李 浩,楊 薇,劉曉冰,王玉璽,張興義
溝蝕發(fā)生的地貌臨界理論計(jì)算中數(shù)據(jù)獲取方法及應(yīng)用
李 浩1,楊 薇2,劉曉冰1,王玉璽2,張興義1※
(1. 中國科學(xué)院東北地理與農(nóng)業(yè)生態(tài)研究所,哈爾濱 150081; 2. 黑龍江省水利科學(xué)研究院,哈爾濱 150080)
溝蝕發(fā)生是一種地貌臨界現(xiàn)象,與溝頭處局地坡度及上方匯水面積有關(guān),而溝蝕發(fā)生地貌臨界理論能夠預(yù)測溝頭可能發(fā)生的位置。該文從溝蝕發(fā)生地貌臨界理論起源、數(shù)據(jù)獲取方式、參數(shù)計(jì)算方法、影響因素及應(yīng)用等方面綜合評(píng)述了該理論的發(fā)展及近年來國內(nèi)外的有關(guān)研究。數(shù)據(jù)獲取方式主要包括野外實(shí)測、高清遙感影像及地形圖測量。參數(shù)計(jì)算方法包括目視(下限值)法、正交回歸(95%置信區(qū)間下限)、正交回歸(下限值)及分位數(shù)回歸等。相對(duì)剪切力指數(shù)值反映區(qū)域主要的溝蝕發(fā)生機(jī)制,臨界常數(shù)值反映當(dāng)前特定外界環(huán)境下的溝蝕發(fā)生臨界條件。將相對(duì)剪切力指數(shù)固定后,臨界常數(shù)的時(shí)間序列變化能夠表征外界環(huán)境改變對(duì)溝蝕發(fā)生的影響。人類活動(dòng)改變了溝頭上方匯流環(huán)境,進(jìn)而影響臨界條件。溝蝕發(fā)生地貌臨界理論可獲取溝道侵蝕風(fēng)險(xiǎn)較大的區(qū)域,為溝道侵蝕防治措施布設(shè)提供參考。結(jié)合高分辨率地形圖,增加表征人類活動(dòng)影響匯流過程的參數(shù)能夠豐富溝蝕發(fā)生地貌臨界理論。該理論與已有溝道侵蝕發(fā)展模型結(jié)合,可將溝頭發(fā)生位置和溝道發(fā)展過程統(tǒng)一,促進(jìn)溝道侵蝕全過程的模擬。
地貌;侵蝕;溝;發(fā)生;坡度;匯水面積;臨界條件
侵蝕溝的動(dòng)態(tài)發(fā)展是土壤退化的重要表征。中國將溝蝕分為淺溝侵蝕、切溝侵蝕、沖溝侵蝕和干溝侵蝕等[1],而國外將其分為臨時(shí)性切溝侵蝕和切溝侵蝕[2]。朱顯謨?cè)?956年將現(xiàn)代溝蝕分為淺溝侵蝕和切溝侵蝕,認(rèn)為淺溝由主細(xì)溝演變而來,并能發(fā)展為切溝[1]。早期國內(nèi)學(xué)者對(duì)淺溝形態(tài)的劃分有所不同,但均認(rèn)為能否阻礙橫向耕作是淺溝與切溝的本質(zhì)區(qū)別[3-5],與美國的臨時(shí)切溝侵蝕概念一致。為此,Zhang等[6]在撰寫《Encyclopedia of Soil Science》溝蝕(gully)條目時(shí),將中國定義的淺溝侵蝕與美國定義的淺溝侵蝕歸為同一類溝蝕類型(ephemeral gully)。坡耕地中溝蝕吞蝕耕地,降低農(nóng)機(jī)具耕作效率,是坡耕地土壤侵蝕的主要方式之一[7]。侵蝕溝道是徑流泥沙輸送與污染物運(yùn)移的重要通道,流域侵蝕產(chǎn)沙的重要來源,其發(fā)生發(fā)展影響現(xiàn)代地貌發(fā)育及演化過程[8]。
溝頭是溝道侵蝕中發(fā)展最劇烈的區(qū)域,溝頭溯源侵蝕是侵蝕溝發(fā)育的主要過程。已有研究表明,侵蝕溝頭的生成存在臨界條件,即當(dāng)降雨徑流侵蝕力超過土壤阻抗力才能形成,且受土地利用、地表植被、土壤及降雨等因素的綜合制約,并發(fā)展形成了溝蝕發(fā)生地貌臨界理論。該理論主要研究溝道生成的區(qū)域因素。盡管主細(xì)溝是淺溝的初期形態(tài),然而由于主細(xì)溝由多條細(xì)溝匯集而成,且細(xì)溝的空間分布隨機(jī)性較強(qiáng)[9],因此相對(duì)于細(xì)溝,該理論更適宜于研究淺溝和切溝的生成臨界條件。
侵蝕溝形成的主要原因是徑流的增大,而徑流的增大多緣于氣候或土地利用方式的改變。氣候變化導(dǎo)致降雨量增加,徑流增大;或者降雨量減少降低植被覆蓋度,而后在降雨量短期增加時(shí),徑流增大。在土地利用方式方面,毀林開荒或過度放牧均可增大徑流。上述過程均受外部環(huán)境作用而與溝道自身無關(guān),這難以解釋同一區(qū)域內(nèi)溝蝕過程對(duì)外部因素響應(yīng)的不一致性,比如,1條侵蝕溝趨向發(fā)育,而臨近的侵蝕溝保持穩(wěn)定。為了解釋溝蝕過程對(duì)外部因素響應(yīng)的不一致性,需要增加表征溝道自身因素的內(nèi)部因素[10],即地貌臨界條件。近年來,該理論在數(shù)據(jù)獲取方式、參數(shù)分析方法、影響因素及應(yīng)用領(lǐng)域等方面取得一些進(jìn)展。本文基于前人的研究,介紹了溝蝕發(fā)生地貌臨界理論的發(fā)展過程及國內(nèi)外最新研究成果,以期有助于該臨界模型的應(yīng)用推廣。
由于采用的基礎(chǔ)數(shù)據(jù)是侵蝕溝頭的上方匯水面積(簡稱)和局地坡度(簡稱),且結(jié)論多為在同一區(qū)域下,愈大的上方匯水面積,溝頭生成所需要的坡度愈小,因此,被稱為溝蝕發(fā)生地貌臨界理論(圖1)。
Horton[11]較早提出溝頭生成臨界坡長概念,認(rèn)為當(dāng)匯流長度超過臨界坡長時(shí),侵蝕溝頭才能形成。Schumm等[12]發(fā)現(xiàn)切溝溝頭多形成于局部坡度較大位置。Brice[13]將溝頭處及點(diǎn)繪于雙對(duì)數(shù)坐標(biāo)系內(nèi)以研究二者的關(guān)系。Patton等[14]搜集了美國懷俄明、卡羅拉多等多個(gè)州的數(shù)十條侵蝕溝及未侵蝕溝谷的地形特征,點(diǎn)繪了坡度最大處的及,并在侵蝕溝點(diǎn)群底部目視繪制直線,作為區(qū)分侵蝕溝與未侵蝕溝谷的臨界線。該臨界線顯示侵蝕溝溝頭處的與存在反向趨勢(shì)(inverse relationship),即溝頭局部坡度越大,溝頭生成所需要的上方匯水面積越小。
注:A,匯流面積較小,未形成溝頭;B,匯流面積增大,同時(shí)坡度超過閾值,形成坡度;C,匯流面積繼續(xù)增大,但坡度小于閾值,未形成溝頭。
依照Horton[11]溝頭生成臨界坡長概念,當(dāng)上方匯流剪切力≥溝道生成臨界值Г時(shí),溝頭開始生成。此時(shí)上方匯流剪切力為
式中為水密度,kg/m3;為徑流水力半徑,m;S為徑流能坡,m/m。對(duì)于薄層水流,和S可由徑流深及溝頭局地坡度代替。
Begin和Schumm[15]根據(jù)水力半徑()和流量()以及流量()與的經(jīng)驗(yàn)關(guān)系,替代了徑流剪切力公式中的,得到溝蝕發(fā)生地貌臨界條件下Г為
式中Г為臨界剪切力,N/m2;為指數(shù);為常數(shù)?;趶搅骷羟辛?,該方程融合了和,建立了溝蝕發(fā)生臨界剪切力與、關(guān)系。
=Г/及=簡化[16]為
·=(3)
式中為相對(duì)剪切力指數(shù),等于雙對(duì)數(shù)坐標(biāo)系內(nèi)臨界直線斜率的負(fù)值,與溝蝕發(fā)生機(jī)制有關(guān)。為臨界常數(shù),與當(dāng)?shù)亟涤?、植被、土地利用等外界因素有關(guān)?;钴S與非活躍侵蝕溝位于閾值線的上方和下方(圖2)。
此外,Montgomery等[17-18]從理論上研究了緩坡超滲產(chǎn)流、蓄滿產(chǎn)流、滲流及陡坡上薄層崩塌的溝蝕發(fā)生臨界條件(圖3)。這幾種溝蝕發(fā)生機(jī)制作用下形成的侵蝕溝可基本囊括不同坡度、地表覆蓋和擾動(dòng)類型下的人為加速溝道侵蝕類型。
注:A'為上方匯水面積,hm2;S為局地坡度,m·m-1。
圖3 不同溝蝕生成條件下的臨界條件[17-18]
由于溝蝕發(fā)生地貌臨界理論研究的是一定區(qū)域內(nèi)溝道發(fā)生的-統(tǒng)計(jì)規(guī)律,需要大量的(數(shù)十條或更多)侵蝕溝頭上方與樣本,因此野外實(shí)測、大比例尺地圖和遙感影像提取是獲取數(shù)據(jù)的主要方法。值是影響溝蝕發(fā)生臨界條件分析準(zhǔn)確度的主要因素,而野外實(shí)測能夠準(zhǔn)確判斷溝頭位置,可信度較高。因此,在侵蝕性降雨后對(duì)新生成溝頭局地坡度及匯水面積開展測量是較為準(zhǔn)確的[19]。然而,實(shí)測方法費(fèi)時(shí)費(fèi)力,導(dǎo)致基于該方法開展溝蝕發(fā)生臨界條件的研究相對(duì)較少。大比例尺地形圖與遙感影像結(jié)合的方法能夠快速獲取與的現(xiàn)勢(shì)及歷史情況,有助于研究特定區(qū)域溝蝕發(fā)生臨界條件隨降雨、土地利用及植被覆蓋等侵蝕環(huán)境的變化[20-22]。但地形圖獲取的值可能較實(shí)測值偏低(表1)。此外,Vandaele等[19]與Poesen等[23]分別通過實(shí)地測量與地形圖2種方法,獲取了同一區(qū)域淺溝生成臨界關(guān)系方程,發(fā)現(xiàn)2種方法獲取的值相似,均為0.40左右,而值分別為0.08與0.025,差異較大。
已有大部分研究都是在溝頭處測量局地坡度,進(jìn)而獲取上方匯水面積。對(duì)不連續(xù)、有多個(gè)侵蝕溝槽間斷出現(xiàn)的情形,與的測量位置應(yīng)為距離分水嶺最近的溝頭。也有研究認(rèn)為,溝頭處的與值與侵蝕溝頭最初形成的與值有一定的偏差[19]。這是因?yàn)樵谒菰辞治g溝頭的作用下,最初形成的侵蝕溝頭向上方移動(dòng),離開了原始位置。因此,應(yīng)當(dāng)在溝頭最初形成的位置測量與值,而該位置很有可能為溝底最大坡度處。由此,預(yù)測溝頭位置是溝道體系演化理論的關(guān)鍵[24],而且已有溝道侵蝕模型多需要人為指定溝頭生成位置,進(jìn)行溝長溝深演化過程的模擬[25-26]。
近年來,小型無人機(jī)應(yīng)用快速發(fā)展,其結(jié)合動(dòng)態(tài)測量數(shù)據(jù)后處理或?qū)崟r(shí)差分動(dòng)態(tài)定位技術(shù),能夠準(zhǔn)確獲取溝道及匯水區(qū)的數(shù)字地面模型,便于內(nèi)業(yè)解譯小型切溝及淺溝與值等信息。由于該技術(shù)具有成本低、快速、精度高的優(yōu)勢(shì),目前已應(yīng)用于溝蝕發(fā)生臨界地貌條件的相關(guān)研究[27]。在三維激光掃描方面,由于該方法主要用于獲取單條溝道/溝頭的精確侵蝕形態(tài)及演化[28],因此其在溝蝕發(fā)生臨界地貌條件方面的研究相對(duì)較少。
表1 已有文獻(xiàn)中溝蝕發(fā)生地貌臨界模型方法及具體參數(shù)
目前已發(fā)展了多種計(jì)算與值的方法,可分為目視+下限值法、正交回歸+95%置信區(qū)間下限法、正交回歸+下限值法和分位數(shù)回歸法?;具^程均為:1)將溝頭局地坡度和上方匯水面積點(diǎn)繪于雙對(duì)數(shù)坐標(biāo)系中;2)根據(jù)一定的原則繪制臨界線,該臨界線的斜率負(fù)值即為相對(duì)剪切力指數(shù)值;3)根據(jù)一定的原則,由式(3)計(jì)算臨界常數(shù)值。因此,不同方法之間的區(qū)別為和的計(jì)算方式不同。
Begin和Schumm[15]使用侵蝕溝點(diǎn)群底部的兩點(diǎn)或多點(diǎn)目視繪制直線,得到值;將點(diǎn)群最低點(diǎn)(lower-most points)的和及值代入到式(3)的左側(cè),得到值。已有研究[19,35-37]較為完整得描述了該方法。然而,該方法依賴點(diǎn)群底部2個(gè)點(diǎn)作出臨界線,人為主觀性較強(qiáng),很有可能作出多條臨界線,且受極端點(diǎn)的影響較大。因此,實(shí)際應(yīng)用中通常需要剔除異常極值點(diǎn),以保證臨界條件的合理性[32]。
Gómez 等[20,31]采用正交回歸分析獲得點(diǎn)群的回歸線,以表征侵蝕溝點(diǎn)群的平均地貌臨界條件,然后將其95%置信區(qū)間的下限作為溝道生成臨界線。盡管該方法考慮了侵蝕溝點(diǎn)群-的統(tǒng)計(jì)關(guān)系,但并不完全符合溝蝕發(fā)生的臨界條件概念,因?yàn)榕R界線下方仍有部分侵蝕溝點(diǎn),因此獲取的值可能大于實(shí)際的溝蝕發(fā)生臨界值,即可能偏高。
Vandekerckhove等[33]改進(jìn)了3.2中的方法,首先應(yīng)用正交最小二乘法獲得平均地貌臨界條件,將臨界線平行向下移動(dòng)到侵蝕點(diǎn)群的底部,從而計(jì)算臨界常數(shù)。該方法既具有大量侵蝕溝道的統(tǒng)計(jì)學(xué)意義,又兼顧溝道生成的臨界條件,考慮了所有溝道侵蝕發(fā)生情況下的-統(tǒng)計(jì)關(guān)系,應(yīng)用較廣[38]。
Maugnard等[22]采用分位數(shù)回歸分析的方法,研究了德國瓦隆尼西亞地區(qū)2006年之前、2006年及2009年3個(gè)時(shí)間段內(nèi)農(nóng)用地溝蝕發(fā)生的地貌臨界條件。他們將分位數(shù)設(shè)置為0來獲取臨界線,即認(rèn)為-點(diǎn)位于該臨界線下方的統(tǒng)計(jì)學(xué)概率為0,并獲取相應(yīng)與值。該方法能有效反映臨界區(qū)域附近點(diǎn)群的平均權(quán)重,優(yōu)于全體點(diǎn)群統(tǒng)計(jì)量,且考慮了離群點(diǎn)信息。同時(shí)侵蝕溝樣本數(shù)應(yīng)達(dá)到50個(gè),以弱化樣本數(shù)目對(duì)臨界線回歸效果的影響。
相對(duì)剪切力指數(shù)值代表研究區(qū)域的溝蝕發(fā)生機(jī)制,因此不同研究區(qū)域的值可能取值不同(表1)。Begin等[15]根據(jù)水力半徑()和流量()以及流量()與流域面積的經(jīng)驗(yàn)關(guān)系和徑流剪切力公式,給出理論上取值范圍為0.2~0.4。Montgomery等[17]推導(dǎo)了多種溝道侵蝕機(jī)制下(緩坡超滲產(chǎn)流、蓄滿產(chǎn)流、滲流及陡坡薄層崩塌)臨界關(guān)系方程形式,給出理論上取值范圍為?0.857~0.5。Vandekerckhove等[33]認(rèn)為當(dāng)值大于0.2時(shí),主要侵蝕過程為地表徑流侵蝕,而值小于0.2時(shí),主要侵蝕過程為地下徑流及溝體崩落。值愈低,愈能反映下滲水流促進(jìn)潛蝕及溝底下切后的溝頭溝壁崩塌。Vandaele等[19]認(rèn)為值應(yīng)為0.40左右。Poesen等[7]匯總了諸多侵蝕環(huán)境及數(shù)據(jù)獲取方法下的溝道生成臨界條件文獻(xiàn),結(jié)果表明值范圍較廣(0.10~0.80)(圖4)。
臨界常數(shù)代表研究區(qū)域的外部侵蝕環(huán)境,與地質(zhì)、土壤、氣候和植被等因素相關(guān)。當(dāng)研究區(qū)域人為活動(dòng)影響外部侵蝕環(huán)境(如土地利用)時(shí),值可能隨之發(fā)生改變。Torri和Poesen[34]參考已有研究[17,29]將值固定為常數(shù)(0.38或0.50),通過值的變化來評(píng)估溝頭前進(jìn)與土地利用/植被覆蓋度的關(guān)系。結(jié)果表明,隨著植被覆蓋度的增加(耕地、草地及林地),溝蝕發(fā)生臨界常數(shù)值也隨之增大。同時(shí)隨著降雨量/降雨強(qiáng)度的降低,溝蝕發(fā)生臨界常數(shù)值隨之減小,如半干旱大陸性氣候區(qū)(如中國黃土高原地區(qū))的值大于溫帶海洋性氣候區(qū)(如中歐),而熱帶氣候區(qū)的值最低(非洲和巴西等)。Hayas等[39]應(yīng)用10期遙感影像,研究了1956-2013年降雨、土地利用及植被覆蓋對(duì)切溝溝頭位置及生成臨界條件的影響。結(jié)果顯示,臨界常數(shù)值受降雨因素影響較大,且日降雨量極值與臨界條件的相關(guān)性最強(qiáng),而植被覆蓋在降雨量較少時(shí)對(duì)值的作用更為顯著。然而由于臨界常數(shù)值的影響因素較多,因此缺乏將其與單一影響因素進(jìn)行定量關(guān)系的研究。
1.比利時(shí)中部 2.比利時(shí)中部 3.葡萄牙 4.法國 5.英國南部:實(shí)地調(diào)查 6.美國卡羅拉多州 7.美國內(nèi)華達(dá)州 8.美國加利福尼亞州 9.美國俄勒岡州 10.澳大利亞 11.中國黑龍江(1) 12.中國黑龍江(2)
1.Central Belgium 2.Central Belgium 3.Portugal 4.France 5.UK (South Downs) 6.USA (Colorado) 7.USA (Sierra Nevada) 8.USA (California) 9.USA (Oregon) 10.Australia (New SouthWales) 11.China (Heilongjiang)(1) 12.China (Heilongjiang)(2)
注:1、5、7~10均為實(shí)地調(diào)查;11和12均為實(shí)地調(diào)查的坡度,地形圖的面積;其他為地形圖。
Note: 1, 5 and 7-10 from field survey; for 11 and 12, slope from field survey and area from topographic map; others from aerial photos and topographic map.
圖4 發(fā)育中淺溝與切溝的臨界坡度與上方匯水面積關(guān)系[7,40]
Fig.4 Relationship between critical slope and catchment area for development of gullies[7,40]
上方匯水面積的大小影響溝頭生成臨界條件。Begin等[15]假設(shè)的是在形成洪峰流量時(shí),上方匯水區(qū)內(nèi)所有產(chǎn)流都匯集在溝頭的理想情景。而該假設(shè)只有在溝頭匯水面積較小,或降雨歷時(shí)足夠長時(shí)才能成立,即溝頭處流量才能用上方匯水面積替代。在上方匯水面積較大或降雨歷時(shí)較短的情形下,匯水區(qū)產(chǎn)流并不一定能全部到達(dá)侵蝕溝頭,即形成洪峰流量時(shí)溝頭上方匯水區(qū)域小于全部匯水區(qū),導(dǎo)致值偏小[32]。Rossi等[41]從理論上推導(dǎo)了局部匯水區(qū)產(chǎn)流匯集到溝頭對(duì)-關(guān)系因子值的影響,建議避免將該理論應(yīng)用于大型侵蝕溝的生成機(jī)制研究。
農(nóng)耕地中的道路降低了降雨入滲速率,增大了集中徑流量與速度,改變了流域匯流時(shí)間,可能導(dǎo)致侵蝕溝生成所需臨界坡度變小,因此-臨界關(guān)系可用于道路對(duì)侵蝕溝生成影響的研究。Katz等[42]提取了美國科羅拉多州林地中道路排水導(dǎo)致的侵蝕溝溝頭(簡稱區(qū)域1)的和值,并繪制了臨界線。同時(shí)獲取了在道路排水作用下有集中徑流但未形成侵蝕溝(簡稱區(qū)域2),以及林地自然集中徑流但未形成侵蝕溝(簡稱區(qū)域3)的點(diǎn)位和值,并點(diǎn)繪在區(qū)域1的臨界線圖中(參考圖2)。結(jié)果顯示,區(qū)域1與2的-點(diǎn)分別位于臨界線的上方和下方,表明在道路集中徑流的作用下,該區(qū)域侵蝕溝頭的生成存在明確的臨界關(guān)系。同時(shí)區(qū)域3的-點(diǎn)分布在臨界線的上方與下方,說明該臨界線不能明確林地自然徑流下是否形成侵蝕溝,即自然徑流下與道路集中徑流下侵蝕溝生成的地貌臨界條件是不同的。
中國學(xué)者在調(diào)查與研究黃土高原淺溝和切溝的地貌臨界條件方面做了不懈的努力,積累了寶貴的數(shù)據(jù)。羅來興等[43]將黃河中游黃土丘陵區(qū)侵蝕溝劃分為淺溝、切溝、沖溝、坳溝及河溝。陳永宗[3]對(duì)各種侵蝕溝平均匯水面積與坡度進(jìn)行了統(tǒng)計(jì),并點(diǎn)繪在半對(duì)數(shù)和對(duì)數(shù)圖中,發(fā)現(xiàn)羅來興劃分的侵蝕溝類型滿足了溝谷發(fā)育過程的連續(xù)性和階段性要求,可將黃土丘陵區(qū)侵蝕溝發(fā)展的順序概化為淺溝→切溝→沖溝→坳溝→河溝。其他有關(guān)黃土高原的地貌臨界條件研究多集中于淺溝的臨界坡度與臨界坡長的上下限等的統(tǒng)計(jì)分析[5,44-46]。
隨著3S技術(shù)的發(fā)展,近些年來中國學(xué)者應(yīng)用溝蝕發(fā)生臨界理論開展了定位研究[47]。約70%的研究集中于黃土高原區(qū)域,而在東北黑土區(qū)[47]、南方紅壤區(qū)[48]、長江上游紫色丘陵區(qū)[49]和內(nèi)蒙古風(fēng)沙區(qū)[50]也有部分研究。在研究方法上,多使用野外實(shí)測或高分辨率遙感影像獲取侵蝕溝頭位置,進(jìn)而使用地形圖獲取侵蝕溝頭局地坡度及上方匯水面積。由于1:10 000地形圖是目前能夠獲取到的覆蓋面積最廣、最為詳細(xì)的地形圖,因此被廣泛應(yīng)用。在閾值線和參數(shù)獲取方式上,幾乎所有研究均使用目視(下限值)法,對(duì)不同計(jì)算方式可能帶來誤差的考慮較少。
在具體研究方面,Cheng等[51-52]使用實(shí)時(shí)差分定位(real-time kinematic,RTK)實(shí)測匯水區(qū)地形圖及溝頭處坡度,研究了黃土高原、東北黑土區(qū)、內(nèi)蒙古風(fēng)沙區(qū)等溝蝕發(fā)生地貌臨界條件。張永光等[40,47,53]等搜集了東北黑土區(qū)鶴山農(nóng)場2個(gè)小流域內(nèi)的淺溝和切溝和數(shù)據(jù),通過下限點(diǎn)目視繪制臨界線,并對(duì)比了二者的-關(guān)系式。結(jié)果表明,淺溝和切溝的值近似(0.141與0.148),可能是因?yàn)檠芯繀^(qū)溝蝕生成機(jī)制是近似的;同時(shí)值有一定差異(0.072與0.052),表明淺溝與切溝生成的地貌臨界條件是不同的。李斌兵等[54]在黃土高原丘陵區(qū)借助RTK實(shí)測數(shù)據(jù)及GIS方法,建立了淺溝侵蝕和切溝侵蝕發(fā)生判定式,并提取了淺溝和切溝侵蝕分布區(qū)與野外調(diào)查結(jié)果相當(dāng)吻合。
此外,已有研究表明,壟作影響東北黑土區(qū)坡面匯流侵蝕過程。相對(duì)于自然坡面,橫坡壟作可能擴(kuò)大或減少上游匯水面積,而順坡壟作明顯加劇了坡面匯流與侵蝕過程[55],從而影響溝蝕發(fā)生臨界條件。因此,在東北黑土區(qū)應(yīng)用時(shí),需要在模型中添加考慮壟作的復(fù)合地形因子,以達(dá)到更好的預(yù)測效果。
溝蝕發(fā)生地貌臨界理論將溝頭生成視為一種臨界現(xiàn)象,適宜淺溝或小型切溝的生成研究。溝頭位置是在已有多場降雨作用下形成的,能夠代表區(qū)域內(nèi)當(dāng)前溝蝕發(fā)生的平均地貌臨界條件。基于時(shí)間序列的溝蝕發(fā)生地貌臨界條件,可用于研究自然或人為因素(降雨、植被類型和土地利用等)對(duì)溝頭生成過程的影響及變化。
溝蝕發(fā)生地貌臨界理論有助于溝道侵蝕防治措施的布設(shè)。該理論能夠給出溝蝕發(fā)生的臨界條件,進(jìn)而預(yù)測溝頭位置的空間分布,即可能發(fā)生溝道侵蝕的區(qū)域。因此可針對(duì)溝道侵蝕風(fēng)險(xiǎn)性大的區(qū)域布設(shè)溝道防治措施。鑒于已有研究數(shù)據(jù)處理方式較為一致,可通過對(duì)比不同生態(tài)類型區(qū)內(nèi)的溝道生成閾值,為溝道侵蝕防治總體規(guī)劃的區(qū)域差異化布設(shè)提供參考。
人為擾動(dòng)是現(xiàn)代溝道形成的主要原因。人類活動(dòng)如修建梯田和農(nóng)田道路,及改壟等改變了農(nóng)田微地貌,影響坡面匯水過程,進(jìn)而改變溝頭上方匯水面積。而高分辨率地形圖能夠反映農(nóng)田微地貌的改變。近年來高清遙感影像、基于照片的三維重建及激光雷達(dá)技術(shù)的發(fā)展,促進(jìn)了高分辨率地形圖的獲取。因而結(jié)合上述新技術(shù)獲取的高分辨率地形圖,應(yīng)用溝蝕發(fā)生地貌臨界理論可量化人為活動(dòng)對(duì)溝道形成的影響。
與已有溝道侵蝕發(fā)展模型結(jié)合亦是溝蝕發(fā)生地貌臨界理論的另一發(fā)展方向。目前大部分的溝道侵蝕發(fā)展模型(如AnnAGNPS,REGEM)可以模擬溝道發(fā)展過程,但多需要人為確定溝頭位置,而溝蝕發(fā)生地貌理論的主要作用是預(yù)測溝頭可能發(fā)生的位置。因此二者的結(jié)合可將溝頭發(fā)生位置和溝道發(fā)展過程整合,促進(jìn)溝道侵蝕全過程的模擬。
[1] 朱顯謨. 黃土區(qū)土壤侵蝕的分類[J]. 土壤學(xué)報(bào),1956,4(2):99-115.
[2] Foster G. Understanding ephemeral gully erosion[M]// Board on Agriculture, National Research Council. Committee on Conservation Needs and Opportunities, Assessing the National Resources Inventory. Washington D C: National Academy Press, 1986:90-125.
[3] 陳永宗. 黃河中游黃土丘陵區(qū)的溝谷類型[J]. 地理科學(xué),1984,4(4):35-41.
Chen Yongzong. The classification of gully in hilly loess region in the middle reaches of the Yellow River [J]. Scientia Geographica Sinica, 1984, 4(4): 35-41. (in Chinese with English abstract)
[4] 黃秉維. 陜甘黃土區(qū)域土壤侵蝕的因素和方式[J]. 地理學(xué)報(bào),1953,20(2):63-75.
[5] 劉元保,朱顯謨,周佩華,等. 黃土高原坡面溝蝕的類型及其發(fā)生發(fā)展規(guī)律[J]. 水土保持研究,1988(1):9-18.
[6] Zhang Fenli, Chihua H. Gully Erosion[M]//Encyclopedia of Soil Science. Boca Raton, USA: CRC Press, 2006.
[7] Poesen J, Nachtergaele J, Verstraeten G, et al. Gully erosion and environmental change: Importance and research needs[J]. Catena, 2003, 50(2): 91-133.
[8] 劉宇. 土壤侵蝕研究中的景觀連通度:概念、作用及定量[J]. 地理研究,2016,35(1):195-202.
Liu Yu. Landscape connectivity in soil erosion research: Concepts, implication and quantification[J]. Geographical Research, 2016, 35(1): 195-202. (in Chinese with English abstract)
[9] 和繼軍,宮輝力,李小娟,等. 細(xì)溝形成對(duì)坡面產(chǎn)流產(chǎn)沙過程的影響[J]. 水科學(xué)進(jìn)展,2014,25(1):90-97.
He Jijun, Gong Huili, Li Xiaojuan, et al. Effects of rill development on runoff and yielding processes[J]. Advances in Water Science, 2014, 25(1): 90-97. (in Chinese with English abstract)
[10] Schumm S A. Geomorphic thresholds: The concept and its applications[J]. Transactions of the Institute of British Geographers, 1979, 4(4): 485-515.
[11] Horton R E. Erosional development of streams and their drainage basins: Hydrophysical approach to quantitative morphology[J]. Journal of the Japanese Forestry Society, 1945, 56(3): 275-370.
[12] Schumm S A, Hadley R F. Arroyos and the Semiarid Cycle of Erosion[J]. American Journal of Science, 1957, 255(3): 161-74.
[13] Brice J C. Erosion and deposition in the loess-mantled Great Plains, Medicine Creek drainage basin, Nebraska[M]. US: US Government Printing Office, 1966.
[14] Patton P C, Schumm S A. Gully erosion, Northwestern Colorado: A threshold phenomenon [J]. Geology, 1975, 3(2): 88-90.
[15] Begin Z B, Schumm S A. Instability of alluvial valley floors: A method for its assessment[J]. Transactions of the ASAE, 1979, 22(2): 0347-0350.
[16] Leopold L B, Wolman M G, Miller J P. Fluvial processes in geomorphology[J]. Geographical Journal, 1964, 131(1): 454-456.
[17] Montgomery D R, Dietrich W E. A physically based model for the topographic control on shallow landsliding[J]. Water Resources Research, 1994, 30(4): 1153-1171.
[18] Prosser I P, Abernethy B. Predicting the topographic limits to a gully network using a digital terrain model and process thresholds[J]. Water Resources Research, 1996, 32(7): 2289-2298.
[19] Vandaele K, Poesen J, Govers G, et al. Geomorphic threshold conditions for ephemeral gully incision[J]. Geomorphology, 1996, 16(2): 161-173.
[20] Gómez Gutiérrez á, Schnabel S, Lavado Contador F. Gully erosion, land use and topographical thresholds during the last 60 years in a small rangeland catchment in SW Spain[J]. Land Degradation & Development, 2009, 20(5): 535-550
[21] López A H, Poesen J, Vanwalleghem T. Rainfall and vegetation effects on temporal variation of topographic thresholds for gully initiation in mediterranean cropland and olive groves[J]. Land Degradation & Development, 2017, 28(8): 2540-2552.
[22] Maugnard A, Van Dyck S, Bielders C L. Assessing the regional and temporal variability of the topographic threshold for ephemeral gully initiation using quantile regression in Wallonia (Belgium)[J]. Geomorphology, 2014, 206: 165-177.
[23] Poesen J, Govers G, Boardman J, et al. Gully erosion in the loam belt of Belgium: Typology and control measures[C]// Proceedings of the Soil Erosion on Agricultural Land. Coventry, UK: British Geomorphological Research Group, 1990.
[24] Montgomery D R, Dietrich W E. Where do channels begin? [J]. Nature, 1988, 336(6196): 232-234.
[25] Li H, Cruse R M, Bingner R L, et al. Evaluating ephemeral gully erosion impact onL. yield and economics using AnnAGNPS [J]. Soil & Tillage Research, 2016, 155: 157-165.
[26] Bingner R L, Theurer F D, Yuan Y. AnnAGNPS Technical Processes Documentation (Version 4.0)[M]. US: USDA-ARC National Sedimentation Laboratory & USDA-NRCS National Water and Climate Center, 2007.
[27] Gudino-Elizondo N, Biggs T, Castillo C, et al. Measuring ephemeral gully erosion rates and topographical thresholds in an urban watershed using unmanned aerial systems and structure from motion photogrammetric techniques[J]. Land Degradation & Development, 2018, 29(6): 1896-1905.
[28] Rengers F K, Tucker G E. The evolution of gully headcut morphology: A case study using terrestrial laser scanning and hydrological monitoring [J]. Earth Surface Processes and Landforms, 2015, 40(10): 1304-1317.
[29] Knapen A, Poesen J. Soil erosion resistance effects on rill and gully initiation points and dimensions[J]. Earth Surface Processes and Landforms, 2010, 35(2): 217-228
[30] 蘇子龍,崔明,范昊明. 東北漫崗黑土區(qū)防護(hù)林帶分布對(duì)淺溝侵蝕的影響[J]. 水土保持研究,2012,19(3):20-23.
Zhang Zilong, Cui Ming, Fan Haoming.Effect of protective forest belt on ephemeral gully erosion in Northeast China with black soils[J]. Journal of Soil and Water Conservation, 2012, 19(3): 20-23. (in Chinese with English abstract)
[31] Vandekerckhove L, Poesen J, Wijdenes D O, et al. Topographical thresholds for ephemeral gully initiation in intensively cultivated areas of the Mediterranean[J]. Catena, 1998, 33(3/4): 271-292.
[32] Vanwalleghem T, Poesen J, Nachtergaele J, et al. Characteristics, controlling factors and importance of deep gullies under cropland on loess-derived soils[J]. Geomorphology, 2005, 69(1/2/3/4): 76-91.
[33] Vandekerckhove L, Poesen, J, Oostwoud Wijdenes D, et al. Thresholds for gully initiation and sedimentation in Mediterranean Europe[J]. Earth Surface Processes & Landforms, 2000, 25(11): 1201-1220.
[34] Torri D, Poesen J. A review of topographic threshold conditions for gully head development in different environments[J]. Earth-Science Reviews, 2014, 130: 73-85.
[35] Poesen J W A, Hooke J M. Erosion, flooding and channel management in Mediterranean environments of southern Europe[J]. Progress in Physical Geography, 2016, 21(2): 157-199.
[36] 胡剛,伍永秋.發(fā)生溝蝕(切溝)的地貌臨界研究綜述[J]. 山地學(xué)報(bào),2005,23(5):565-570.
Hu Gang, Wu Yongqiu. Progress in the study of geomorphic threshold theory in channel (gully) erosion[J]. Journal of Mountain Science, 2005, 23(5): 565-570. (in Chinese with English abstract)
[37] 劉曉冰,張興義. 溝道侵蝕的多樣性和發(fā)生過程及研究展望[J]. 土壤與作物,2018(2):90-102.
Liu Xiaobing, Zhang Xingyi. Gully erosion: diversity, processes and prospects[J]. Soils and Crops, 2018(2): 90-102. (in Chinese with English abstract)
[38] Morgan R P C, Mngomezulu D. Threshold conditions for initiation of valley-side gullies in the Middle Veld of Swaziland[J]. Catena, 2003, 50(2): 401-414.
[39] Hayas A, Vanwalleghem T, Laguna A, et al. Reconstructing long-term gully dynamics in Mediterranean agricultural areas[J]. Hydrology and Earth System Sciences, 2017, 21(1): 235-249.
[40] 張永光,伍永秋,劉洪鵠,等. 東北漫崗黑土區(qū)地形因子對(duì)淺溝侵蝕的影響分析[J]. 水土保持學(xué)報(bào),2007,21(1): 35-38.
Zhang Yongguang, Wu Yongqiu, Liu Honghu, et al.Effect of topography on ephemeral gully erosion in Northeast China with black soils[J]. Journal of Soil and Water Conservation, 2007, 21(1): 35-38. (in Chinese with English abstract
[41] Hayas A, Vanwalleghem T, Laguna A, et al. Reconstructing long-term gully dynamics in Mediterranean agricultural areas[J]. Hydrology and Earth System Sciences, 2017, 21(1): 235-249.
[41] Rossi M, Torri D, Santi E. Bias in topographic thresholds for gully heads[J]. Natural Hazards, 2015, 79(S1): 51-69.
[42] Katz H A, Daniels J M, Ryan S. Slope-area thresholds of road-induced gully erosion and consequent hillslope-channel interactions[J]. Earth Surface Processes and Landforms, 2014, 39(3): 285-295.
[43] 羅來興. 劃分晉西、陜北、隴東黃土區(qū)域溝間地與溝谷的地貌類型[J]. 地理學(xué)報(bào),1956,23(3):201-222.
Luo Laixing. A tentative classification of landforms in the Loess Plateau[J]. Acta Geographica Sinica, 1956, 22(3): 201-222. (in Chinese with English abstract)
[44] 張科利,唐克麗,王斌科. 黃土高原坡面淺溝侵蝕特征值的研究[J]. 水土保持學(xué)報(bào),1991,5(2):8-13.
Zhang Keli, Tang Keli, Wang Binke. A study on characteristic value of shallow gully erosion on slope farmland in the Loess Plateau[J]. Journal of Soil and Water Conservation, 1991, 5(2): 8-13. (in Chinese with English abstract)
[45] 姜永清,王占禮. 瓦背狀淺溝分布特征分析[J]. 水土保持研究,1999,6(2):181-184.
Jiang Yongqing, Wang Zhanli, Hu Guangrong, et al. Distribution features of shallow gully[J]. Research of Soil and Water Conservation, 1999, 6(2): 181-184. (in Chinese with English abstract)
[46] 秦偉,朱清科,趙磊磊,等. 基于RS和GIS的黃土丘陵溝壑區(qū)淺溝侵蝕地形特征研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(6):58-64.
Qin Wei, Zhu Qingke, Zhao Leilei, et al. Topographic characteristics of ephemeral gully erosion in loess hilly and gully region based on RS and GIS[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(6): 58-64. (in Chinese with English abstract)
[47] 胡剛,伍永秋,劉寶元,等. 東北漫川漫崗黑土區(qū)淺溝和切溝發(fā)生的地貌臨界模型探討[J]. 地理科學(xué),2006,26(4): 449-454.
Hu Gang, Wu Yongqiu, Liu Baoyuan, et al. Geomorphic threshold model for ephemeral gully incision in rolling hills with black soil in Northeast China[J]. Scientia Geographica Sinica, 2006, 26(4): 449-454. (in Chinese with English abstract)
[48] 楊文利,朱平宗,趙建民,等. 南方紅壤丘陵區(qū)馬尾松人工林地淺溝形態(tài)特征[J]. 西北農(nóng)林科技大學(xué)學(xué)報(bào):自然科學(xué)版,2019,47(8):100-108.
Yang Wenli, Zhu Zongping, Zhao Jianmin, et al. Morphological characteristics of ephemeral gullies ofplantations in the Red Soil Hilly Region of southern China[J]. Journal of Northwest A & F University: Natural Science Edition, 2019, 47(8): 100-108. (in Chinese with English abstract)
[49] 何福紅. 基于“3S”技術(shù)的溝蝕研究方法構(gòu)建與應(yīng)用[D].北京:中國農(nóng)業(yè)科學(xué)院,2006.
[50] 程宏,王升堂,伍永秋,等. 坑狀淺溝侵蝕研究[J]. 水土保持學(xué)報(bào),2006,20(2):39-41.
Cheng Hong, Wang Shengtang, Wu Yongqiu, et al. Study on hole-ephemeral gullies erosion [J]. Journal of Soil and Water Conservation, 2006, 20(2): 39-41, 58. (in Chinese with English abstract)
[51] Cheng H, Wu Y, Zou X, et al. Study of ephemeral gully erosion in a small upland catchment on the Inner-Mongolian Plateau[J]. Soil and Tillage Research, 2006, 90(1/2): 184-193
[52] Cheng H, Zou X, Wu Y, et al. Morphology parameters of ephemeral gully in characteristics hillslopes on the Loess Plateau of China[J]. Soil and Tillage Research, 2007, 94(1): 4-14
[53] Zhang Y, Wu Y, Liu B, et al. Characteristics and factors controlling the development of ephemeral gullies in cultivated catchments of black soil region, Northeast China[J]. Soil and Tillage Research, 2007, 96(1/2): 28-41.
[54] 李斌兵,鄭粉莉,張鵬. 黃土高原丘陵溝壑區(qū)小流域淺溝和切溝侵蝕區(qū)的界定[J]. 水土保持通報(bào),2008,28(5):16-20.
Li Binbing, Zheng Fenli, Zhang Peng. Geomorphic threshold determination for ephemeral gully and gully erosion areas in the loess hilly gully region[J]. Bulletin of Soil and Water Conservation, 2008, 28(5): 16-20. (in Chinese with English abstract)
[55] 宋玥,張忠學(xué). 不同耕作措施對(duì)黑土坡耕地土壤侵蝕的影響[J]. 水土保持研究,2011,18(2):14-16.
Song Yue, Zhang Zhongxue. The effect of different tillage measures on soil erosion in slope farmland in black soil region[J]. Research of Soil and Water Conservation, 2011, 18(2): 14-16. (in Chinese with English abstract)
Data obtained method and application for topographic threshold theory calculation of gully initiation
Li Hao1, Yang Wei2, Liu Xiaobing1, Wang Yuxi2, Zhang Xingyi1※
(1.150081,; 2.150080,)
Gully initiation topographic threshold theory describes gully initiation condition, and is represented by the size of catchment that controls discharge, and local slope at the channel head that controls the velocity of runoff. The main cause of gully formation is excessive (sub) surface runoff, a condition that might be brought about by either climate change or alternations in land use. In this study, this theory was reviewed from the following aspects: theory development, data sources, threshold value calculating methods, influencing factors and applications. The gully initiation threshold concept was originally developed to explain the onset of instability in 1 gully while its neighbours remained stable. The relative area (or shear stress) exponent was generally interpreted in relation to the gully erosion process in the catchment. Values higher than 0.2 were associated with erosion by surface runoff and those lower than 0.2 indicated subsurface processes or mass movement. The threshold coefficient reflected the resistance of the site to gully head development, affected by rainfall, land use, etc. The threshold values variation also depended on the methodology, including field reconnaissance survey and high-resolution remote sensing images as well as digital elevation model. The latter were more convenient for data acquisition, although field reconnaissance survey data would be more accurate. With fast development of unmanned aerial vehicles, high spatial resolution orthophotos derived from structure-from-motion photography could be used to identify the location of gully heads and corresponding catchment size and local slope values. In the early research, the topographic threshold straight line was eye-fitted through the “l(fā)ower-most” points in a log–log scatter plot. The negative slope of that line was equal to relative area exponent value. Then the threshold value could be obtained as the intercept. Since this threshold line was manually drawn, it did not have statistical meaning. This method might also be problematic as multiple thresholds could exist, and the threshold line was very sensitive to extreme values. Based on orthogonal regression, the mean threshold line was fitted through the data-points. Then the minimum threshold line was defined either by the lower limit of the 95% prediction confidence interval around the mean threshold line, or parallel line below the lower limit of the scatter of the data. Quantile regression was recommended because it was statistically-based and robust to outliers. Since the domination mechanisms of gully initiation would not change within decades in a certain region, the relative area exponent could be fixed as a constant value. According to this hypothesis, the threshold coefficient of muti-periods could be used to investigate human effect on gully initiation. In China, about 70% of the research was carried out in the Loess Plateau region. The 1:10 000 topographic map was widely used to obtain local slope and catchment size, since this was the most extensive and detailed topographic map currently available. Most studies extracted the threshold conditions by using the eye-fitted line through the “l(fā)ower-most” points, and few consideration was carried out for the potential errors between different calculation methods. Road construction altered the surface hydrology, and the road surface condition reduced the critical slope for a given drainage area required for gullying. Agricultural reclamation was the main reason for gully development in the Northeastern China, where ridge tillage was widely applied. Contour ridge changed runoff pathways and rearranged drainage networks, and longitudinal ridge accelerated flow concentration. Consideration of ridge-direction effect was important for gully initiation topographic threshold theory applications in this region. Using high-resolution topographic maps and adding the parameters that characterized the human activities effect on concentrated surface runoff could enrich the gully initiation topographic threshold theory. Current gully erosion model could simulate gully development while gully head needed to be mannually located. Hence gully initiation topographic threshold theory could be promoted by combining with such models, since this theory could predict where gully initiated.
geomorphology; erosion; gully; initiation; slope; catchment area; threshold condition
李 浩,楊 薇,劉曉冰,王玉璽,張興義. 溝蝕發(fā)生的地貌臨界理論計(jì)算中數(shù)據(jù)獲取方法及應(yīng)用[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(18):127-133.doi:10.11975/j.issn.1002-6819.2019.18.016 http://www.tcsae.org
Li Hao, Yang Wei, Liu Xiaobing, Wang Yuxi, Zhang Xingyi. Data obtained method and application for topographic threshold theory calculation of gully initiation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(18): 127-133. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.18.016 http://www.tcsae.org
2019-04-06
2019-08-10
國家重點(diǎn)研發(fā)項(xiàng)目(2017YFC0504200);國家自然科學(xué)青年基金(41601289)聯(lián)合資助
李 浩,助理研究員,博士,主要從事地理信息系統(tǒng)與溝道侵蝕研究。Email:lihao@iga.ac.cn.
張興義,研究員,博士,博士生導(dǎo)師,主要從事黑土生態(tài)研究。Email:zhangxy@iga.ac.cn
10.11975/j.issn.1002-6819.2019.18.016
S157.1
A
1002-6819(2019)-18-0127-07