周海琴,李向榮,王 ?,陳彥林,康與寧,劉 棟,劉福水
柴油機分卷流燃燒系統(tǒng)燃燒和排放性能試驗研究
周海琴1,李向榮1,王 ?2,陳彥林1,康與寧1,劉 棟1,劉福水1
(1. 北京理工大學機械與車輛學院,北京 100081;2. 河北華北柴油機有限責任公司,石家莊 050081)
為了提高柴油機燃燒室的油氣混合性能、降低燃油消耗率和碳煙排放,該文提出了柴油機分卷流燃燒系統(tǒng)。利用單缸機試驗系統(tǒng)和仿真計算分析了分卷流燃燒系統(tǒng)在不同工況下的燃燒和排放性能。單缸機試驗結果表明:在各試驗工況下,分卷流燃燒系統(tǒng)燃油消耗率均比雙卷流燃燒系統(tǒng)低,油耗最大降幅為5.41%,碳煙排放最大降幅為20.48%。仿真計算表明分卷流燃燒系統(tǒng)當量比為0.66到2區(qū)間內(nèi)的燃油比例較高,當量比大于2的燃油比例較低,分卷流燃燒系統(tǒng)缸內(nèi)當量比分布均勻,因而油耗降低,熱效率提高,碳煙生成較少。分卷流燃燒系統(tǒng)對于推動柴油機節(jié)能減排有著重要的意義。
柴油機;仿真;分卷流燃燒系統(tǒng);燃燒性能;碳煙排放;單缸機
柴油機由于其高可靠性和良好的燃油經(jīng)濟性,已經(jīng)廣泛地應用于車輛、工程機械、發(fā)電機組等。但是,其以擴散燃燒為主的燃燒方式帶來了動力性和燃油經(jīng)濟性下降、污染物排放增加等問題[1]。柴油機中燃油的燃燒主要是在燃燒室狹小的空間內(nèi)完成的,因而燃燒室的形狀對燃燒和排放性能具有重要影響[2-3]。
通過在燃燒室壁面設計特殊的結構,來引導燃油噴霧在燃燒室內(nèi)的分布,可以提高燃燒室內(nèi)油氣混合質量,改善油氣混合、燃燒過程。國內(nèi)外許多科研機構針對這一理念提出了多種導流型燃燒系統(tǒng)。
TCD燃燒系統(tǒng)是在形燃燒室的基礎上設計一個淺盤形凹坑,使燃油噴霧與環(huán)狀凸起接觸后向內(nèi)外燃燒室空間擴散,促進缸內(nèi)油氣混合,從而降低碳煙排放。目前具有類似結構的導流型燃燒室已被廣泛地應用于各類型柴油機中。BUMP燃燒系統(tǒng)其核心是在燃燒室壁面布置限流沿,燃油撞壁射流從壁面被剝離,形成二次空間射流。研究結果表明,BUMP燃燒室避免了燃油在壁面的堆積,促進燃油與空氣的混合[4-5]。TR(three-rapidity)燃燒系統(tǒng)在燃燒室壁面設置導向圓弧,燃燒室底部中央設有平頂凸臺,匹配帶中心噴孔的多孔噴油嘴。研究結果表明,TR燃燒系統(tǒng)燃燒室內(nèi)氣流運動劇烈,燃油分布更均勻,空氣利用率更高,壁面散熱損失小,實現(xiàn)了快速燃油噴射、快速混合氣形成和快速燃燒的目標[6-7]。OSKA-D燃燒系統(tǒng)是在燃燒室凹坑內(nèi)安裝碰撞平臺,用單孔噴嘴將燃油直接噴在平臺上,形成圓盤狀噴注,這個圓盤狀噴注可以從上下兩面卷吸空氣,從而加快燃油與空氣的混合,達到改善燃燒過程的目的[8]。NICS-MH燃燒系統(tǒng)是在燃燒室壁面布置碰撞塞,燃油撞擊碰撞塞后,在燃燒室中心形成油氣混合區(qū)域。NICS-MH燃燒系統(tǒng)通過活塞上下運動形成的擠流和逆擠流提高油氣混合質量[9]。
北京理工大學發(fā)動機研究所提出了雙卷流和側卷流燃燒系統(tǒng)。雙卷流燃燒系統(tǒng)(double swirl combustion system, DSCS)是在燃燒室中設計一個弧脊。當油束夾角與弧脊位置匹配恰當時,燃油在弧脊的作用下夾帶空氣形成2個方向的卷動,燃燒室內(nèi)的空氣利用率大幅提高[10-11]。側卷流燃燒系統(tǒng)(lateral swirl combustion system, LSCS)通過在燃燒室壁面正對噴孔噴油方向上設計分流造型,使油束在到達燃燒室壁面附近后與分流造型接觸并分向其兩側,在圓弧壁面的導流作用下,燃油在分流造型兩側發(fā)生卷動,形成2個側向卷流,實現(xiàn)加速油氣混合、提高燃燒室內(nèi)空氣利用率的目的[12-13]。
以上研究結果表明:燃燒室結構影響油氣混合、燃燒過程,因而燃燒室的形狀和結構參數(shù)對燃燒和排放性能具有重要影響[14]。為了進一步提高燃燒室內(nèi)空氣利用率,通過雙卷流燃燒系統(tǒng)和TCD燃燒系統(tǒng)組合設計,提出了分卷流燃燒系統(tǒng)。為驗證分卷流燃燒系統(tǒng)的實際性能,在單缸機試驗臺架上對分卷流燃燒系統(tǒng)燃燒和排放特性進行測試分析,利用仿真計算分析了分卷流燃燒系統(tǒng)燃燒性能較優(yōu)的機理,研究結果對于提高柴油機熱效率、降低碳煙排放具有重要的指導意義。
雙卷流燃燒系統(tǒng)在弧脊的作用下使燃油在內(nèi)外室產(chǎn)生2束卷動,減少了燃油在壁面的堆積,提高了燃燒室中心區(qū)域的空氣利用率,TCD燃燒系統(tǒng)利用環(huán)狀凸起對燃油的導流作用使燃油噴霧與凸起接觸后向更大的燃燒室空間擴散,從而降低了碳煙排放。雙卷流和TCD燃燒室結構示意圖如圖1所示。為了進一步提高燃燒室內(nèi)空氣利用率,通過雙卷流燃燒系統(tǒng)和TCD燃燒系統(tǒng)組合設計,提出了分卷流燃燒系統(tǒng)(separated swirl combustion system, SSCS)。
圖1 雙卷流和TCD燃燒室示意圖
分卷流燃燒系統(tǒng)燃燒室結構如圖2 a所示,是在原雙卷流燃燒室的基礎上增加一個淺盤型結構而成。燃燒室中凸起的部分稱為弧脊(第一弧脊和第二弧脊),將弧脊與噴油嘴噴孔用直線連接起來,可以發(fā)現(xiàn)燃燒室被分成3個區(qū)域,即內(nèi)室、外室和分卷室。分卷流燃燒系統(tǒng)采用雙排孔噴油器,分別為上排噴孔和下排噴孔,上排孔和下排孔噴油角度不同且上排噴孔和下排噴孔沿圓周方向均勻間隔分布,如圖2b所示。當油束與弧脊位置匹配恰當時,燃油可以在弧脊的作用下夾帶空氣形成2個方向的卷動,使得燃油分配到燃燒室的內(nèi)、外和分卷室,燃燒室的空氣利用率大幅提高,油氣混合和燃燒速率加快,如圖2c所示。
圖2 分卷流燃燒系統(tǒng)
試驗在132 mm缸徑模擬增壓單缸柴油機臺架上進行,圖3為試驗臺架系統(tǒng)圖,單缸機主要參數(shù)見表1。進氣道為直氣道,進排氣門各2個;燃油供給系統(tǒng)為Bosch電控單體泵供油系統(tǒng),單體泵柱塞直徑12 mm,預行程9 mm。試驗所用交流電力測功機最大吸收功率160 kW,最高轉速4 500 r/min,扭矩控制精度±0.2% FS,轉速控制精度±2 r/min;為精確測量發(fā)動機動態(tài)油耗,配備了CMF發(fā)動機瞬時油耗儀,響應時間小于0.1 s,測量誤差小于0.12% FS,并具備燃油加熱和恒溫控制功能;缸壓傳感器為Kistler 6052型,最大測量壓力25 MPa,測量精度±0.1% FSO;配備了Kibox瞬態(tài)數(shù)據(jù)采集分析系統(tǒng),采集缸壓、噴油壓力和針閥升程等信息;試驗臺架還配備了Kistler數(shù)據(jù)采集箱,采集進排氣溫度和壓力、機油溫度和壓力以及冷卻水溫度等數(shù)據(jù)。在排放測量中,NOx使用Horiba MEXA-720 NOx分析儀,測量誤差±30×10-6(0~1 000×10-6)、±3%(1 001~2 000×10-6);Soot使用AVL 415 S煙度計,測量精度±0.2 FSN。
圖3 單缸機臺架試驗系統(tǒng)
表1 單缸機主要參數(shù)
試驗加工的分卷流和雙卷流燃燒系統(tǒng)主要尺寸如圖4所示。2種燃燒系統(tǒng)所用噴油器的噴孔直徑均為0.27 mm,噴孔數(shù)為8,噴油器啟噴壓力21 MPa,雙卷流燃燒系統(tǒng)油束夾角為145°,分卷流燃燒系統(tǒng)油束夾角為上排孔165°、下排孔105°。
試驗研究了不同轉速、負荷和過量空氣系數(shù)下分卷流燃燒系統(tǒng)的燃燒和排放特性。具體試驗工況設置如表2所示。每個工況下發(fā)動機的油耗、排放以及缸壓等數(shù)據(jù)均在發(fā)動機工作狀態(tài)穩(wěn)定2 min后進行測量。功率、扭矩、油耗、進氣壓力、進氣溫度、缸蓋溫度、排氣溫度等參數(shù)各測量5次,結果取平均值。記錄發(fā)動機100個連續(xù)循環(huán)的缸壓、噴油壓力、針閥升程等瞬態(tài)數(shù)據(jù),并取平均值。碳煙和NOx值采集3次,結果取平均值。
圖4 分卷流和雙卷流燃燒系統(tǒng)主要尺寸
表2 試驗工況
根據(jù)試驗結果數(shù)據(jù),將燃燒過程分為4個階段:滯燃期,急燃期,緩燃期和后燃期。針閥升程大于零為滯燃期起點,缸壓曲線與壓縮曲線分離點為滯燃期終點。急燃期在滯燃期之后進行,急燃期結束于放熱率曲線前一個波谷處。緩燃期結束時氣缸內(nèi)溫度達到最大值。緩燃期結束之后到累計放熱量達到最大累計放熱量的98%為后燃期。
為了分析了分卷流燃燒系統(tǒng)燃燒性能較優(yōu)的機理,以KIVA-3V Release 2程序為計算平臺,對2種燃燒系統(tǒng)進行仿真分析。模型主要包括:RNG-湍流模型,‘blob’ 噴霧模型,KH-RT破碎模型,碳煙簡化模型[15-16]。分卷流燃燒系統(tǒng)計算采取90°扇形區(qū)域,雙卷流燃燒系統(tǒng)采取45°扇形區(qū)域,且只考慮從進氣門關閉(239.5 °CA)到排氣門打開(460 °CA)這一時間段的缸內(nèi)流動、燃燒情況,因此模型不包括進排氣道。
在模型參數(shù)設置完成后,以試驗測得的缸壓和放熱率數(shù)據(jù)為依據(jù)對模型的準確性進行驗證,仿真計算結果與試驗結果對比如圖5所示[17]。從圖中可以看出仿真計算結果(缸內(nèi)平均壓力和主要放熱階段的瞬時放熱率)與試驗結果有較好的一致性,模型可用于下一步計算。
圖5 仿真計算結果與試驗結果對比
圖6是分卷流燃燒系統(tǒng)和雙卷流燃燒系統(tǒng)在不同轉速下油耗、指示熱效率和排放的試驗結果。從圖中可以看出,在不同轉速下分卷流燃燒系統(tǒng)油耗低、指示熱效率高。在轉速2 100 r/min時,分卷流燃燒系統(tǒng)較雙卷流燃燒系統(tǒng)油耗減少6.54 g/(kW·h),降低了2.89%。從碳煙排放結果看,分卷流燃燒系統(tǒng)較雙卷流系統(tǒng)碳煙排放明顯下降,在2 100 r/min轉速下,碳煙排放降低0.17 FSN,下降幅度達到了6.31%;在1 500 r/min時,碳煙排放下降幅度達到了10.11%。分卷流燃燒系統(tǒng)的NOx排放較DSCS有所增加,但NOx排放可以通過后處理系統(tǒng)進行處理。與雙卷流的對比結果表明分卷流燃燒系統(tǒng)在降低柴油機油耗方面具有良好的效果和應用潛力,實現(xiàn)了降低油耗、減少碳煙排放的設計目的。
圖6 不同轉速下油耗、指示熱效率和排放的試驗結果
表3、表4是2種燃燒系統(tǒng)在不同轉速下燃燒相位和各相位放熱量的試驗結果。從表3可以看出,在不同轉速下,分卷流燃燒系統(tǒng)的緩燃期結束時間均早于雙卷流燃燒系統(tǒng),在轉速1 800 r/min時,分卷流燃燒系統(tǒng)緩燃期結束時為24.4 °CA,雙卷流燃燒系統(tǒng)為26.0 °CA,提早了1.6 °CA。從表4可以看出,分卷流燃燒系統(tǒng)在緩燃期結束時放出的熱量多于雙卷流燃燒系統(tǒng),在轉速1 800 r/min時,分卷流燃燒系統(tǒng)緩燃期結束時放熱量較雙卷流燃燒系統(tǒng)多2.02%。對比后燃期放熱量結果可知,在各轉速下雙卷流燃燒系統(tǒng)的后燃期放熱量較多。說明其燃燒速度較低,后燃嚴重。結合燃燒相位和各階段放熱量分析可知,分卷流燃燒系統(tǒng)放熱速度快,熱效率高;雙卷流燃燒系統(tǒng)燃燒放熱速度慢,后燃嚴重,因而碳煙生成較多。
表3 不同轉速下SSCS和DSCS的燃燒相位
表4 不同轉速下SSCS和DSCS各相位放熱量
圖7是2種燃燒系統(tǒng)在不同負荷下的性能試驗結果。從試驗結果可以看出,分卷流燃燒系統(tǒng)油耗較低,指示熱效率較高。在有效功率17 kW時,分卷流燃燒系統(tǒng)油耗減少14.43 g/(kW.h),降低5.41%,熱效率提高12.14%。在有效功率43 kW時,碳煙排放減少0.55 FSN,降低了20.48%。
表5、表6是2種燃燒系統(tǒng)在不同負荷下燃燒相位和各相位放熱量的試驗結果。從表中可以看出,在不同負荷下,分卷流燃燒系統(tǒng)的緩燃期結束時間均早于雙卷流燃燒系統(tǒng),且分卷流燃燒系統(tǒng)在緩燃期結束時放出的熱量多于雙卷流燃燒系統(tǒng),而雙卷流燃燒系統(tǒng)在各負荷下后燃放熱量較多,說明其燃燒速度較低,后燃嚴重。
圖7 不同負荷下油耗、指示熱效率和排放的試驗結果
表5 不同負荷下SSCS和DSCS的燃燒相位
表6 不同負荷下SSCS和DSCS各相位放熱量
圖8是2種燃燒系統(tǒng)在不同過量空氣系數(shù)下性能試驗結果。隨著過量空氣系數(shù)的減小,兩種燃燒系統(tǒng)的油耗均開始顯著增加。而分卷流燃燒系統(tǒng)的指示熱效率仍高于雙卷流燃燒系統(tǒng),在過量空氣系數(shù)1.6時,指示熱效率提高4.93%。排放試驗結果表明,分卷流燃燒系統(tǒng)依然保持了較低的碳煙排放水平,在過量空氣系數(shù)1.8時,碳煙排放減小0.23 FSN,降低16.43%。
圖8 不同過量空氣系數(shù)下油耗、指示熱效率和排放試驗結果
表7、表8是2種燃燒系統(tǒng)在不同過量空氣系數(shù)下燃燒相位和各相位放熱量的試驗結果。
表7 不同過量空氣系數(shù)下SSCS和DSCS的燃燒相位
表8 不同過量空氣系數(shù)下SSCS和DSCS各相位放熱量
從表7和8可以看出,在不同過量空氣系數(shù)下,分卷流燃燒系統(tǒng)的緩燃期結束時間均早于雙卷流燃燒系統(tǒng),在過量空氣系數(shù)1.3時,分卷流燃燒系統(tǒng)緩燃期結束時為24.4 °CA,雙卷流燃燒系統(tǒng)為25.6 °CA,提早了1.2 °CA。從表7和8可以看出,分卷流燃燒系統(tǒng)在緩燃期結束時放出的熱量多于雙卷流燃燒系統(tǒng),分卷流燃燒系統(tǒng)緩燃期結束時放熱量較雙卷流多1.86%。
為了闡明分卷流燃燒系統(tǒng)在促進油氣混合、提高燃燒性能,減少碳煙排放方面的機理,對分卷流燃燒系統(tǒng)和雙卷流燃燒系統(tǒng)缸內(nèi)當量比進行研究。圖9為2種燃燒系統(tǒng)在曲軸轉角365 °CA時缸內(nèi)的當量比分布結果。從當量比分布可以看出,雙卷流燃燒系統(tǒng)的燃油主要分布在弧脊兩側,且當量比接近2的區(qū)域分布面積較大;而分卷流燃燒系統(tǒng)燃油分布在第一弧脊和第二弧脊兩側,當量比接近2的區(qū)域分布面積較小。
圖9 兩種燃燒系統(tǒng)缸內(nèi)的當量比分布
霧注體積百分比屬于燃燒室對油束影響及空間利用率評價??紤]到仿真計算時由于算法的原因可能在含有較少燃油的網(wǎng)格內(nèi)計算產(chǎn)生當量比極小的混合氣,所以在計算霧注體積時,不應該把這些極小當量比混合氣的體積計算在內(nèi)。因此這里定義,仿真計算中的霧注指當量比大于0.2的混合氣部分。霧注體積百分比是指,當量比大于0.2的混合氣體積占整個氣缸內(nèi)部空間體積的百分比。Han等[18]指出噴霧混合氣的可燃當量比范圍為0.66到2的區(qū)間。Kitamura等[19]研究表明,當量比大于2的區(qū)域很容易產(chǎn)生碳煙。表9為當量比0.66到2和當量比大于2的燃油質量百分比。從表中可以看出,分卷流燃燒系統(tǒng)當量比0.66到2區(qū)間內(nèi)的燃油比例較高,當量比大于2區(qū)間內(nèi)的燃油比例較低,說明分卷流燃燒系統(tǒng)有利于燃油擴散,減少碳煙生成。
表9 不同當量比的燃油質量百分比
1)單缸機試驗研究表明,分卷流燃燒系統(tǒng)可有效降低柴油機燃油消耗率,提高指示熱效率,縮短燃燒持續(xù)期,油耗最大降幅為5.41%,碳煙最大降幅為20.48%。
2)仿真結果表明:分卷流燃燒系統(tǒng)當量比0.66到2區(qū)間內(nèi)的燃油比例較高,當量比大于2區(qū)間內(nèi)的燃油比例較低,說明分卷流燃燒系統(tǒng)有利于燃油擴散,減少碳煙生成。
3)分卷流燃燒系統(tǒng)缸內(nèi)當量比分布均勻,因而油耗降低,熱效率提高,碳煙生成較少。
[1] 蘇立旺,李向榮,李杰,等. 柴油機雙卷流燃燒系統(tǒng)排放特性試驗[J]. 農(nóng)業(yè)工程學報,2013,29(21):60-64.
Su Liwang, Li Xiangrong, Li Jie, et al. Experiment of emis-sions characteristics for double swirl combustion system in diesel engine[J]. Transactions of the Chinese Society of Agri-cultural Engineering , 2013, 29(21): 60-65. (in Chinese with English abstract)
[2] Li XiangRong, Zhou Haiqin, Su Liwang, et al. Combustion and emission characteristics of a lateral swirl combustion system for DI diesel engines under low excess air ratio conditions[J]. Fuel, 2016, 184: 672-680.
[3] Li Xiangrong, Chen Yanlin, Su Liwang, et al. Effects of lateral swirl combustion chamber geometries on the combustion and emission characteristics of DI diesel engines and a matching method for the combustion chamber geometry[J]. Fuel, 2018, 224: 644-660.
[4] 余皎. 一種新概念(BUMP)燃燒室內(nèi)準均質燃油混合氣快速形成機理的研究[D]. 天津:天津大學,2003.
Jiao Yu. A Study on Rapid Quasi-Homogeneous Diesel Fuel-Air Mixture Forming Process in a New Conceptual (BUMP) Combustion Chamber[D]. Tianjin: Tianjin University, 2003. (in Chinese with English abstract)
[5] Paykani Amin, Kakaee Amir-Hasan, Rahnama Pouryaet al. Progress and recent trends in reactivity-controlled compression ignition engines[J]. International Journal of Engine Research, 2016, 17(5): 481-524.
[6] 李向榮,周海琴,萬遠亮,等. 柴油機雙卷流燃燒室內(nèi)外室燃油匹配分析[J]. 農(nóng)業(yè)工程學報,2016,32(20):70-76.
Li Xiangrong, Zhou Haiqin, Wan Yuanliang, et al. Matching analysis of fuel in inner chamber and outer chamber of double swirl combustion system in diesel engine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(20): 70-76. (in Chinese with English abstract)
[7] 孫柏剛,謝均,柴國英,等. 柴油機雙卷流燃燒系統(tǒng)的排放特性[J]. 農(nóng)業(yè)工程學報,2013,35(2):48-53.
Sun Baigang, Xie Jun, Chai Guoying, et al. Emission charac-teristics of double swirl combustion system in diesel engine[J]. Transactions of the Chinese Society of Agricultural Engineer-ing, 2013, 29(9): 48-54. (in Chi-nese with English abstract)
[8] Su Liwang, Li Xiangrong, Gao Haobu, et al. Emission characteristics of double swirl combustion system for a diesel engine[J]. Environmental Engineering& Management Journal, 2016, 15: 26-32.
[9] Su Liwang, Li Xiangrong, Zhang Zheng, et al. Numerical analysis on the combustion and emission characteristics of forced swirl combustion system for DI diesel engines[J]. Energy Conversion and Management, 2014, 86: 20-27.
[10] Qiao X Q, Song Y C, Gao X Y. Experimental study on umbrella-curtain spray combustion system for diesel engine[J]. Journal-shanghai Jiaotong University-chinese Edition, 2004, 38: 1193-1196.
[11] 何旭,劉衛(wèi)國,高希彥,等. TR燃燒系統(tǒng)混合氣形成過程的數(shù)值模擬[J]. 燃燒科學與技術,2006,12(3):263-268.
Xu He, Weiguo Liu, Xiyan Gao. Numerical simulation of mixture formation process of TR combustion system[J]. Journal of Combustion Sciene and Technology, 2006, 12(3): 263-268. (in Chinese with English abstract)
[12] Kato Satoshi, Onishi Shigeru. New type of diesel engine by impingement of fuel jet (OSKA-D)[R]. 1990.
[13] Lin Bai-fu, Ogura Masaru. A New Multi-Impingement-Wall Head Diffusion Combustion System (NICS-MH) of a DI Diesel Engine-The Effect of Combustion Chamber Geometry[R]. 1995.
[14] Jaichandar S, Annamalai K. Influences of re-entrant combustion chamber geometry on the performance of Pongamia biodiesel in a DI diesel engine[J]. Energy, 2012, 44(1): 633-640.
[15] 趙智超. 基于試驗及數(shù)值模擬的柴油和丙酮/丁醇/乙醇碳煙形成機理研究[D]. 長沙:湖南大學,2015.
Zhao Zhichao. Numerical and experimental investigation of soot mechanism of diesel and Acetone-Butanol-Ethanol blends[D]. Changsha: Hunan University, 2015. (in Chinese with English abstract)
[16] 畢小杰. 生物柴油和石化柴油碳煙形成的數(shù)值模擬及試驗研究[D]. 上海:上海交通大學,2014.
Bi Xiaojie. Numerical Simulation and Experimental Research on Soot Evolution of Biodiesel and Diesel Fuels[D]. Shanghai: Shanghai Jiao Tong University, 2014. (in Chinese with English abstract)
[17] Zhou H, Li X, Liu F. Soot formation and oxidation mechanisms in a diesel engine separated swirl combustion system[J]. Fuel, 2019, 257: 115955.
[18] Han Zhiyu, Uludogan Ali, Hampson Gregory J. et al. Mechanism of soot and NOx emission reduction using multiple-injection in a diesel engine[J]. SAE Transactions, 1996: 837-852.
[19] Kitamura Takaaki, Ito T, SendaJiro, et al. Mechanism of smokeless diesel combustion with oxygenated fuels based on the dependence of the equivalence ration and temperature on soot particle formation[J]. International Journal of Engine Research, 2002, 3(4): 223-248.
Test of combustion and emission performance of separated swirl combustion system in diesel engine
Zhou Haiqin1, Li Xiangrong1, Wang Yan2, Chen Yanlin1, Kang Yuning1, Liu Dong1, Liu Fushui1
(1.100081,; 2..,.,050081,)
Diesel engines are widely used in vehicles, construction machinery and generator sets because of their reliability and fuel economy. However, the diffused combustion present in diesel engines increases emissions. The combustion performance and emission characteristics are directly affected by the fuel/air mixing process, by designing a special structure on the combustion chamber wall to guide the distribution of fuel spray in the combustion chamber, the quality of fuel/air mixing in the combustion chamber can be improved, and the process of fuel/air mixing and combustion can be improved, and the significant research focuses on improving the efficiency and fuel/air mixing process of diesel combustion system. To improve air efficiency in the center and squish areas of the combustion chamber, a new separated swirl combustion system (SSCS) was developed in this study. The SSCS chamber consists of the inner chamber, the outer chamber and the separated chamber, and there are two circular ridges. The injector used in the SSCS has two types of holes: upper and lower, and they are arranged in alternating order, and the angles of these two kinds of holes are different, which renders two distinct sprays. The different sprays collide with the different circular ridges in the chamber. When the spray collides with the circular ridges, swirls form, which improves air utilization in the chamber and accelerates the fuel/air mixture. As a new combustion system, the fuel/air mixture formation in the chamber is different from that of traditional combustion system. To make a better understanding of the mechanism of fuel/air mixture formation in SSCS, a single-cylinder diesel engine test system and a simulation method were used to analyze the combustion and emission performance of the SSCS under different conditions. The combustion and emission performance of the SSCS under different speeds, loads and excess air coefficients was tested and compared with a DSCS in a single-cylinder engine. While soot emissions from the SSCS can be tested in a real-world single-cylinder engine, the soot formation characteristics cannot be tested. Therefore, to understand the mechanisms behind soot formation in the SSCS, soot evolution must be investigated using a simulation model. Then a new phenomenological soot model using KIVA-3V R2 code and integrated with a reduced n-heptane/methane/PAH mechanism was developed and used to simulate soot behaviors in the SSCS. Incipient soot particles are fewer and soot mass is lower in the SSCS than that in the DSCS at the same cases. The mechanisms that reduce the soot emissions in the SSCS were revealed by comparing the equivalence ratio distribution and fuel distribution in the cylinder. The mechanism of soot formation in SSCS was also analyzed using the KIVA-3V Release 2 code. The experiment results show that the SSCS effectively reduces fuel consumption and soot emission, with a maximum decrease in fuel consumption of approximately 5.41% (when the power was 17 kW) and a maximum decrease in soot emission of approximately 20.48% (when the power was 43 kW). The simulation results show that the percentage of fuel with an equivalence ratio between 0.66 to 2 is higher in the SSCS than that in the DSCS, while the percentage of fuel with an equivalence ratio more than 2 is lower in the SSCS. So the equivalence ratio is more uniform in the SSCS, and less fuel is consumed, thermal efficiency is improved and soot emission is reduced. The SSCS is helpful to reduce emissions and fuel consumption in DI diesel engines.
diesel engines; computer simulation; separated swirl combustion system; combustion performance; soot emission; single-cylinder diesel engine
周海琴,李向榮,王 ?,陳彥林,康與寧,劉 棟,劉福水. 柴油機分卷流燃燒系統(tǒng)燃燒和排放性能試驗研究[J]. 農(nóng)業(yè)工程學報,2019,35(18):29-35.doi:10.11975/j.issn.1002-6819.2019.18.004 http://www.tcsae.org
Zhou Haiqin, Li Xiangrong, Wang Yan, Chen Yanlin, Kang Yuning, Liu Dong, Liu Fushui. Test of combustion and emission performance of separated swirl combustion system in diesel engine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(18): 29-35. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.18.004 http://www.tcsae.org
2019-05-30
2019-08-01
裝備預研項目(104010204)
周海琴,博士,從事內(nèi)燃機內(nèi)流動、燃燒研究。Email:zhq373839@163.com
10.11975/j.issn.1002-6819.2019.18.004
TK412
A
1002-6819(2019)-18-0029-07