated joints[J]. Advanced Science,2021,8(14):2100916.
[204]LI S G,VOGT D M,RUS D,et al. Fluid-driven origami-inspired artificial muscles[J]. Proceeding National Academy of Sciences of the United States of America,2017,114(50):13132-13137.
[205]LU Y W,KIM C J. Microhand for biological applications[J]. Applied Physics Letters,2006,89(16):164101.
[206]TANG Y C,ZHANG Q T,LIN G J,et al. Switchable adhesion actuator for amphibious climbing soft robot[J]. Soft Robotics,2018,5(5):592-600.
[207]TSAI N C,SUE C Y. Review of MEMS-based drug delivery and dosing systems[J]. Sensors and Actuators A:Physical,2007,134(2):555-564.
[208]SOHN J W,CHOI S B. Various robots made from piezoelectric materials and electroactive polymers:a review[J]. International Journal of Mechanical Systems Engineering,2017,3(1):122.
[209]DE RIVAZ S D,GOLDBERG B,DOSHI N,et al. Inverted and vertical climbing of a quadrupedal microrobot using electroadhesion[J]. Science Robotics,2018,3(25):eaau3038.
[210]CHOI J,SHIN M,RUDY R Q,et al. Thin-film piezoelectric and high-aspect ratio polymer leg mechanisms for millimeter-scale robotics[J]. International Journal of Intelligent Robotics and Applications,2017,1(2):180-194.
[211]WOOD R J. The first takeoff of a biologically inspired at-scale robotic insect[J]. IEEE Transactions on Robotics,2008,24(2):341-347.
[212]WU Y C,HO K Y,KARIYA K,et al. PRE-curved PVDF/PI unimorph structures for biomimic soft crawling actuators[C]//2018 IEEE Micro Electro Mechanical Systems (MEMS). January 21-25,2018,Belfast,UK. IEEE,2018:581-584.
[213]PARK T,CHA Y. Soft mobile robot inspired by animal-like running motion[J]. Scientific Reports,2019,9(1):14700.
[214]NIINO T,HIGUCHI T,EGAWA S. Dual excitation multiphase electrostatic drive[C]//IAS '95. Conference Record of the 1995 IEEE Industry Applications Conference Thirtieth IAS Annual Meeting. October 8-12,1995,Orlando,F(xiàn)L,USA. IEEE,1995:1318-1325.
[215]KOSIDLO U,OMASTOVá M,MICUSíK M,et al. Nanocarbon based ionic actuators—a review[J]. Smart Materials and Structures,2013,22(10):104022.
[216]BROCHU P,PEI Q B. Advances in dielectric elastomers for actuators and artificial muscles[J]. Macromolecular Rapid Communications,2010,31(1):10-36.
[217]ROSENTHAL M,BONWIT N,DUNCHEON C,et al. Applications of dielectric elastomer EPAM sensors[C]// Electroactive Polymer Actuators and Devices (EAPAD) 2007. San Diego,California. SPIE,2007:65241F.
[218]HINES L,PETERSEN K,LUM G Z,et al. Soft actuators for small-scale robotics[J]. Advanced Materials,2017,29(13):1603483.
[219]BAUGHMAN R H. Conducting polymer artificial muscles[J]. Synthetic Metals,1996,78(3):339-353.
[220]GU G Y,ZOU J,ZHAO R K,et al. Soft wall-climbing robots[J]. Science Robotics,2018,3(25):eaat2874.
[221]CHRISTIANSON C,BAYAG C,LI G R,et al. Jellyfish-inspired soft robot driven by fluid electrode dielectric organic robotic actuators[J]. Frontiers in Robotics and AI,2019,6:126.
[222]ZHAO J W,NIU J Y,MCCOUL D,et al. A rotary joint for a flapping wing actuated by dielectric elastomers:design and experiment[J]. Meccanica,2015,50(11):2815-2824.
[223]BIDDISS E,CHAU T. Dielectric elastomers as actuators for upper limb prosthetics:challenges and opportunities[J]. Medical Engineering & Physics,2008,30(4):403-418.
[224]MUST I,VUNDER V,KAASIK F,et al. Ionic liquid-based actuators working in air:the effect of ambient humidity[J]. Sensors and Actuators B:Chemical,2014,202:114-122.
[225]MUST I,KAASIK T,BARANOVA I,et al. A power-autonomous self-rolling wheel using ionic and capacitive actuators[C]// Electroactive Polymer Actuators and Devices (EAPAD) 2015. San Diego,California,USA. SPIE,2015:94300Q.
[226]KRUUSAM?E K,SUGINO T,ASAKA K. Measuring blocking force to interpret ionic mechanisms within bucky-gel actuators[C]// Electroactive Polymer Actuators and Devices (EAPAD) 2015. San Diego,California,USA. SPIE,2015:94300P.
[227]ALAPAN Y,KARACAKOL A C,GUZELHAN S N,et al. Reprogrammable shape morphing of magnetic soft machines[J]. Science Advances,2020,6(38):eabc6414. .
[228]CUI J Z,HUANG T Y,LUO Z C,et al. Nanomagnetic encoding of shape-morphing micromachines[J]. Nature,2019,575(7781):164-168.
[229]DENG H,SATTARI K,XIE Y C,et al. Laser reprogramming magnetic anisotropy in soft composites for reconfigurable 3D shaping[J]. Nature Communications,2020,11:6325.
[230]ZHOU Y X,SHARMA N,DESHMUKH P,et al. Hierarchically structured free-standing hydrogels with liquid crystalline domains and magnetic nanoparticles as dual physical cross-linkers[J]. Journal of the American Chemical Society,2012,134(3):1630-1641.
[231]DING Z W,WEI P,CHITNIS G,et al. Ferrofluid-impregnated paper actuators[J]. Journal of Microelectromechanical Systems,2011,20(1):59-64.
[232]FRAGOULI D,BAYER I S,DI CORATO R,et al. Superparamagnetic cellulose fiber networks via nanocomposite functionalization[J]. J Mater Chem,2012,22(4):1662-1666.
[233]ZUO B,WANG M,LIN B P,et al. Visible and infrared three-wavelength modulated multi-directional actuators[J]. Nature Communications,2019,10:4539.
[234]MISKIN M Z,CORTESE A J,DORSEY K,et al. Electronically integrated,mass-manufactured,microscopic robots[J]. Nature,2020,584:557-61.
[235]JANG W I,CHOI C A,JUN C H,et al. Surface micromachined thermally driven micropump[J]. Sensors and Actuators A:Physical,2004,115(1):151-158.
[236]JEONG O C,YANG S S. Fabrication and test of a thermopneumatic micropump with a corrugated p+ diaphragm[J]. Sensors and Actuators A:Physical,2000,83(1/2/3):249-255.
[237]NGUYEN N T. Micro-optofluidic Lenses:a review[J]. Biomicrofluidics,2010,4(3):031501.
[238]CHI Y D,TANG Y C,LIU H J,et al. Leveraging monostable and bistable pre-curved bilayer actuators for high-performance multitask soft robots[J]. Advanced Materials Technologies,2020,5(9):2000370.
[239]LENG J S,SUN J,GUAN Q H,et al. Status of and trends in soft pneumatic robotics[J]. Scientia Sinica Technologica,2020,50(7):897-934.
[240]SHEPHERD R F,ILIEVSKI F,CHOI W,et al. Multigait soft robot[J]. Proceeding National Academy of Sciences of the United States of America,108(51):20400-20403.
[241]YAMAGUCHI T,KASHIWAGI T,ARIE T,et al. Human-like electronic skin-integrated soft robotic hand[J]. Advanced Intelligent Systems,2019,1(2):1900018.
[242]OK J,LU Y W,KIM C J C. Pneumatically driven microcage for microbe manipulation in a biological liquid environment[J]. Journal of Microelectromechanical Systems,2006,15(6):1499-1505.