周文 白嬋 王炬光 柴毅 鉏曉艷 廖濤 熊光權(quán)
摘 要:為了提高史氏鱘的?;顣r間和存活率,選取合適質(zhì)量濃度MS-222麻醉史氏鱘,研究不同無水保活運輸溫度(4、8、12 ℃)對史氏鱘氧化應(yīng)激的影響,分別記錄模擬保活運輸12 h和24 h后各溫度組的存活率,分析保活運輸前后應(yīng)激指標和抗氧化指標變化。結(jié)果表明:MS-222麻醉史氏鱘,較佳鎮(zhèn)靜質(zhì)量濃度為100 mg/L、鎮(zhèn)靜時間為(2.1±0.1) min,較佳麻醉質(zhì)量濃度為110 mg/L、麻醉時間為(2.1±0.3) min;?;钸\輸12 h時,12 ℃條件下存活率最高,為85%,保活運輸24 h時,4 ℃條件下存活率最高,為62.5%;?;钸\輸12 h后12 ℃條件下血糖濃度和皮質(zhì)醇含量顯著低于其他組,超氧化物歧化酶和谷胱甘肽過氧化物酶(glutathione peroxidase,GPX)活性顯著低于其他組,同時丙二醛(malondialdehyde,MDA)含量最低(P<0.05),表明受到的應(yīng)激最小;?;钸\輸24 h時,各溫度組過氧化氫酶活性無明顯差異,4 ℃條件下GPX活性較低,同時MDA含量顯著低于其他組(P<0.05)。因此在史氏鱘短時間(12 h)保活運輸時,較高溫度(12 ℃)減少應(yīng)激效果明顯,是較適的保活溫度;在較長時間(24 h) ?;钸\輸時,低溫能更好保持低代謝和麻醉狀態(tài),4 ℃是較適的?;顪囟?。
關(guān)鍵詞:MS-222;史氏鱘;溫度;無水保活運輸;氧化應(yīng)激
Abstract: In order to improve the survival time and survival rate of Amur sturgeon, the fish were anaesthetized with an appropriate concentration of MS-222 to explore the effects of different temperatures (4, 8 and 12 ℃) during waterless live transportation on oxidative stress in it. The survival rate of the fish was recorded after 12 and 24 h of simulated live transportation, and the changes in oxidative stress and antioxidant indicators were analyzed before and after live transportation. The results showed that the appropriate sedative concentration of MS-222 was 100 mg/L and the sedation time was (2.1 ± 0.1) min; the appropriate anaesthetic concentration was 110 mg/L and the anesthesia time was (2.1 ± 0.3) min.?After 12 h live transportation, the highest survival rate of 85% was observed at 12 ℃. After 24 h live transportation, the highest survival rate of 62.5% was observed at 4 ℃. After 12 h live transportation, blood sugar, cortisol and malondialdehyde (MDA) levels as well as the activity of superoxide dismutase (SOD) and glutathione peroxidase (GPX) were significantly lower in the 12 ℃ group than in the other temperature groups (P < 0.05), indicating that the lowest level of oxidative stress occurred in the 12 ℃ group. After 24 h live transportation, there were no significant differences in catalase (CAT) activity among all groups. GPX activity was lower in the 4 ℃ group, and MDA content was significantly lower in this group than in the other groups (P < 0.05). Therefore, when the sturgeon was transported without water for a short time?(12 h), a significantly lower level of oxidative stress was observed at higher temperature (12 ℃), suggesting that the appreciate survival temperature was 12 ℃. When the sturgeon was transported for a long time (24 h), low metabolism and anesthesia were maintained better at lower temperature (4 ℃), so that the fish could survive better.
Keywords: tricaine methanesulfonate (MS-222); Acipenser schrenckii; temperature; waterless live transportation; oxidative stress
DOI:10.7506/rlyj1001-8123-20210408-095
中圖分類號:TS254.4 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?文獻標志碼:A 文章編號:1001-8123(2021)07-0032-06
引文格式:
周文, 白嬋, 王炬光, 等. 無水保活運輸溫度對史氏鱘生化指標的影響[J]. 肉類研究, 2021, 35(7): 32-37. DOI:10.7506/rlyj1001-8123-20210408-095. ? ?http://www.rlyj.net.cn
ZHOU Wen, BAI Chan, WANG Juguang, et al. Effects of different temperatures during waterless live transportation on oxidative stress in Amur sturgeon (Acipenser schrencki)[J]. Meat Research, 2021, 35(7): 32-37. DOI:10.7506/rlyj1001-8123-20210408-095. ? ?http://www.rlyj.net.cn
史氏鱘(Acipenser schrencki)隸屬于鱘形目、鱘亞科,被認為是現(xiàn)存最古老的生物之一,具有很高的經(jīng)濟和營養(yǎng)價值,近幾十年來,產(chǎn)量逐漸增加[1]。中國是鱘魚產(chǎn)量最大的國家,在世界上占有很大的比重,2010—2017年,其產(chǎn)量占世界鱘魚產(chǎn)量80%左右[1]?;铘~在中國特別受歡迎,因為在中國文化中,新鮮殺死的魚比死魚更美味[2-4]。如今,高價值品種的活魚銷量大幅增長,其銷售價格比大宗淡水魚高5~10 倍,帶來了可觀的經(jīng)濟效益[5]。為了提高利潤率和口感質(zhì)量,鱘魚通常是鮮活銷售[6-7]。然而,活魚運輸是一個相對復(fù)雜的過程,需要更好地控制潛在的運輸刺激,防止魚的生理應(yīng)激反應(yīng),否則過度的生理應(yīng)激會導(dǎo)致魚的活力下降,甚至死亡[8-9]。
作為一種新穎的魚類運輸策略,魚類無水運輸是實現(xiàn)較高成活率和大容量的綠色經(jīng)濟解決方案[10-11]。已有研究表明,無水運輸方法已應(yīng)用于史氏鱘[11]、鯽魚(Carassius auratus)[12]、虹鱒魚(Oncorhynchus mykiss)[13]等冷水魚類的活體運輸。低溫和保持魚的平靜是提高無水運輸效率的有效手段,它可以通過減緩新陳代謝和減少應(yīng)激來增加魚體堆積密度和存活率[8-9,12]。
然而,低溫也是一種應(yīng)激源,不恰當?shù)牡蜏貢黾舆\輸時的應(yīng)激,加速內(nèi)環(huán)境穩(wěn)態(tài)的失調(diào)。在魚類中,低溫、空氣暴露和運輸脅迫導(dǎo)致組織損傷[14]、生存能力降低[15]、改變生理反應(yīng)[16],從而影響魚體能量代謝[17-18]、導(dǎo)致免疫力低下[19]并增加氧化應(yīng)激[20]。本研究采用MS-222麻醉史氏鱘,測定不同無水?;钸\輸溫度史氏鱘的氧化應(yīng)激水平,以確保合適的無水保活條件,減少運輸過程中對魚類造成的應(yīng)激。
1 材料與方法
1.1 材料與試劑
史氏鱘購買自湖北洪湖當?shù)貪O場,體長(54±6) cm,體質(zhì)量(700±77) g。實驗用魚被轉(zhuǎn)移到4 個塑料桶(容積700 L)中進行為期2 周的適應(yīng),所有塑料桶都處于同一個循環(huán)水系統(tǒng)中。每桶放置相同數(shù)量的魚,以保持一致的生活條件。在適應(yīng)期,每天喂魚2 次。養(yǎng)殖的水體參數(shù)為:水溫(23.0±0.6) ℃、溶解氧(6.80±0.14) mg/L、pH(7.15±0.07)、明暗交替周期為12 h/12 h。實驗前24 h暫停投喂,清空魚消化道。
MS-222(使用時現(xiàn)用現(xiàn)配,并用碳酸氫鈉調(diào)節(jié)溶液pH值至7.34) 上海晶純生化科技股份有限公司;超氧化物歧化酶(superoxide dismutase,SOD)、過氧化氫酶(catalase,CAT)、谷胱甘肽過氧化物酶(glutathione peroxidase,GPX)、丙二醛(malondialdehyde,MDA)、皮質(zhì)醇、血糖含量測定試劑盒 南京建成生物科技有限公司。
1.2 儀器與設(shè)備
3K15離心機 德國Sigma公司;SPARK酶標儀?瑞士Tecan公司;ME235S電子分析天平 德國Sartorius公司;VORTEX 3渦旋振蕩器 德國IKA公司;Step One PlusTM熒光定量儀 美國Applied Biosystems公司。
1.3 方法
1.3.1 MS-222麻醉實驗
測定不同質(zhì)量濃度(70、80、90、100、110、120 mg/L)MS-222溶液對史氏鱘的麻醉效果,每條魚只用于1 個質(zhì)量濃度的測試,設(shè)置6 組平行。實驗魚放于90 L玻璃容器中,含有MS-222溶液40 L,持續(xù)曝氣。每條魚單獨觀察10 min,在觀察時間內(nèi)不能進入更深層次麻醉期或者呼吸微弱則被放入清水中復(fù)蘇。記錄各階段時間,MS-222溶液麻醉的最佳標準為3 min內(nèi)達到麻醉狀態(tài),5 min內(nèi)復(fù)蘇[21-22]。所有經(jīng)過麻醉的魚放在清水中暫養(yǎng)7 d,記錄死亡率。史氏鱘麻醉分期見表1。
1.3.2 模擬運輸
根據(jù)1.3.1節(jié)結(jié)果,用110 mg/L MS-222溶液(23 ℃)麻醉史氏鱘,模擬無水運輸。120 條魚被分成60 袋(每袋2 條魚),袋中無水、充滿純氧。在運輸12 h和24 h過程中,分別設(shè)3 個溫度處理組(4、8、12 ℃),每個處理組5 個運輸袋(n=10),以馴養(yǎng)魚為對照組。運輸12、24 h后立即取樣,敲擊魚頭部致死,然后用醫(yī)用紗布擦凈尾部,斷尾取血。收集的血液樣本在室溫下靜置1 h,3 000×g離心15 min,分離血漿、收集上清液,置于-20 ℃冰箱中保存。
1.3.3 生化指標測定
采用試劑盒進行生化指標測定,分別分析應(yīng)激指標皮質(zhì)醇含量、血糖濃度及抗氧化相關(guān)指標SOD、CAT、GPX活性、MDA含量等。
1.4 數(shù)據(jù)處理
用Microsoft Excel 2019和SPSS 19.0軟件對實驗結(jié)果進行統(tǒng)計分析,用Graphpad prism 7軟件作圖,實驗結(jié)果以平均值±標準差表示,并在單因素方差分析基礎(chǔ)上采用Duncans多重比較法進行差異顯著性分析,顯著性水平為P<0.05。
2 結(jié)果與分析
2.1 MS-222麻醉史氏鱘的較佳質(zhì)量濃度確定
由表2可知,隨著MS-222質(zhì)量濃度增加,史氏鱘進入相同麻醉時期的時間縮短,完全復(fù)蘇時間延長。
MS-222質(zhì)量濃度70 mg/L時不能使史氏鱘達到麻醉狀態(tài),而質(zhì)量濃度為120 mg/L時幾乎不能觀察到鎮(zhèn)靜期。
MS-222質(zhì)量濃度70~110 mg/L時都能使史氏鱘進入深度鎮(zhèn)靜狀態(tài),80~120 mg/L時能使史氏鱘達到麻醉狀態(tài)。本研究中史氏鱘麻醉的有效MS-222質(zhì)量濃度為70 mg/L,這比花鱸(Lateolabrax maculatus)(40 mg/L)[14]、金頭鯛(Spams aurata)(30 mg/L)[23]高,比鯽魚(150 mg/L)[24]、波斯鱘(Acipenser persicus)(75 mg/L)[25]低。Mirghaed等[26]發(fā)現(xiàn),魚類麻醉劑麻醉使用的療效標準為3 min內(nèi)達到麻醉狀態(tài),5 min內(nèi)復(fù)蘇。因此,MS-222用于史氏鱘麻醉,合適的鎮(zhèn)靜質(zhì)量濃度為100~110 mg/L,合適的麻醉質(zhì)量濃度為110~120 mg/L。本研究的最佳麻醉質(zhì)量濃度為110 mg/L,和鯽魚[26]及孔雀魚(Poecilia vivipara)[27]相同。
2.2 溫度和?;钸\輸時間對史氏鱘存活率的影響
小寫字母不同,表示同一?;钸\輸時間下不同溫度差異顯著(P<0.05)。
由圖1可知,隨著?;钸\輸時間延長,各個溫度條件下存活率均降低。?;钸\輸12 h時,12 ℃條件下存活率最高,為85%;保活運輸24 h時,4 ℃條件下存活率最高,為62.5%,但和12 ℃無明顯差異;?;钸\輸12 h和24 h時,8 ℃條件下存活率均最低。因此,?;钸\輸12 h時,12 ℃是史氏鱘麻醉?;钸\輸?shù)倪m宜溫度;保活運輸24 h時,4 ℃是史氏鱘麻醉?;钸\輸?shù)倪m宜溫度。另外,12 ℃條件下,12~24 h的?;钸\輸過程中存活率下降最快。
溫度過高或過低均不利于魚體運輸,其原因是溫度較高時魚體新陳代謝旺盛,但水溫過低也會導(dǎo)致魚體遭受冷應(yīng)激,長期低溫會產(chǎn)生嚴重的損傷和死亡,從而導(dǎo)致存活率下降[4,28]。Zeng Peng等[15]研究溫水性魚類鯉魚麻醉休眠的較佳?;顪囟葧r發(fā)現(xiàn),4 ℃條件下完全失去運動能力與平衡能力時10 min進入休眠狀態(tài),但僅能維持5 h,而在14 ℃條件下,魚體的運動與平衡能力正常,在呼吸較弱的鎮(zhèn)靜或半休眠狀態(tài)下,能維持24 h。本研究中馴化溫度(23 ℃)和運輸溫度(12 ℃)溫差較小,在短時間(12 h)運輸時能更好維持史氏鱘狀態(tài);4 ℃和8 ℃溫差較大,產(chǎn)生了冷應(yīng)激,降低了存活率,但4 ℃條件下魚體代謝相對較慢,因此存活率較8 ℃高;隨著保活運輸時間延長(24 h),12 ℃條件下新陳代謝較快,逐漸脫離最佳的麻醉狀態(tài),使得存活率相較于4 ℃下降更快。
2.3 溫度和保活運輸時間對史氏鱘應(yīng)激指標的影響
小寫字母不同,表示同一?;钸\輸時間下不同溫度差異顯著(P<0.05);大寫字母不同,表示同一溫度下不同保活運輸時間差異顯著(P<0.05)。圖3同。
皮質(zhì)醇含量、血糖濃度常被作為應(yīng)激反應(yīng)的敏感指標,可以反映魚類應(yīng)激反應(yīng)的強弱[29]。由圖2可知:與對照組相比,?;钸\輸后所有溫度處理組皮質(zhì)醇含量和血糖濃度均顯著升高(P<0.05);隨著?;钸\輸時間延長,8 ℃條件下皮質(zhì)醇含量顯著升高(P<0.05),但是4 ℃和12 ℃條件下皮質(zhì)醇含量變化不明顯,而4 ℃條件下血糖濃度顯著降低,12 ℃條件下顯著升高。?;钸\輸12 h時,12 ℃條件下皮質(zhì)醇含量和血糖濃度最低;而?;钸\輸24 h時,4 ℃條件下皮質(zhì)醇含量和血糖濃度最低。
當魚類受到應(yīng)激后,下丘腦-垂體-腎上腺軸迅速作用,促進促腎上腺皮質(zhì)激素的釋放,從而導(dǎo)致腎上腺皮質(zhì)醇激素的合成與釋放。Mirghaed等[30]研究表明,鯉魚暴露于丁香酚中,皮質(zhì)醇和血糖水平顯著升高后下降。本研究中,史氏鱘麻醉休眠后在4 ℃條件下?;钸\輸24 h后的血清皮質(zhì)醇含量降低,但與?;钸\輸12 h差異不顯著,血糖濃度顯著降低,表明低溫麻醉能減緩?;钸\輸后的應(yīng)激反應(yīng)。而12 ℃條件下?;钸\輸24 h后皮質(zhì)醇含量升高,和?;钸\輸12 h差異不顯著,但血糖濃度顯著升高,表明12 ℃運輸魚體的應(yīng)激持續(xù)增強。本研究中血糖濃度的變化比皮質(zhì)醇含量的變化更加顯著,說明皮質(zhì)醇恢復(fù)較快,血糖恢復(fù)較慢。
2.4 溫度和?;钸\輸時間對史氏鱘氧化應(yīng)激指標的影響
由圖3可知:?;钸\輸12 h時,12 ℃條件下SOD、CAT、GPX活性及MDA含量處于較低水平;?;钸\輸24 h時,4 ℃條件下GPX活性處于較低水平,CAT活性和其他組無顯著性差異,MDA含量較低。說明?;钸\輸12 h時12 ℃是較佳的?;顪囟?,?;钸\輸24 h時4 ℃是較佳的保活溫度。
通常,在正常的環(huán)境條件下,魚類的抗氧化防御系統(tǒng)可提供針對活性氧(reactive oxygen species,ROS)的充分保護[31]。然而,當暴露于非生物和/或生物脅迫時,魚類產(chǎn)生的ROS會增加,并且ROS產(chǎn)生與抗氧化劑清除細胞自由基之間的平衡可能會改變,進而導(dǎo)致氧化應(yīng)激[32],從而刺激各種防御機制,如GPX循環(huán),以清除ROS和ROS產(chǎn)生的有毒代謝產(chǎn)物[33]。還原型谷胱甘肽通常被認為是調(diào)節(jié)氧化還原平衡的中間物質(zhì),GPX利用SOD還原的H2O2與還原型谷胱甘肽反應(yīng)生成氧化型谷胱甘肽和H2O,以達到清除自由基的目的。隨著?;钸\輸時間的延長,?;钸\輸24 h時,12 ℃條件下GPX活性與對照組相比顯著升高,這可能是由于大量的自由基積累,產(chǎn)生劇烈氧化應(yīng)激,使得還原型谷胱甘肽不足以保持氧化還原狀態(tài)平衡,機體產(chǎn)生大量GPX。保活運輸24 h后存活率大幅度下降可能是由于GPX循環(huán)適應(yīng)性失敗導(dǎo)致。在?;钸\輸12 h時,4 ℃條件下CAT活性顯著高于其余組,可能是由于氧化應(yīng)激產(chǎn)生,從而需要補充SOD和CAT對其進行消除。此外,4 ℃條件下?;钸\輸12 h和24 h,GPX活性和對照組無明顯差異,表明4 ℃運輸時不會超出GPX循環(huán)適應(yīng)能力。
3 結(jié) 論
本研究中MS-222較佳的麻醉質(zhì)量濃度為110 mg/L。?;钸\輸12 h時,4、8、12 ℃條件下的存活率分別為75.3%、50.4%、85%,保活運輸24 h時,4、8、12 ℃條件下的存活率分別為62.5%、37.2%、62.4%。因此,?;钸\輸12 h時,12 ℃是史氏鱘麻醉?;钸\輸?shù)倪m宜溫度;?;钸\輸24 h時,4 ℃是史氏鱘麻醉保活運輸?shù)倪m宜溫度。
與保活前相比,各溫度組史氏鱘隨著?;钸\輸時間的延長,皮質(zhì)醇含量和血糖濃度顯著升高,保活運輸12 h和24 h時分別在12 ℃和4 ℃保持最低水平。?;钸\輸12 h時,SOD、GPX、CAT活性及MDA含量在12 ℃較低。?;钸\輸24 h時,各溫度組CAT活性無明顯差異,4 ℃條件下GPX活性較低,同時MDA含量顯著低于其他組。因此?;钸\輸12 h時,12 ℃條件下存活率最高,應(yīng)激最小,魚體受到氧化損傷最小,是較佳的運輸溫度;?;钸\輸24 h時,4 ℃條件下存活率最高,應(yīng)激最小,魚體受到氧化損傷最小,是較佳的運輸溫度。
參考文獻:
[1] BRONZI P, CHEBANOV M, MICHAELS J T, et al. Sturgeon meat and caviar production: global update 2017[J]. Journal of Applied Ichthyology, 2019, 35(1): 257-266. DOI:10.1111/jai.13870.
[2] ZHANG Yongjun, WANG Wensheng, LIU Yan, et al. Development and evaluation of an intelligent traceability system for waterless live fish transportation[J]. Food Control, 2019, 95: 283-297. DOI:10.1016/j.foodcont.2018.08.018.
[3] NIE Xiaobao, LEI Jilin, CHEN Shixi, et al. Physiological, proteomic, and gene expression analysis of turbot (Scophthalmus maximus) in response to cold acclimation[J]. Aquaculture, 2018, 495: 281-287. DOI:10.1016/j.aquaculture.2018.05.054.
[4] ZHANG Yongjun, XIAO Xinqing, LIU Yan, et al. Survival prediction system for waterless live Chinese sturgeon transportation based on temperature related glucose changes[J]. Journal of Food Process Engineering, 2017, 41(2): e12646. DOI:10.1111/jfpe.12646.
[5] SUMMERFELT S T, Z?HLKE A, KOLAREVIC J, et al. Effects of alkalinity on ammonia removal, carbon dioxide stripping, and system pH in semi-commercial scale water recirculating aquaculture systems operated with moving bed bioreactors[J]. Aquacultural Engineering, 2015, 65: 46-54. DOI:10.1016/j.aquaeng.2014.11.002.
[6] SINGH R K, VARTAK V R, BALANGE A K, et al. Water quality management during transportation of fry of Indian major carps, Catla catla (Hamilton), Labeo rohita (Hamilton) and Cirrhinus mrigala (Hamilton)[J]. Aquaculture, 2004, 235(1/4): 297-302. DOI:10.1016/j.aquaculture.2003.12.011.
[7] WANG Wensheng, ZHANG Yongjun, LIU Yan, et al. Effects of waterless live transportation on survivability, physiological responses and flesh quality in Chinese farmed sturgeon (Acipenser schrenckii)[J]. Aquaculture, 2020, 518: 734834. DOI:10.1016/j.aquaculture.2019.734834.
[8] REFAEY M M, TIAN X, TANG R, et al. Changes in physiological responses, muscular composition and flesh quality of channel catfish Ictalurus punctatus suffering from transport stress[J]. Aquaculture, 2017, 478: 9-15. DOI:10.1016/j.aquaculture.2017.01.026.
[9] HARMON T S. Methods for reducing stressors and maintaining water quality associated with live fish transport in tanks: a review of the basics[J]. Reviews in Aquaculture, 2009, 1(1): 58-66. DOI:10.1111/j.1753-5131.2008.01003.x.
[10] REFAEY M M, LI D, TIAN X, et al. High stocking density alters growth performance, blood biochemistry, intestinal histology, and muscle quality of channel catfish Ictalurus punctatus[J]. Aquaculture, 2018, 492: 73-81. DOI:10.1016/j.aquaculture.2018.04.003.
[11] ZHANG Yongjun, ZHANG Xiaoshuan, NGA M T T, et al. Development and evaluation of key ambient factors online monitoring system in live Urechis unicinctus transportation strategies[J]. Computers and Electronics in Agriculture, 2018, 145: 43-52. DOI:10.1016/j.compag.2017.12.017.
[12] MI Hongbo, QIAN Chunlu, MAO Linchun, et al. Quality and biochemical properties of artificially hibernated crucian carp for waterless preservation[J]. Fish Physiology and Biochemistry, 2012, 38: 1721-1728. DOI:10.1007/s10695-012-9669-2.
[13] SHABANI F, ERIKSON U, BELI E, et al. Live transport of rainbow trout (Onchorhynchus mykiss) and subsequent live storage in market: water quality, stress and welfare considerations[J]. Aquaculture, 2016, 453: 110-115. DOI:10.1016/j.aquaculture.2015.11.040.
[14] DONG Hongbiao, WANG Wenhao, DUAN Yafei, et al. Transcriptomic analysis of juvenile Chinese sea bass (Lateolabrax maculatus) anesthetized by MS-222 (tricaine methanesulfonate) and eugenol[J]. Fish Physiology and Biochemistry, 2020, 46: 909-920. DOI:10.1007/s10695-019-00755-x.
[15] ZENG Peng, CHEN Tianji, SHEN Jiang. Effects of cold acclimation and storage temperature on crucian carp (Carassius auratus gibelio) in a waterless preservation[J]. Fish Physiology and Biochemistry, 2014, 40(3): 973-982. DOI:10.1007/s10695-013-9898-z.
[16] XAVIER B, MEGARAJAN S, RANJAN R, et al. Effect of packing density on selected tissue biochemical parameters of hatchery produced fingerlings of orange spotted grouper Epinephelus coioides (Hamilton, 1822) during transportaion[J]. Fish, 2018, 65(2): 138-143. DOI:10.21077/ijf.2018.65.2.75268-19.
[17] COSTAS B, ARAG?O C, RUIZ-JARABO I, et al. Different environmental temperatures affect amino acid metabolism in the eurytherm teleost Senegalese sole (Solea senegalensis Kaup, 1858) as indicated by changes in plasma metabolites[J]. Amino Acids, 2012, 43(1): 327-335. DOI:10.1007/s00726-011-1082-0.
[18] SUN Zhenzhu, TAN Xiaohong, LIU Qingying, et al. Physiological, immune responses and liver lipid metabolism of orange-spotted grouper (Epinephelus coioides) under cold stress[J]. Aquaculture, 2019, 498: 545-555. DOI:10.1016/j.aquaculture.2018.08.051.
[19] CHENG Changhong, YE Chaoxia, GUO Zhixun, et al. Immune and physiological responses of pufferfish (Takifugu obscurus) under cold stress[J]. Fish and Shellfish Immunology, 2017, 64: 137-145. DOI:10.1016/j.fsi.2017.03.003.
[20] SANTOS P P, RAFACHO B, ARDISSON L, et al. Evaluation of oxidative stress and energy metabolism in the heart of rats supplemented with different vitamin D doses[J]. The FASEB Journal, 2012, 26(3): 828-837. DOI:10.1096/fasebj.26.1_supplement.385.8.
[21] MYLONAS C C, CARDINALETTI G, SIGELAKI I, et al. Comparative efficacy of clove oil and 2-phenoxyethanol as anesthetics in the aquaculture of European sea bass (Dicentrarchus labrax) and gilthead sea bream (Sparus aurata) at different temperatures[J]. Aquaculture, 2005, 246(1/4): 467-481. DOI:10.1016/j.aquaculture.2005.02.046.
[22] HE Ruipeng, LEI Bo, SU Yuepeng, et al. Effectiveness of eugenol as an anesthetic for adult spotted sea bass (Lateolabrax maculatus)[J]. Aquaculture, 2020, 523: 735180. DOI:10.1016/j.aquaculture.2020.735180.
[23] TELES M, OLIVEIRA M, JEREZ-CEPA I, et al. Transport and recovery of gilthead sea bream (Sparus aurata L.) sedated with clove oil and MS222: effects on oxidative stress status[J]. Frontiers in Physiology, 2019, 10: 1-10. DOI:10.3389/fphys.2019.00612.
[24] LE Qijun, HU Jiabiao, CAO Xiaohuan, et al. Transcriptomic and cortisol analysis reveals differences in stress alleviation by different methods of anesthesia in crucian carp (Carassius auratus)[J]. Fish and Shellfish Immunology, 2018, 84: 1170-1179. DOI:10.1016/j.fsi.2018.10.061.
[25] FALAHATKAR B, POURSAEID S. Anaesthetic efficacy of tricaine methanesulfonate for Persian sturgeon larvae[J]. Aquaculture Research, 2016, 48(8): 4578-4581. DOI:10.1111/are.13084.
[26] MIRGHAED A T, GHELICHPOUR M, HOSEINI S M. Myrcene and linalool as new anesthetic and sedative agents in common carp, Cyprinus carpio: comparison with eugenol[J]. Aquaculture, 2016, 464: 165-170. DOI:10.101.2016.06.028.
[27] N?STOR S, AZEVEDO A D, PETRY A C. Comparative efficacy of benzocaine, tricaine methane sulfonate and eugenol as anesthetic agents in the guppy Poecilia vivipara[J]. Aquaculture Reports, 2017, 6: 56-60. DOI:10.1016/j.aqrep.2017.04.002.
[28] STOCKMAN J, WEBER E, KASS P H, et al. Physiologic and biochemical measurements and response to noxious stimulation at various concentrations of MS-222 in Koi (Cyprinus carpio)[J].?Veterinary Anaesthesia and Analgesia, 2013, 40(1): 35-47. DOI:10.1111/j.1467-2995.2012.00739.x.
[29] SEMENKOVA T B, BAYUNOVA L V, BOEV A A, et al. Effects of stress on serum cortisol levels of sturgeon in aquaculture[J]. Journal of Applied Ichthyology, 2010, 15(4/5): 270-272. DOI:10.1111/j.1439-0426.1999.tb00249.x.
[30] MIRGHAED A T, YASARI M, MIRZARGAR S S, et al. Rainbow trout (Oncorhynchus mykiss) anesthesia with myrcene: efficacy and physiological responses in comparison with eugenol[J]. Fish Physiology and Biochemistry, 2018, 44(3): 919-926. DOI:10.1007/s10695-018-0481-5.
[31] ZHOU Chuifan, HUANG Meiying, LI Ying, et al. Changes in subcellular distribution and antioxidant compounds involved in Pb accumulation and detoxification in Neyraudia reynaudiana[J]. Environmental Science and Pollution Research, 2016, 23(21): 21794-21804. DOI:10.1007/s11356-016-7362-1.
[32] WANG Mei, ZHANG Chao, ZHANG Zhuo, et al. Distribution and integrated assessment of lead in an abandoned lead-acid battery site in Southwest China before redevelopment[J]. Ecotoxicology and Environmental Safety, 2016, 128: 126-132. DOI:10.1016/j.ecoenv.2016.02.017.
[33] LIN Haiying, SUN Tao, ZHOU Yi, et al. Anti-oxidative feedback and biomarkers in the intertidal seagrass Zostera japonica induced by exposure to copper, lead and cadmium[J]. Marine Pollution Bulletin, 2016, 109(1): 325-333. DOI:10.1016/j.marpolbul.2016.05.062.