唐藝玲 張培蓓 葉賢偉
[關(guān)鍵詞] PI3K-Akt-mTOR;慢性阻塞性肺疾病(慢阻肺);自噬;基因治療
[中圖分類號] R856.3? ? ? ? ? [文獻標識碼] A? ? ? ? ? [文章編號] 1673-9701(2021)18-0178-06
Research progress of PI3K-Akt-mTOR pathway in the pathogenesis of chronic obstructive pulmonary disease
TANG Yiling1? ?ZHANG Peibei2,3? ?YE Xianwei1, 3
1.Zunyi Medical University,Zunyi 563000,China;2.Department of Respiratory and Critical Care Medicine,Guizhou Provincial People's Hospital, Guiyang 550000, China; 3.Key Laboratory of Pulmonary Immune Diseases, National Health Commission, Guiyang? ?550000, China
[Abstract] Chronic obstructive pulmonary disease (abbreviated as COPD), which is an inflammatory disease of the airway in the respiratory mechanism of the human body, has a certain commonness, and its morbidity and fatality rate are both high. It is an important global public health issue. Through related investigations, it is found that the phosphatidylinositol 3-kinase/protein kinase B/target of rapamycin (P13K-Akt-mTOR) signaling pathway is involved in many aspects of the cell, such as proliferation, apoptosis, and autophagy, which is a classic signaling pathway in cell tissue and affects the prognosis and outcome of various diseases in different systems. Experts and scholars at home and abroad have made a certain degree of progress in the study of the PI3K-Akt-mTOR signal transduction pathway in the process of tumor cell proliferation, autophagy, and apoptosis after a large number of studies. However, there is still little involvement in the research field of the relationship between PI3K-Akt-mTOR signaling pathway and chronic obstructive pulmonary disease. This article reviews the research progress of the relationship between PI3K-Akt-mTOR pathway and COPD in recent years.
[Key words] PI3K-Akt-mTOR; Chronic obstructive pulmonary disease (COPD); Autophagy; Gene therapy
慢性阻塞性肺疾?。璺危┦且环N具有氣流受限特征的常見慢性呼吸系統(tǒng)疾病,當下有關(guān)慢阻肺病癥的發(fā)病機制理論來講,包含吸煙行為和人體慢性氣道及人體肺部炎癥的構(gòu)成、蛋白酶/抗蛋白酶失衡、氧化劑及抗氧化劑的平衡失調(diào)等,此類理論大體著重于人體氣道的上皮及炎癥兩大組織細胞在慢阻肺病癥發(fā)生、發(fā)展的相關(guān)作用,但慢阻肺的致病機制非常復(fù)雜,如今尚未完全闡明,現(xiàn)多認為慢阻肺其特征是不可逆的慢性氣流受限所引起的肺彈性組織破壞和(或)炎癥黏性分泌物導致小氣道管腔狹窄,且炎癥免疫細胞的相互作用導致組織的破壞及彈性蛋白、膠原蛋白的改變,最終出現(xiàn)氣道重塑[1]。細胞自噬是一個進化保守的分解代謝途徑,細胞自噬增加可能會導致上皮細胞死亡,但自噬儲備不足亦可導致慢阻肺患者支氣管上皮細胞的衰老[2]。然而,過度的自噬會誘導過度的細胞損傷,導致程序性細胞死亡。研究表明磷脂酰肌醇3-激酶(PI3K)/蛋白激酶B(AKT)/哺乳動物雷帕霉素靶(mTOR)信號通路在自噬中起著關(guān)鍵的調(diào)節(jié)作用[3]。目前有實驗證明,乳腺癌[4]、小細胞肺癌、膠質(zhì)母細胞瘤[5]等疾病均與PI3K-Akt-mTOR信號通路相關(guān)。但在PI3K-Akt-mTOR信號傳導通路與慢阻肺相互關(guān)系的研究涉足較少。本文就PI3K-AKT-mTOR信號通路對于慢阻肺的發(fā)生之間關(guān)系予以相應(yīng)論證敘述。
1 PI3K-Akt-mTOR信號通路組成及功能
1.1? PI3K-Akt-mTOR信號通路的組成
1.1.1 PI3K是存在于細胞質(zhì)的一種能催化磷脂酰肌醇D3位磷酸化的脂類激酶? PI3K集合中各個要素依照自身的調(diào)整性能,一等級構(gòu)造等劃分成Ⅰ至Ⅲ大類型[6],其中探究較為寬泛的即為Ⅰ大類型PI3K,通過調(diào)整亞基p85及催化性亞基p110所構(gòu)成的異源二聚體物質(zhì),能夠被生長性因子(IGF-1、PDGF、EGF)要素,細胞因子要素以及激素物質(zhì)等,細胞組織之外信號的刺激予以激發(fā),促使細胞膜磷酸肌醇磷酸化,由此形成了3,4-二磷酸磷脂酰肌醇物質(zhì)(PIP2)及3,4,5-三磷酸磷脂酰肌醇(PIP3),將其當作是第二大信使和AKT的PH區(qū)區(qū)域組合予以相應(yīng)激發(fā)。
1.1.2 Akt作為一類高強度保守性的絲氨酸蛋白激酶物質(zhì)及蘇氨酸蛋白激酶物質(zhì)? 其同樣是構(gòu)成PI3K下游的重要性蛋白物質(zhì)之一,大約通過數(shù)量為480個的氨基酸殘基物質(zhì)所形成。在磷脂酰肌醇物質(zhì)依靠的蛋白激酶(PDK)物質(zhì)的共同影響之下,PIP2及PIP3和細胞組織漿液中的AKT予以相應(yīng)組合,AKT轉(zhuǎn)移位置到個體的細胞質(zhì)外膜,同時推動了Ser473及Thr308位點磷酸化狀態(tài)[7]。Ser473及Thr308位點的磷酸化,即為AKT予以激發(fā)的首要前提,而針對AKT予以激發(fā),則是其針對細胞組織生存性能的予以及時性發(fā)揮的關(guān)鍵條件。已經(jīng)激發(fā)的AKT能夠推進mTOR及糖原合成酶激酶-3(GSK-3β)等,下游底端磷物質(zhì)的酸化從而寬泛性揮發(fā)的生物學反應(yīng),其中有抗凋亡、促細胞生存等功能。
1.1.3 mTOR? 此為一類絲氨酸蛋白激酶物質(zhì)或蘇氨酸蛋白激酶物質(zhì)集合的組成要素,其相應(yīng)的分子量為298 kDa。其在生物性體內(nèi)經(jīng)兩大類復(fù)合性物質(zhì)的方式而存在,就是mTORC1及mTORC2[8]。mTOR,換而言之就是細胞組織內(nèi)的關(guān)于ATP物質(zhì)、氨基酸物質(zhì)及激素物質(zhì)的感受器裝置,在細胞生成調(diào)節(jié)過程內(nèi)起到重要作用[9]。mTOR,其本質(zhì)就是一類能夠在自噬過程內(nèi)具備著門控性作用的非正向性調(diào)節(jié)劑,其重心即運用兩類調(diào)節(jié)控制機制來阻礙自體吞噬的現(xiàn)狀:其一類機制即針對下游的效應(yīng)因子要素予以相應(yīng)的激發(fā),從而來調(diào)節(jié)自噬相關(guān)基因的轉(zhuǎn)錄進程及翻譯進程,由此針對信號的轉(zhuǎn)導通路起到相應(yīng)影響。另一類機制即經(jīng)過直接性及非直接性所引發(fā)的高磷酸化反應(yīng),由此針對自噬過程的生成予以相應(yīng)阻止,mTOR是細胞中PI3K信號通路的一個關(guān)鍵調(diào)控點[10]。
1.1.4 PI3K-Akt-mTOR信號通路? 在細胞的生長、炎癥、自噬等過程中起著關(guān)鍵的調(diào)節(jié)作用雷帕霉素(mTOR)的哺乳動物靶激酶是自噬的主要調(diào)節(jié)劑,它從不同的信號通路接收輸入,特別是從那些感知細胞能量狀態(tài)以觸發(fā)或停止蛋白質(zhì)合成的信號通路[11]。mTOR是PI3K和AKT途徑的下游層面的靶點,經(jīng)過神經(jīng)營養(yǎng)物質(zhì)因子要素及生長物質(zhì)因子要素的受體予以相應(yīng)激活,促進細胞生長、分化和存活,同時下調(diào)凋亡信號[12]。因此,PI3K-AKT-mTOR途徑的激活原則上將促進存活、神經(jīng)元保護和mTOR激活對自噬的抑制。相反,誘導自噬(抑制mTOR)可能會通過持續(xù)的自噬危及生存。然而,mTOR途徑受多種輸入信號的調(diào)節(jié),并作為向上游途徑(如PI3K-AKT)的轉(zhuǎn)換,因此對于開發(fā)針對其調(diào)節(jié)的療法至關(guān)重要。
1.2 P13K-Akt-mTOR信號通路的功能
PI3K-Akt-mTOR信號通路,其作為細胞組織中較為關(guān)鍵性的信號轉(zhuǎn)換路徑,在細胞組織生長進程及存活進程,凋亡進程以及自噬等進程內(nèi)起到關(guān)鍵性的生物學性能,當細胞自主受到生長因子要素等一定刺激過程之后,激發(fā)PI3K會致使PIP2,轉(zhuǎn)變成PIP3物質(zhì),募集PDK1及Akt,針對Akt予以相應(yīng)的活化,針對其對應(yīng)的下游位置多個靶位點予以相應(yīng)激發(fā)。假使此信號同路的雜亂能夠引發(fā)一系列病癥。包括細胞增殖[13]、血管生成[14]、腫瘤侵襲和轉(zhuǎn)移[15]、細胞運動等,并參與細胞功能的調(diào)節(jié)。PI3K活性的增加常與多種癌癥相關(guān)。舉例來講,人體肺腺癌細胞能夠遏制PI3K-AKT-mTOR傳導信息通路,同時引誘其進行自我吞噬過程,致使腫瘤細胞組織呈死亡現(xiàn)狀,這對肺癌病癥的醫(yī)治予以新的發(fā)展方向[16]。人乳頭瘤病毒-16(HPV-16)感染時,激活宿主細胞PI3K-AKT-mTOR通路,可抑制宿主細胞自噬,協(xié)助病毒感染[17]。在體外實驗探究過程內(nèi),增生性的玻璃體視網(wǎng)膜病癥變化的最初,即人體的視網(wǎng)膜色素上皮組織細胞進行一定的遷移,此環(huán)節(jié)需腫瘤壞死因子-α(TNF-α)針對PI3K-AKT-mTOR予以激活性的傳導信息通路,為治療提供新的靶點[18]。此外,PI3K-AKT-mTOR傳導通路與溫度也有關(guān),大鼠個體處在41℃溫度中時,對比目魚肌及趾肌的磷酸化AKT蛋白(p-AKT)和細胞核糖體S6蛋白激酶(p-p70S6K)蛋白物質(zhì)進行檢測,可見其蛋白表達水平增高,提升情況和溫度的高低呈現(xiàn)正比,由此可見,溫度的高低在很大程度上為激發(fā)PI3K-AKT-mTOR信息通路的重要性因子要素[19]。
2 P13K-Akt-mTOR與慢阻肺的關(guān)系
2.1 PI3K-Akt-mTOR通路調(diào)控慢阻肺炎癥的發(fā)生與發(fā)展
慢阻肺病癥,其本質(zhì)即為一類進展性肺部炎癥性病癥,致使其生成的關(guān)鍵性危險元素即為香煙的煙霧和有害顆粒物質(zhì)。此類具備著有害性的顆粒物質(zhì)針對人體肺部部位的炎癥細胞組織予以刺激,同時釋放多元化趨化因子要素,誘導巨噬組織細胞及中性顆粒組織細胞等,匯集在人體的肺部區(qū)域,同時針對大部分的炎癥介質(zhì)物質(zhì)予以相應(yīng)釋放,開啟及推進人體肺部區(qū)域的一系列炎癥環(huán)節(jié)[20]。Numata等[21]證實,胰島素促進PI3K-Akt-mTOR激活,抑制Toll樣受體3(Toll-likereceptor3,TLR3)引誘的個體支氣管中上皮組織細胞呈現(xiàn)凋亡現(xiàn)狀以及減緩慢阻肺病癥的氣管炎癥。然而,Mortaz等[22]證實,香煙的煙霧提取物質(zhì)經(jīng)過遏制人漿液細胞組織樣樹突狀化細胞(Plasmacytoid dendritic cells,pDC)PI3K-Akt以磷酸化,降低TLR9配體誘導的TNF-α,IL-6及IFN-α呈現(xiàn),由此降低慢阻肺病癥的炎癥損害。PI3K-Akt-mTOR信號傳導通路可以參與到炎癥物質(zhì)的釋放過程,炎癥細胞組織活化過程,其以磷酸化促使炎癥遞質(zhì)物質(zhì)釋放過程具備一定的過度性,從而使得人體氣道重塑及支氣管呈現(xiàn)內(nèi)縮癥狀,與此同時其生成的基質(zhì)金屬性蛋白物質(zhì)(MMPs)及彈性蛋白酶物質(zhì)等能夠針對肺組織予以破壞,導致肺功能迅速降低[23-27]。PI3K-Akt數(shù)據(jù)化信號通路在激活之后,活性化的Akt經(jīng)提升核因子激活的B細胞的κ-輕鏈通路(NF-κB)抑制蛋白IκB激酶物質(zhì)予以磷酸化及降解等過程,從而促使NF-κB的活化性[28]。近期的探究成果中指出,NF-κB亞基在維持炎癥病癥內(nèi)具備關(guān)鍵性影響,NF-κB的活化可以誘導促炎因子(如TNF-α、IL-6和IL-1β)、趨化因子、黏附分子(如ICAM-1、VCAM-1和ELAM-1)及一些與炎癥級聯(lián)放大相關(guān)的酶(如iNOS和COX-2)的表達,從而趨向絕大多數(shù)中性顆粒組織細胞等炎癥組織細胞得以浸潤進程,匯集到炎癥區(qū)域,由此致使炎癥癥狀的反應(yīng)[29-30],Ho等[31]發(fā)現(xiàn)肺部促炎水平的變化與轉(zhuǎn)錄因子NF-κB的活化有關(guān)。由此可見,PI3K-Akt信號通路在慢阻肺炎癥病癥的發(fā)生發(fā)展進程內(nèi)起到關(guān)鍵性意義。
2.2? PI3K-Akt-mTOR通路與慢阻肺的自噬
慢阻肺是一種經(jīng)常由吸煙引起的進行性肺部疾病;它的特征是肺氣腫,支氣管炎和纖維化,并引起組織損傷和氣流阻塞[32]。肺氣腫是肺中終末細支氣管的遠端空氣腔中異常且持續(xù)的擴張。伴有肺泡壁和細支氣管的破壞,無明顯的肺纖維化。藥物治療主要包括支氣管擴張藥,抗炎藥,抗氧化劑和蛋白酶抑制劑[33]。最新研究已證明自噬在慢性肺部疾病中的作用,調(diào)節(jié)自噬信號通路可能為預(yù)防和治療人類疾病提供一種新的途徑。如Zhang等[34]證明抑制PI3K增加了由PM2.5誘導的慢性阻塞性肺病小鼠模型中肺泡上皮細胞的凋亡的同時,也降低了慢阻肺小鼠的自噬,表明PI3K-AKT-mTOR通路調(diào)節(jié)自噬誘導肺泡上皮細胞凋亡PM2.5誘導慢阻肺中的細胞。在細胞自噬過程中,細胞質(zhì)中的游離胞漿型LC3(LC3-I)以膜型(LC3-II)的形式逐漸位于自噬泡囊的表面[35]。因此,向LC3-II的轉(zhuǎn)化水平可以反映細胞自噬的程度,在生理條件下,自噬保持在低水平以降解和回收細胞內(nèi)物質(zhì)[36]。因此,它在回收和向細胞提供營養(yǎng)方面起作用。然而,在病理條件下,自噬反應(yīng)性升高。Zhou等[37]表明自噬對PM2.5誘導的細胞毒性有保護作用。代謝、炎癥反應(yīng)、神經(jīng)退行性疾病和治療壓力都會在細胞中誘導應(yīng)激環(huán)境[38]。在生長條件下,mTOR可以調(diào)節(jié)細胞生長和存活。然而,在營養(yǎng)缺乏的情況下,mTOR途徑被抑制,并且可以誘導自噬,其機制是磷酸化自噬相關(guān)蛋白阻止其與自噬相關(guān)蛋白1抗體(ATG1)結(jié)合形成自噬體;還可以促進核糖體與內(nèi)質(zhì)網(wǎng)的粘附,抑制內(nèi)質(zhì)網(wǎng)脫離并形成自噬體膜。特定的生長因子、氨基酸和葡萄糖可以通過mTOR信號通路負面調(diào)節(jié)自噬。AKT是PI3K-AKT-mTOR途徑的中心分子;它可以激活和調(diào)節(jié)多個下游目標。例如,AKT可以抑制TSC1/2并激活mTOR以促進蛋白質(zhì)合成和細胞生長以上均表明自噬可能通過PI3K-AKT-mTOR途徑成為慢阻肺的潛在治療靶標。
2.3 PI3K-Akt-mTOR通路與慢阻肺激素治療
糖皮質(zhì)激素作為慢阻肺主要的治療藥物之一,廣泛地應(yīng)用于慢阻肺患者治療中,但仍不能有效地控制炎癥反應(yīng),甚至對一部分慢阻肺患者是無效的,但是針對其他類慢性炎癥性病癥,如風濕性關(guān)節(jié)炎病癥及輕度哮喘病癥等,包括激素治療卻是有效的[39]。截止至當下引發(fā)以上醫(yī)療存在差異性的緣由還沒完整性闡述,有研究表明,氧化應(yīng)激通過活化PI3K-Akt-mTOR通路引起組蛋白去乙?;?(Histone deacetylase2,HDAC2)其呈現(xiàn)水準降低以及活性能力變?nèi)酰吐璺尾』紓€體生成糖皮質(zhì)激素物質(zhì)的抵抗力存在一定關(guān)聯(lián)。細致化的分子機制,絕大多數(shù)情況下即為因發(fā)生氧化過程應(yīng)激和因其引發(fā)的HDAC2物質(zhì)活性降低損傷糖皮質(zhì)激素物質(zhì)受體GR遏制促進炎因子要素的呈現(xiàn)力,導致促炎因子表達增多[40]。但是發(fā)生氧化應(yīng)激過程而致使的HDAC2活性降低,某種意義上即表示PI3K-Akt-mTOR信號通路的發(fā)展趨向上漲呈。另外依照相關(guān)探究表明,對照小組對比,慢阻肺病患個體的肺部巨噬細胞組織以及外部周血單核性細胞組織中PI3K的呈現(xiàn)水準以Akt予以磷酸化的顯著性提升,而HDAC2則明顯減少[41-42]。經(jīng)人體內(nèi)外的相關(guān)實驗探究表明,經(jīng)過遏制氧化應(yīng)激過程現(xiàn)狀之下所生成的炎癥反應(yīng),阻斷以及敲除PI3K,能夠顯著性增強HDAC2的活性及糖皮質(zhì)激素物質(zhì)的醫(yī)療效果[43-44]。由此可見,PI3K-Akt-mTOR信號通路,尤其為PI3K在氧化應(yīng)激過程內(nèi),慢阻肺患者個體的糖皮質(zhì)激素物質(zhì)在抵抗環(huán)節(jié)內(nèi)起到重要性影響,經(jīng)針對PI3K予以相應(yīng)干預(yù)操作及針對HDAC2的活性予以相應(yīng)的向上調(diào)整操作,改良完善皮質(zhì)激素物質(zhì)抵抗的抗炎藥品,已然構(gòu)成當下預(yù)防醫(yī)治慢阻肺病癥的高效性辦法。
3 總結(jié)與展望
慢阻肺的病情發(fā)展快及不確定性無疑導致在開發(fā)治療方案方面進展很有限。近階段以來PI3K-Akt信號通路在慢阻肺病癥發(fā)生進展環(huán)節(jié)內(nèi)的影響已然引發(fā)寬泛性的重視度,突出了P13K-Akt-mTOR信號通路在慢性阻塞性肺病癥內(nèi)的關(guān)鍵性。即使PI3K-Akt-mTOR信號在肺部病癥內(nèi)的認知逐步具備精準性,然而在我國臨床醫(yī)學層面的運用依舊存在較多疑難點,因為PI3K-Akt-mTOR不僅是經(jīng)典的病理信號通路,還參與著正常的機體生理功能,生理狀態(tài)與病理狀態(tài)的區(qū)別迄今尚未報道。研究證實PI3K-Akt-mTOR信號通路可通過調(diào)控炎癥介質(zhì)釋放、免疫炎癥細胞活化、氣道重構(gòu)及糖皮質(zhì)激素抵抗等在COPD中起著重要作用?;罨腜I3K-Akt-mTOR信號通路可下調(diào)HDAC2表達水平及活性,與COPD患者的糖皮質(zhì)激素抵抗密切相關(guān)。目前作用于PI3K信號通路的藥物已成為研究熱點,但是截止到目前,影響于PI3K信號通路的藥物,已經(jīng)變成探究的重要點,如藥物劑量及藥物療程,藥物毒性及聯(lián)合性藥物醫(yī)治的相關(guān)醫(yī)療效果等。由此可見,針對PI3K-Akt-mTOR信號通路相有關(guān)的藥物予以相應(yīng)研發(fā),深層次探究其相應(yīng)的臨床學運用價值度,針對慢阻肺的預(yù)防治療起到了關(guān)鍵性意義。
[參考文獻]
[1] Yoon YS,Jin M,Sin DD. Accelerated lung aging and chronic obstructive pulmonary disease[J]. Expert Rev Respir Med,2019,13(4):369-380.
[2] Kuwano K,Araya J,Hara H,et al.Cellular senescence and autophagy in the pathogenesis of chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF)[J].Respir Investig,2016,54(6):397-406.
[3] Wu N,Zhu Y,Xu X,et al. The anti-tumor effects of dual PI3K/mTOR inhibitor BEZ235 and histone deacetylase inhibitor Trichostatin A on inducing autophagy in esophageal squamous cell carcinoma[J].J Cancer,2018,9(6):987-997.
[4] Sun JQ,Zhang GL,Zhang Y,et al. Spatholobus suberectus column extract inhibits estrogen receptor positive breast cancer via suppressing ER MAPK PI3K/AKT pathway[J]. Evid Based Complement Alternat Med,2016, 2016:2 934 340.
[5] Stepanenko AA,Andreieva SV,Korets KV,et al. mTOR inhibitor temsirolimus and MEK1/2 inhibitor U0126 promote chromosomal instability and cell type-dependent phenotype changes of glioblastoma cells[J].Gene,2016, 579(1):58-68.
[6] Fan Q,Wang Q,Cai R,et al. The ubiquitin system:Orchestrating cellular signals in non-small-cell lung cancer[J].Cell Mol Biol Lett,2020,25:1.
[7] Shi Y,Quan R,Li C,et al. The study of traditional Chinese medical elongated-needle therapy promoting neurological recovery mechanism after spinal cord injury in rats[J]. J Ethnopharmacol,2016,187:28-41.
[8] Berrak O,Arisan ED,Obakan-Yerlikaya P,et al. mTOR is a fine tuning molecule in CDK inhibitors-induced distinct cell death mechanisms via PI3K/AKT/mTOR signaling axis in prostate cancer cells[J]. Apoptosis,2016,21(10):1158-1178.
[9] Hall MN.TOR and paradigm change:Cell growth is controlled[J]. Mol Biol Cell, 2016,27(18):2804-2806.
[10] Shorning BY,Dass MS,Smalley MJ,et al. The PI3K-AKT-mTOR pathway and prostate cancer: At the crossroads of AR,MAPK,and WNT signaling[J].Int J Mol Sci, 2020,21(12):819-828.
[11] LiCausi F,Hartman NW.Role of mTOR complexes in neurogenesis[J]. Int J Mol Sci, 2018,19(5):273-283.
[12] Zhang W,Ma L,Yang M,et al. Cerebral organoid and mouse models reveal a RAB39b-PI3K-mTOR pathway-dependent dysregulation of cortical development leading to macrocephaly/autism phenotypes[J]. Genes Dev,2020, 34(7-8):580-597.
[13] Yeh YH,Hsiao HF,Yeh YC,et al.Inflammatory interferon activates HIF-1alpha-mediated epithelial-to-mesenchymal transition via PI3K/AKT/mTOR pathway[J].J Exp Clin Cancer Res,2018,37(1):70.
[14] Liang B,Liang JM,Ding JN,et al. Dimethyloxaloylglycine-stimulated human bone marrow mesenchymal stem cell-derived exosomes enhance bone regeneration through angiogenesis by targeting the AKT/mTOR pathway[J]. Stem Cell Res Ther,2019,10(1):335.
[15] Zhou B,Ge T,Zhou L,et al. Dimethyloxalyl glycine regulates the HIF-1 signaling pathway in mesenchymal stem cells[J]. Stem Cell Rev Rep,2020,16(4):702-710.
[16] Nepstad I,Hatfield KJ,Gronningsaeter IS,et al. The PI3K-Akt-mTOR signaling pathway in human acute myeloid leukemia (AML) cells[J]. Int J Mol Sci,2020, 21(8):335-362.
[17] Zhang Q,Wang X,Cao S,et al. Berberine represses human gastric cancer cell growth in vitro and in vivo by inducing cytostatic autophagy via inhibition of MAPK/mTOR/p70S6K and Akt signaling pathways[J]. Biomed Pharmacother,2020,128:110 245.
[18] Wu YF,Li ZY,Dong LL,et al. Inactivation of MTOR promotes autophagy-mediated epithelial injury in particulate matter-induced airway inflammation[J]. Autophagy,2020,16(3):435-450.
[19] Yoshihara T,Chang SW,Tsuzuki T,et al. Sex-specific differences in rat soleus muscle signaling pathway responses to a bout of horizontal and downhill running[J]. J Physiol Biochem,2019,75(4):585-595.
[20] Kumanovics A.Systemic evaluation of the immune system in infants to predict the development of pediatric asthma[J].Clin Chem,2020.
[21] Numata T,Araya J,F(xiàn)ujii S,et al.Insulin-dependent phosphatidylinositol 3-kinase/Akt and ERK signaling pathways inhibit TLR3-mediated human bronchial epithelial cell apoptosis[J]. J Immunol,2011,187(1):510-519.
[22] Mortaz E,Lazar Z,Koenderman L,et al. Cigarette smoke attenuates the production of cytokines by human plasmacytoid dendritic cells and enhances the release of IL-8 in response to TLR-9 stimulation[J].Respir Res,2009, 10:47.
[23] Tseng PC,Chen CL,Shan YS,et al. An increase in galectin-3 causes cellular unresponsiveness to IFN-gamma-induced signal transduction and growth inhibition in gastric cancer cells[J]. Oncotarget,2016,7(12):15 150-15 160.
[24] 潘欽石,胡麗娟,林曉梅,等.鹽酸??颂婺釋Ψ伟〢549細胞PI3K/AKT、HIF-1α信號通路的影響[J].中華全科醫(yī)學,2016,14(5):705-708.
[25] 徐立群,張榮華,鄒瑩,等.參慈膠囊聯(lián)合順鉑通過PI3K/AKT/mTOR信號通路逆轉(zhuǎn)人肺腺癌順鉑耐藥的機制研究[J].中國病理生理雜志,2017,33(3):500-504.
[26] 高洋洋,趙志英. PI3K/Akt信號通路及神經(jīng)損傷的研究進展[J].醫(yī)學綜述,2017,23(16):3121-3125.
[27] Fritsche-Guenther R,Witzel F,Kempa S,et al. Effects of RAF inhibitors on PI3K/AKT signalling depend on mutational status of the RAS/RAF signalling axis[J].Oncotarget,2016,7(7):7960-7969.
[28] Lokwani R,Wark PA,Baines KJ,et al. Blood neutrophils In COPD but not asthma exhibit a primed phenotype with downregulated CD62L expression[J]. Int J Chron Obstruct Pulmon Dis,2019,14:2517-2525.
[29] Fiordelisi A,Iaccarino G,Morisco C,et al. NFkappaB is a key player in the crosstalk between inflammation and cardiovascular diseases[J]. Int J Mol Sci, 2019,20(7):1005.
[30] Wang Y,Zhou X,Zhao D,et al. Berberine inhibits free fatty acid and LPS-induced inflammation via modulating ER stress response in macrophages and hepatocytes[J]. PLoS One,2020,15(5):e232 630.
[31] Ho CY,Weng CJ,Jhang JJ,et al. Diallyl sulfide as a potential dietary agent to reduce TNF-alpha-and histamine-induced proinflammatory responses in A7r5 cells[J].Mol Nutr Food Res,2014,58(5):1069-1078.
[32] McNicholas WT,Hansson D,Schiza S,et al. Sleep in chronic respiratory disease:COPD and hypoventilation disorders[J]. Eur Respir Rev,2019,28(153):190 064.
[33] Alison JA,McKeough ZJ,Jenkins SC,et al. A randomised controlled trial of supplemental oxygen versus medical air during exercise training in people with chronic obstructive pulmonary disease:Supplemental oxygen in pulmonary rehabilitation trial (SuppORT) (Protocol)[J]. BMC Pulm Med,2016,16:25.
[34] Zhang F,Ma H,Wang ZL,et al. The PI3K/AKT/mTOR pathway regulates autophagy to induce apoptosis of alveolar epithelial cells in chronic obstructive pulmonary disease caused by PM2.5 particulate matter[J]. Journal of International Medical Research,2020,48(7):1 410 562 935.
[35] Racanelli AC,Kikkers SA,Choi A,et al. Autophagy and inflammation in chronic respiratory disease[J]. Autophagy,2018,14(2):221-232.
[36] Li L,Zhang M,Zhang L,et al.Klotho regulates cigarette smoke-induced autophagy: Implication in pathogenesis of COPD[J]. Lung,2017,195(3):295-301.
[37] Zhou Z,Shao T,Qin M,et al. The effects of autophagy on vascular endothelial cells induced by airborne PM2.5[J]. J Environ Sci (China),2018,66:182-187.
[38] Yang Y,Sadri H,Prehn C,et al. Proteasome activity and expression of mammalian target of rapamycin signaling factors in skeletal muscle of dairy cows supplemented with conjugated linoleic acids during early lactation[J]. J Dairy Sci,2020,103(3):2829-2846.
[39] Marwick JA,Caramori G,Casolari P,et al. A role for phosphoinositol 3-kinase delta in the impairment of glucocorticoid responsiveness in patients with chronic obstructive pulmonary disease[J]. J Allergy Clin Immunol,2010,125(5):1146-1153.
[40] Palumbo ML,Prochnik A,Wald MR,et al. Chronic Stress and Glucocorticoid Receptor Resistance in Asthma[J]. Clin Ther,2020,42(6):993-1006.
[41] Singh H,Agarwal V,Chaturvedi S,et al. Reciprocal relationship between HDAC2 and P-Glycoprotein/MRP-1 and their role in steroid resistance in childhood nephrotic syndrome[J]. Front Pharmacol,2019,10:558.
[42] Wang Y,Lyu X,Wu X,et al. Long non-coding RNA PVT1,a novel biomarker for chronic obstructive pulmonary disease progression surveillance and acute exacerbation prediction potentially through interaction with microRNA-146a[J]. J Clin Lab Anal,2020,34(8):e23 346.
[43] Verin AD. Letter to the editor:"Histone deacetylase 7 inhibition in a murine model of gram-negative pneumonia-induced acute lung injury" Shock 53:344-351,2020[J].Shock,2020,53(3):375.
[44] Sun XJ,Li ZH,Zhang Y,et al. Theophylline and dexamethasone in combination reduce inflammation and prevent the decrease in HDAC2 expression seen in monocytes exposed to cigarette smoke extract[J]. Exp Ther Med,2020,19(5):3425-3431.
(收稿日期:2021-03-02)