国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

董志塬溝頭溯源侵蝕過程及崩塌中孔隙水壓力變化

2019-11-08 00:54史倩華王文龍郭明明陳卓鑫馮蘭茜
關(guān)鍵詞:水流量坡度徑流

史倩華,王文龍,,郭明明,陳卓鑫,馮蘭茜,趙 滿

董志塬溝頭溯源侵蝕過程及崩塌中孔隙水壓力變化

史倩華1,王文龍1,2※,郭明明1,陳卓鑫1,馮蘭茜2,趙 滿1

(1. 西北農(nóng)林科技大學(xué)水土保持研究所黃土高原土壤侵蝕與旱地農(nóng)業(yè)國家重點(diǎn)實(shí)驗(yàn)室,楊凌 712100;2. 中國科學(xué)院水利部水土保持研究所,楊凌 712100)

為研究董志塬溝頭溯源侵蝕過程及孔隙水壓力變化規(guī)律,采用模擬降雨+放水沖刷的方法,研究集水區(qū)坡度(1°、3°、5°、7°)和放水流量(3.0、3.6、4.8、6.0、7.2 m3/h)對(duì)董志塬溝頭溯源侵蝕過程和孔隙水壓力特征值的影響。結(jié)果表明:1)崩塌發(fā)生頻率由試驗(yàn)初期0~30 min時(shí)的6.29%增加到150~180 min時(shí)的27.48%。2)放水流量為3.0~7.2 m3/h時(shí),產(chǎn)沙率隨試驗(yàn)時(shí)間呈對(duì)數(shù)函數(shù)減小。產(chǎn)沙量隨坡度和放水流量的增加而加大,建立了產(chǎn)沙量與二者間的多元線性回歸方程。3)坡度為1°~7°時(shí),崩塌會(huì)增加22.75%~324.59%的產(chǎn)沙率,產(chǎn)沙率突變點(diǎn)出現(xiàn)時(shí)間相較于崩塌而言存在“滯后”現(xiàn)象。4)孔隙水壓力隨試驗(yàn)時(shí)間呈顯著線性或?qū)?shù)函數(shù)關(guān)系,孔隙水壓力的上升是影響溯源侵蝕崩塌發(fā)生的關(guān)鍵因素。研究結(jié)果可為黃土高塬溝壑區(qū)生態(tài)治理提供參考。

侵蝕;崩塌;沙;溯源;孔隙水壓力;黃土高塬溝壑區(qū);模擬降雨及沖刷試驗(yàn)

0 引 言

黃土塬為頂面平坦開闊的黃土高地,其頂面中心部位平坦,邊緣傾斜3°~5°,周圍被溝谷切割,代表黃土的最高堆積面,是黃土高原地區(qū)主要的糧食生產(chǎn)基地。主要黃土塬包括董志塬、早勝塬、宮河塬、洛川塬、長武塬等[1]。其中,隴東董志塬以其面積最大、黃土層最厚,而享有“天下第一塬”的美稱。然而,由于長期的溯源侵蝕,溝頭至塬面中心距離不斷縮小,塬面面積逐漸萎縮,給當(dāng)?shù)厣鷳B(tài)建設(shè)與經(jīng)濟(jì)社會(huì)可持續(xù)發(fā)展造成嚴(yán)重威脅[1]。

溯源侵蝕是指與地表徑流運(yùn)動(dòng)方向相反的侵蝕,是溝蝕的一種形式[2],其發(fā)生強(qiáng)度主要受降雨和徑流,地形,土壤,植被和人類活動(dòng)影響[3-8]。其中,雨滴動(dòng)能和徑流動(dòng)能是引起溯源侵蝕的主要?jiǎng)恿?,一般而言,降雨量越大,徑流沖刷能力越強(qiáng),土壤侵蝕量也越大。坡度和坡長主要通過影響坡面的受雨面積及雨量來影響坡面徑流及入滲過程,進(jìn)而影響土壤侵蝕。此外,土壤和植被通過影響土壤抗蝕性影響土壤侵蝕強(qiáng)度。以往國內(nèi)外學(xué)者雖然對(duì)溯源侵蝕過程機(jī)理做了一定研究,并得出了相關(guān)結(jié)論,但黃土塬區(qū)溝頭溯源侵蝕研究相對(duì)滯后,研究文獻(xiàn)較少,嚴(yán)重制約了對(duì)該區(qū)溝頭溯源侵蝕的深入認(rèn)識(shí),關(guān)于孔隙水壓力對(duì)溯源侵蝕的影響更是少有涉及。

目前,國內(nèi)外學(xué)者對(duì)孔隙水壓力的的研究主要集中在泥石流預(yù)警[9]、崩塌及滑坡監(jiān)測(cè)[10]、邊坡穩(wěn)定性分析[11-17]以及孔隙水壓力對(duì)巖土力學(xué)參數(shù)的影響[18]方面,研究方法主要是人工模擬降雨試驗(yàn)[13,19-21],此外,運(yùn)用Geo-slope[19]、Flac[20]、Geostudio[21]和PLAXIS[16]等有限元軟件進(jìn)行數(shù)值模擬也是研究的熱點(diǎn)之一。Rockwell[22]發(fā)現(xiàn)地下水通過增大土壤孔隙水壓力和降低土壤對(duì)地表徑流的抗剪切力來影響可蝕性溝頭的形成。溯源侵蝕過程中往往伴隨著崩塌的發(fā)生,定量描述孔隙水壓力變化對(duì)崩塌的影響,對(duì)于深刻認(rèn)識(shí)溝頭溯源侵蝕規(guī)律,促進(jìn)溯源侵蝕模擬技術(shù)的發(fā)展具有重要的意義。故本文采用野外模擬降雨+放水沖刷相結(jié)合的方法,研究董志塬溝頭在不同塬面坡度和放水流量下的溯源侵蝕過程和孔隙水壓力變化情況,以期豐富關(guān)于溯源侵蝕的基礎(chǔ)研究,為黃土高塬溝壑區(qū)的溝蝕治理提供參考。

1 材料與方法

1.1 研究區(qū)概況

本研究于甘肅省慶陽市西峰區(qū)的南小河溝流域(圖1)進(jìn)行(35°41′~35°44′N, 107°30′~107°37′E,海拔1 050~1 423 m),該流域?yàn)辄S河水利委員會(huì)西峰水土保持科學(xué)試驗(yàn)站的試驗(yàn)流域,主要土壤類型為黃綿土和黑壚土[23]。試驗(yàn)用地選擇南小河溝塬面農(nóng)戶休閑地(35°42′49″N,107°32′44″E)。南小河溝流域面積36.3 km2,其中塬面面積20.5 km2,占總土地面積的56.5%,溝壑面積15.8 km2,占總土地面積的43.5%[24]。流域總長度13.6 km,溝道平均比降2.8%,溝道密度2.7 km/km2,流域內(nèi)有大小支毛溝183條,土壤侵蝕模數(shù)4 350 t/(km2·a)[25]。溝谷和塬面分別是南小河溝泥沙和徑流的主要來源,地貌類型屬黃土高塬溝壑區(qū)[26]。根據(jù)西峰氣象站50 a降雨資料統(tǒng)計(jì)分析,該地多年平均降水量為557.7 mm,降水年際變化大,主要集中在5-10月,其中7-9月占全年降水量的63.0%,年平均氣溫8.7 ℃,蒸發(fā)量1 475 mm,無霜期155 d,干燥度1.3~1.8。

圖1 試驗(yàn)區(qū)地理位置示意圖

1.2 溝頭模型建立及儀器布設(shè)

溝頭溯源侵蝕試驗(yàn)小區(qū)位于南小河溝峴子村塬面休閑地,休閑地規(guī)格為60 m×12 m。試驗(yàn)前用裝載機(jī)將表土剝離,在寬度方向上修建4個(gè)磚砌實(shí)體溯源侵蝕模型,由集水區(qū)、溝頭和溝床3部分組成(圖2a)。其中集水區(qū)為裸地,長5 m、寬1.5 m、坡度設(shè)置為1°、3°、5°和7°共4個(gè)梯度;溝頭高0.9 m、寬1.5 m;溝床長1 m、寬1.5 m、坡度與集水區(qū)坡度一致。填土過程中分層控制容重填實(shí),填土完成后將孔隙水壓力計(jì)分層鉆入。其中溝壁人工一致修整為“平整、陡立、無內(nèi)凹洞”的初始侵蝕形態(tài)。小區(qū)高2.05 m處搭建自制降雨器,以保證雨滴降落到地面時(shí)能達(dá)到最大雨強(qiáng)。穩(wěn)流槽采用半開口設(shè)計(jì),集水區(qū)和溝床部位采用淺V型設(shè)計(jì),以模擬集中徑流沖刷過程??紫端畨毫Σ捎帽本┤鸷愠L┛萍加邢薰旧a(chǎn)的型號(hào)為的HC-25的孔隙水壓力計(jì)進(jìn)行測(cè)量,量程范圍為?50~50 kPa。沿斜坡走向以及傾向上分別距溝頭30、60和100 cm處鉆設(shè)60 cm深的孔道,水壓力傳感器埋設(shè)方式為垂直于坡向30和60 cm布設(shè)(圖2b)。在埋設(shè)前將孔隙水壓力計(jì)放入清水中浸泡4~5 h,以排除孔隙水壓力計(jì)空腔及透水石內(nèi)的空氣,提高測(cè)試精度。試驗(yàn)過程中通過配套的數(shù)據(jù)采集儀,將孔隙水壓力值實(shí)時(shí)傳入筆記本電腦??紫端畨毫?shù)據(jù)采集頻率設(shè)置為10次/s。

注:1~6為孔隙水壓力探頭編號(hào),下同。

1.3 試驗(yàn)過程與數(shù)據(jù)觀測(cè)

通過野外調(diào)研,發(fā)現(xiàn)塬面坡度較為平緩,多集中在1°~7°,結(jié)合當(dāng)?shù)貧庀笳径嗄曜匀唤涤隁庀筚Y料分析,將本試驗(yàn)主要指標(biāo)設(shè)計(jì)為:降雨強(qiáng)度(0.8 mm/min)、放水流量(3.0、3.6、4.8、6.0、7.2 m3/h)、集水區(qū)坡度(1°、3°、5°、7°)。試驗(yàn)用水由50 m3水池供應(yīng);流量采用安裝在供水管上的閥門和流量計(jì)進(jìn)行控制和率定。徑流進(jìn)入試驗(yàn)小區(qū)前先通過穩(wěn)流槽,可以保證徑流進(jìn)入小區(qū)時(shí)的初始流速基本一致。各小區(qū)連續(xù)沖刷6次,每次試驗(yàn)時(shí)間為30 min,整個(gè)試驗(yàn)過程持續(xù)180 min。試驗(yàn)開始前,在小區(qū)內(nèi)進(jìn)行降雨強(qiáng)度為20 mm/h的預(yù)降雨,直至表面充分濕潤但又無地表徑流產(chǎn)生。率定雨強(qiáng)時(shí)前將6個(gè)規(guī)格相同的盛雨容器均勻放置,待降雨穩(wěn)定后,掀開盛雨容器同時(shí)計(jì)時(shí),記錄2 min內(nèi)降雨量以率定降雨強(qiáng)度,多次率定值間的誤差不超過5%,此外,降雨均勻度要達(dá)到85%。放水試驗(yàn)開始后,每隔2 min在急流槽出口處接取徑流泥沙樣,試驗(yàn)過程中實(shí)時(shí)記錄崩塌發(fā)生的時(shí)間和位置。試驗(yàn)過程中觀測(cè)孔隙水壓力變化,記錄探頭出露時(shí)間。試驗(yàn)結(jié)束后,將徑流泥沙樣靜置后放入105℃烘箱烘干48 h至恒質(zhì)量。

2 結(jié)果與分析

2.1 溯源侵蝕過程

2.1.1 溯源侵蝕崩塌特性

各試驗(yàn)過程中崩塌發(fā)生時(shí)間及頻率如表1所示,由表可知,崩塌發(fā)生次數(shù)隨試驗(yàn)場(chǎng)次呈現(xiàn)逐漸增加的變化趨勢(shì),當(dāng)模擬降雨+放水沖刷試驗(yàn)從開始進(jìn)行到第180 min時(shí)的各時(shí)段內(nèi),崩塌發(fā)生次數(shù)占總崩塌次數(shù)的頻率由0~30 min內(nèi)的6.29%遞增到150~180 min內(nèi)的27.48%。

表1 不同集水區(qū)坡度小區(qū)各時(shí)段崩塌頻度

在試驗(yàn)初期,試驗(yàn)溝道以下切溯源和溝壁擴(kuò)張為主,導(dǎo)致崩塌頻率較低。當(dāng)溝道持續(xù)發(fā)育,受徑流持續(xù)沖刷作用,溝壁兩側(cè)土壤向溝道內(nèi)部崩塌,增大了崩塌頻率。此外,坡面集中徑流沿集水區(qū)進(jìn)入溝頭時(shí),坡面徑流轉(zhuǎn)化為貼壁流(on-wall flow)和射流(jet flow)2種形式[5],其中,溝頭底部經(jīng)過貼壁流沖掏后形成臨空面,受重力和水力雙重作用,易導(dǎo)致土體失穩(wěn)發(fā)生大規(guī)模溝頭整體崩塌。

2.1.2 溯源侵蝕產(chǎn)沙特性

不同集水區(qū)坡度和放水流量下產(chǎn)沙率隨時(shí)間變化如圖3所示,由圖可知:各放水流量條件下產(chǎn)沙率隨時(shí)間呈現(xiàn)先波動(dòng)減小后漸趨穩(wěn)定的變化趨勢(shì)。產(chǎn)沙率S隨試驗(yàn)歷時(shí)呈極顯著對(duì)數(shù)函數(shù)相關(guān)(S=-·ln+,=0.64~5.10,=4.51~30.09,2=0.39~0.89,=90,<0.01),與Zhang等[8]對(duì)干熱河谷地區(qū)沖溝含沙量的研究結(jié)果相似。常數(shù)和隨坡度和放水流量的增加整體呈增大趨勢(shì),說明平均產(chǎn)沙率與集水區(qū)坡度和放水流量呈正相關(guān)。

圖4為不同試驗(yàn)條件下產(chǎn)沙量變化。各塬面坡度(1°、3°、5°、7°)下侵蝕量分別為325.66~454.13、471.13~787.71、737.34~1 044.18和1 073.16~1 533.60 kg。產(chǎn)沙量隨坡度和放水流量的增加基本呈增加的趨勢(shì)。在坡度不變的情況下,流量每增加1.2 m3/h,產(chǎn)沙量增加16.17~141.18 kg;流量每增加1倍,產(chǎn)沙量增加36.18~319.27 kg。當(dāng)放水流量不變時(shí),坡度增加2°,產(chǎn)沙量增加145.46~489.42 kg,增加幅度介于29.16%~60.26%。經(jīng)多元回歸分析,建立了產(chǎn)沙量與坡度和放水流量的二元一次方程:S=150.98+66.95?136.58(2=0.96,=20,<0.01)。式中S為產(chǎn)沙量,kg,為坡度,(°),為放水流量,m3/h。放水流量越大,地表徑流紊動(dòng)性越強(qiáng);隨著坡度增加,徑流所具有的勢(shì)能增加,動(dòng)能加大,造成產(chǎn)沙量增大。覃超等[27]對(duì)黃土坡面細(xì)溝溝頭溯源侵蝕的研究亦表明,坡面產(chǎn)沙隨流量和坡度的增加而增大。在相同試驗(yàn)歷時(shí)下,大坡度和大流量的試驗(yàn)處理崩塌頻率更高,溝頭長度更長,下切侵蝕、溝道側(cè)蝕和溯源侵蝕均更為劇烈,土壤侵蝕更為嚴(yán)重。

2.1.3 崩塌對(duì)產(chǎn)沙率的影響

將崩塌發(fā)生時(shí)段與產(chǎn)沙率突變值產(chǎn)生時(shí)間進(jìn)行對(duì)比分析可知(圖3),坡度為1°、3°、5°和7°時(shí),崩塌會(huì)增加34.12%%~97.48%,22.75%~166.48%,48.36%~324.59%和36.55%~131.76%的含沙率。含沙率突變點(diǎn)的出現(xiàn)時(shí)間相較崩塌時(shí)間而言存在“滯后”現(xiàn)象,即崩塌發(fā)生后一段時(shí)間,產(chǎn)沙率才出現(xiàn)突變甚至無明顯變化。這主要是由于集水區(qū)和溝頭部位由于崩塌或滑塌產(chǎn)生的泥沙,經(jīng)重力作用進(jìn)入溝床。此外,溝床處淤積的泥沙還包括射流產(chǎn)生的跌水潭侵蝕[28](plunge pool erosion)。當(dāng)徑流沖刷及搬運(yùn)能力較強(qiáng),溝床處的泥沙被一次性搬運(yùn)或者大部分被搬運(yùn)時(shí),含沙率會(huì)出現(xiàn)突增。當(dāng)徑流搬運(yùn)能力較弱時(shí),崩塌堆積在溝床的土體無法直接被搬運(yùn),在徑流連續(xù)沖刷下,崩塌土體逐漸被破壞剝蝕,造成含沙率變化較小。

圖3 產(chǎn)沙率隨試驗(yàn)時(shí)間變化

圖4 不同坡度及放水流量條件下產(chǎn)沙量變化

2.2 孔隙水壓力變化過程

分析孔隙水壓力(突增值產(chǎn)生前)與試驗(yàn)時(shí)間的關(guān)系可知(為減少數(shù)據(jù)量,產(chǎn)流后每30 s求1次平均值,即300個(gè)數(shù)據(jù)取1次平均值,孔隙水壓力隨試驗(yàn)時(shí)間逐漸減小,二者呈顯著線性或?qū)?shù)函數(shù)關(guān)系(表2)。=?·ln+(=0.01~0.74;=0.51~2.64,=48~180,<0.01);=?·+(=0.01~0.04;=0.38~1.97,2=0.50~0.98,=60~165,<0.01)。馬超[9]通過分析蔣家溝原型監(jiān)測(cè)對(duì)2013年3場(chǎng)降雨激發(fā)泥石流土體孔隙水壓力變化,亦得出孔隙水壓力與時(shí)間存在對(duì)數(shù)關(guān)系的結(jié)論。此外,王俊光等[20,29]認(rèn)為隨著降雨的持續(xù)進(jìn)行,孔隙水壓力逐漸增加。這種現(xiàn)象存在的原因可能是本試驗(yàn)開始前進(jìn)行了預(yù)降雨,使得表層土壤水分趨于飽和。填土容重較大且孔隙水壓力埋設(shè)較深,使得在土壤裂縫產(chǎn)生前,孔隙水壓力計(jì)埋設(shè)處的含水量呈減小的狀態(tài),此外,試驗(yàn)每30 min暫停1次引起的土壤水分變化亦會(huì)對(duì)孔隙水壓力造成影響。因此,孔隙水壓力隨試驗(yàn)時(shí)間呈現(xiàn)減小的趨勢(shì)。而其他學(xué)者主要監(jiān)測(cè)的是降雨條件下松散堆積層邊坡的孔隙水壓力變化情況,在降雨前土壤含水率較低,降雨過程中,土壤水分充分入滲,隨著降雨歷時(shí)的延長,土壤含水量增加,孔隙水壓力呈上升趨勢(shì),最終造成滑坡等災(zāi)害。分析距離溝頭30 cm縱斷面上的1和2號(hào)探頭孔隙水壓力數(shù)據(jù)可知,孔隙水壓力隨埋設(shè)深度的加深呈減小的趨勢(shì),即埋深60 cm處2號(hào)探頭的孔隙水壓力值小于埋深30 cm處1號(hào)探頭的孔隙水壓力值,這主要是由于入滲特性,土壤入滲率隨土層深度的增加而降低。因此,埋設(shè)深度越深,土壤入滲量越小,孔隙水壓力也就更小。

2.3 孔隙水壓力對(duì)崩塌的影響

溝頭溯源侵蝕過程中,孔隙水壓力變化曲線存在2種類型。第1種類型為溝頭在溯源侵蝕過程在不斷發(fā)育并形成跌坎,徑流沿溝頭跌落,造成溝頭處含水率增加,孔隙水壓力出現(xiàn)突增點(diǎn),引起崩塌的產(chǎn)生。以塬面坡度1°,放水流量3.0 m3/h(即1°-3.0)為例(圖5),產(chǎn)流后0~12 min時(shí),1~6號(hào)探頭處的水壓力變化范圍分別在0.86~1.29、0.72~1.39、1.00~1.28、0.52~1.47、0.67~1.35和0.62~1.19 kPa之間,均值分別為1.01、0.95、1.15、0.98、1.03和0.98 kPa。在此階段,孔隙水壓力隨試驗(yàn)時(shí)間呈波動(dòng)減小的趨勢(shì)。試驗(yàn)12′時(shí)孔隙水壓力驟增至8.0 kPa,溝頭發(fā)生崩塌,此時(shí)溝頭長度達(dá)到38 cm;試驗(yàn)24′18″時(shí),孔隙水壓力增至2.30 kPa,溝頭底部沖掏至60 cm深處。比較發(fā)現(xiàn),1和2號(hào)探頭孔隙水壓力值分別增加3.19和9.09倍后崩塌發(fā)生,4~6號(hào)探頭分別增加3.43、3.82和3.68倍后崩塌發(fā)生。這主要是由于試驗(yàn)過程中,在降雨徑流的沖刷作用下,坡面沿程具有裂縫發(fā)育,地表徑流沿著裂縫進(jìn)入土體,造成孔隙水壓力突增,引起土體崩塌。Collison[30]亦認(rèn)為當(dāng)張力裂隙存在時(shí),很小的徑流即可產(chǎn)生很大的靜水壓力,促發(fā)溝頭前進(jìn)。分析各場(chǎng)試驗(yàn)孔隙水壓力值可知,孔隙水壓力驟增伴隨著崩塌的發(fā)生,即孔隙水壓力的上升是影響溯源侵蝕崩塌的關(guān)鍵因素之一。土壤水分的能量由動(dòng)能和勢(shì)能組成,由于水分在土壤孔隙中移動(dòng)很慢,故可以忽略動(dòng)能,因此,土壤水分運(yùn)動(dòng)主要由勢(shì)能決定[31]。徑流攜帶泥沙顆粒沿坡面向溝頭運(yùn)動(dòng),造成溝頭處土壤含水率較集水區(qū)頂部更大,且重力勢(shì)減小。根據(jù)能量守恒定理,重力勢(shì)的減小會(huì)壓力勢(shì)增加,孔隙水壓力增大,土體的抗剪強(qiáng)度由于有效應(yīng)力的減小而降低,進(jìn)而誘發(fā)土體的崩塌失穩(wěn)[12,32-33]。

表2 孔隙水壓力(P)與試驗(yàn)時(shí)間(t)回歸分析

注:1°和7°指坡度;3.0和3.6指流量,m3·h-1。

第2種類型為整個(gè)試驗(yàn)過程中孔隙水壓力隨時(shí)間呈現(xiàn)穩(wěn)定減小的變化趨勢(shì),造成崩塌頻率較低。以塬面坡度7°,放水流量3.6 m3/h(即7°-3.6)為例(圖5)。1~6號(hào)位置孔隙水壓力變化范圍為0.04~2.15、0.02~1.13、0.33~1.48、?0.63~1.98、?0.29~1.91和0.60~1.33 kPa之間,平均值為0.75、0.42、0.33、0.54、0.88和0.93 kPa。在產(chǎn)流123~125、130~133.5、134.5~137.5、140~143和147~150 min時(shí),4號(hào)探頭的孔隙水壓力亦為負(fù)值。這可能是由于在產(chǎn)流120~122 min時(shí),二級(jí)溝頭發(fā)育,二級(jí)溝頭長度為63 cm,故60 cm附近處的集水區(qū)地表在侵蝕作用下糙度不一,形成起伏的微地形,土壤顆粒隨徑流順坡向下移動(dòng)過程中,發(fā)生泥沙的暫時(shí)性沉積。沉積的泥沙造成土體體積壓縮,導(dǎo)致土壤孔隙半徑減小,從而產(chǎn)生負(fù)孔隙水壓力。當(dāng)沉積泥沙被徑流搬運(yùn)后,負(fù)孔隙水壓力消散。

3 結(jié) 論

本文采用模擬降雨+放水沖刷的方法,研究在不同塬面坡度(1°、3°、5°、7°)、放水流量(3.0、3.6、4.8、6.0、7.2 m3/h)條件下董志塬溝頭溯源侵蝕狀況和孔隙水壓力變化情況,主要結(jié)論如下:

1)崩塌發(fā)生次數(shù)隨試驗(yàn)時(shí)間呈現(xiàn)遞增的變化趨勢(shì),崩塌發(fā)生頻率由試驗(yàn)初期0~30 min時(shí)的6.29%增加到150~180 min時(shí)的27.48%。

2)在放水流量為3.0、3.6、4.8、6.0和7.2 m3/h的條件下,產(chǎn)沙率隨試驗(yàn)時(shí)間先波動(dòng)減小后趨于穩(wěn)定。產(chǎn)沙量與坡度和放水流量呈極顯著正相關(guān)。

3)各塬面坡度下,崩塌分別會(huì)增加34.12%~97.48%,22.75%~166.48%,48.36%~324.59%和36.55%~131.76%的產(chǎn)沙率。產(chǎn)沙率突變點(diǎn)的出現(xiàn)時(shí)間于崩塌時(shí)間相比存在“滯后”現(xiàn)象。

4)孔隙水壓力與試驗(yàn)時(shí)間呈顯著線性或?qū)?shù)函數(shù)關(guān)系,埋設(shè)60 cm深處孔隙水壓力值小于30 cm處??紫端畨毫χ档纳仙怯绊懰菰辞治g崩塌發(fā)生的關(guān)鍵因素之一。

本文對(duì)董志塬溝頭溯源侵蝕特征進(jìn)行了研究,但受野外自然條件限制,各試驗(yàn)未進(jìn)行重復(fù)。為使研究結(jié)果更加科學(xué)合理,今后將在調(diào)查樣地選擇、調(diào)查設(shè)備應(yīng)用等方面進(jìn)行改善,以豐富研究內(nèi)容,為黃土高塬溝壑治理提供科學(xué)依據(jù)和技術(shù)參考。

[1] 陳紹宇,許建民,王文龍,等. 黃土高塬溝壑區(qū)董志塬溝頭溯源侵蝕特征及其防治途徑[J]. 水土保持通報(bào),2009,29(4):37-41.

Chen Shaoyu, Xu Jianmin, Wang Wenlong, et al. Erosion features of head-cut and its control measures on Dongzhiyuan of the Loess Plateau[J]. Bulletin of Soil and Water Conservation, 2009, 29(4): 37-41. (in Chinese with English abstract)

[2] 周健民,沈仁芳. 土壤學(xué)大辭典[M]. 北京:科學(xué)出版社,2013:212.

[3] Wells R R, Bennett S J, Alonso C V. Effect of soil texture, tailwater height, and pore-water pressure on the morphodynamics of migrating headcuts in upland concentrated flows[J]. Earth Surface Processes and Landforms, 2009, 34: 1867-1877.

[4] Guo Mingming, Wang Wenlong, Shi Qianhua, et al. An experimental study on the effects of grass root density on gully headcut erosion in the gully region of China’s Loess Plateau[J]. Land Degradation & Development, 2019: 1-19.

[5] Bennett S J. Effect of slope on the growth and migration of headcuts in rills[J]. Geomorphology, 1999, 30: 273-290.

[6] Oostwoud Wijdenes D J, Poesen J, Vandekerckhove L. Spatial distribution of gully head activity and sediment supply along an ephemeral channel in a Mediterranean environment [J]. Catena, 2000, 39: 147-167.

[7] Zhang Baojun, Xiong Donghong, Su Zhengan, et al. Effects of initial step height on the headcut erosion of bank gullies: a case study using a 3D photo-reconstruction method in the dry-hot valley region of southwest China[J]. Physical Geography, 2016, 37(6): 409-429.

[8] Zhang Baojun, Xiong Donghong, Zhang Ghuanghui, et al. Impacts of headcut height on flow energy, sediment yield and surface landform during bank gully erosion processes in the Yuanmou Dry-hot Valley region, southwest China[J]. Earth Surface Processes and Landforms, 2018, 43: 2271-2282.

[9] 馬超. 基于土體含水量和實(shí)時(shí)降雨的泥石流預(yù)警指標(biāo)研究[D]. 成都:中國科學(xué)院大學(xué),2014.

Ma Chao. Study on Forecasting Index of Debris Flow Prediction and Forecasting Method Based on Soil Water Content and Real-Time Rainfall[D]. Chengdu: University of Chinese Academy of Sciences, 2014. (in Chinese with English abstract)

[10] 謝春慶,潘凱,廖崇高,等. 西南某機(jī)場(chǎng)高填方邊坡滑塌機(jī)制分析與處理措施研究[J]. 工程地質(zhì)學(xué)報(bào),2017,25(4):1083-1093.

Xie Chunqing, Pan Kai, Liao Chonggao, et al. Landslide mechanism and treatment measures for high fill slope airport in southwestern China[J]. Journal of Engineering Geology, 2017, 25(4): 1083-1093. (in Chinese with English abstract)

[11] 張磊,郭海慶,謝興華,等. 人工降雨入滲邊坡破壞試驗(yàn)研究[J]. 水利水運(yùn)工程學(xué)報(bào),2012(6):21-27.

Zhang Lei, Guo Haiqing, Xie Xinghua, et al. Experimental study on artificial rainfall infiltration into slope [J]. Hydro-Science and Engineering, 2012(6): 21-27. (in Chinese with English abstract)

[12] 周中,傅鶴林,劉寶琛,等. 堆積層邊坡人工降雨致滑的原位監(jiān)測(cè)試驗(yàn)研究[J].中國鐵道科學(xué),2006,27(4):11-16.

Zhou Zhong, Fu Helin, Liu Baochen, et al. In-situ monitoring test study on artificial rainfall infiltration of a well-instrumented accumulation slope[J]. China Railway Science, 2006, 27(4): 11-16. (in Chinese with English abstract)

[13] 李哲,張昌軍,梅華. 人工降雨條件下黃土斜坡土體孔隙水壓力測(cè)試研究[J]. 公路交通科技,2013,30(12):45-52.

Li Zhe, Zhang Changjun, Mei Hua. Measurement of pore water pressure of loess slope under artificial rainfall[J]. Journal of Highway and Transportation Research and Development, 2013, 30(12): 45-52. (in Chinese with English abstract)

[14] 羅波. 降雨條件下非飽和黃土邊坡穩(wěn)定性分析[D]. 蘭州:蘭州交通大學(xué),2014.

Luo Bo. Analysis on Stability of Unsaturated Loess Slope Under the Condition of Rainfall[D]. Lanzhou: Lanzhou Jiaotong University, 2014. (in Chinese with English abstract)

[15] Xu Jingshu, Yang Xiaoli. Effects of seismic force and pore water pressure on three dimensional slope stability in nonhomogeneous and anisotropic soil[J]. Journal of Civil Engineering, 2018, 22(5): 1720-1729.

[16] Dhanya G, Wayne R, Sivakugan N. Consolidation behavior of a cylindrical soil layer subjected to nonuniform pore water pressure distribution[J]. International Journal of Geomechanics, 2013, 13(5): 665-671.

[17] Askari F, Farzaneh O. Pore water pressures in three dimensional slope stability analysis[J]. International Journal of Civil Engineering, 2008, 6(1): 10-23.

[18] 劉琦,盧耀如,李曉昭. 孔隙水壓力對(duì)巖石力學(xué)參數(shù)的影響[J]. 地球?qū)W報(bào),2008,29(5):660-664.

Liu Qi, Lu Yaoru, Li Xiaozhao. The effect of the pore water pressure on the rock mechanics parameters[J]. Acta Geoscientica Sinaca, 2008, 29(5): 660-664. (in Chinese with English abstract)

[19] 王寶亮,李泳,茍萬春,等. 降雨作用下土體細(xì)顆粒遷移特征及其對(duì)崩塌的影響[J]. 工程科學(xué)與技術(shù),2017,49(增刊2):40-50.

Wang Baoliang, Li Yong, Gou Wanchun, et al. Fine grain migration and its impact on soil failures under rainfall infiltration[J]. Advanced Engineering Sciences, 2017, 49(Supp. 2): 40-50. (in Chinese with English abstract)

[20] 王俊光,梁冰. 降雨要素對(duì)黃土邊坡滲流及穩(wěn)定性的影響[J]. 水資源與水工程學(xué)報(bào),2010,21(1):42-45.

Wang Junguang, Liang Bing. Affection of rainfall factor to seepage and stability of loess slope[J]. Journal of Water Resources &Water Engineering, 2010, 21(1): 42-45. (in Chinese with English abstract)

[21] 馬陸江,盛建龍. 降雨入滲作用下排土場(chǎng)邊坡穩(wěn)定性分析及可靠度研究[J]. 化工礦物與加工,2018. http://kns.cnki.net/kcms/detail/32.1492.TQ.20180910.1613.019.html.

Ma Lujiang, Sheng Jianlong. Stability analysis and reliability Study of soil-discharging field slope under rainfall infiltration[J]. Industrial Minerals & Processing, 2018. http://kns.cnki.net/kcms/detail/32.1492.TQ.20180910.1613.019.html. (in Chinese with English abstract)

[22] Rockwell D L. Headcut erosive regimes influenced by groundwater on disturbed agricultural soils[J]. Journal of Environmental Management, 2001, 92: 290-299.

[23] 郭明明,王文龍,康宏亮,等. 黃土高塬溝壑區(qū)植被自然恢復(fù)年限對(duì)坡面土壤抗沖性的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(22):138-146.

Guo Mingming, Wang Wenlong, Kang Hongliang, et al. Effect of natural vegetation restoration age on slope soil anti-scourability in gully region of Loess Plateau [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(22): 138-146. (in Chinese with English abstract)

[24] 畢華興,劉立斌,劉斌. 黃土高塬溝壑區(qū)水土流失綜合治理范式[J]. 中國水土保持科學(xué),2010,8(4):27-33.

Bi Huaxing, Liu Libin, Liu Bin. Paradigm of integrated management on soil and water losses in Loess Plateau-gully Region [J]. Science of Soil and Water Conservation, 2010, 8(4): 27-33. (in Chinese with English abstract)

[25] 王志雄,趙安成. 南小河溝水土保持科技示范園建設(shè)的實(shí)踐[J].中國水土保持,2011(1):37-38,54.

[26] 卞玉敏,呂海深,趙盼盼. 南小河溝土地利用變化對(duì)水文過程的影響[J]. 人民黃河,2015,37(9):88-91.

Bian Yumin, Lü Haishen, Zhao Panpan. Hydrological process responses to land use change in Nanxiaohegou[J]. Yellow River, 2015, 37(9): 88-91. (in Chinese with English abstract)

[27] 覃超,何超,鄭粉莉,等. 黃土坡面細(xì)溝溝頭溯源侵蝕的量化研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(6):160-167.

Qin Chao, He Chao, Zheng Fenli, et al. Quantitative research of rill head advancing process on loessial hillslope[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(6): 160-167. (in Chinese with English abstract)

[28] Flores-Cervantes J H, Istanbulluoglu E, Bras R L. Development of gullies on the landscape: A model of headcut retreat resulting from plunge pool erosion[J]. Journal of Geophysical Research-earth Surface. 2006, 111(F1): F01010.

[29] 夏元友,張亮亮. 考慮降雨入滲影響的邊坡穩(wěn)定性數(shù)值分析[J]. 公路交通科技,2009,26(10):27-32.

Xia Yuanyou, Zhang Liangliang. Journal of highway and transportation research and development numerical analysis on highway slope stability considering rainfall infiltration[J]. Jurnal of Highway and Transportation Research and Development, 2009, 26(10): 27-32. (in Chinese with English abstract)

[30] Collison A J C. The cycle of instability: stress release and ?ssure ?ow as controls on gully head retreat[J]. Hydrological Processes, 2001, 15: 3-12.

[31] 雷志棟,楊詩秀,謝森傳. 土壤水動(dòng)力學(xué)[M]. 北京:清華大學(xué)出版社,1988.

[32] 蔣中明,龍芳,熊小虎,等. 邊坡穩(wěn)定性分析中的滲透力計(jì)算方法考證[J]. 巖土力學(xué),2015,36(9):2478-2486,2493.

Jiang Zhongming, Long Fang, Xiong Xiaohu, et al. Study of calculation methods of acting force of seepage in slope stability analysis[J].Rock and Soil Mechanics, 2015, 36(9): 2478-2486, 2493. (in Chinese with English abstract)

[33] 龍安發(fā),陳開圣,季永新. 不同降雨強(qiáng)度下紅黏土邊坡干濕循環(huán)試驗(yàn)研究[J]. 巖土工程學(xué)報(bào),2019,41(增刊2):193-196.

Long Anfa, Chen Kaisheng, Ji Yongxin. Experimental study on wetting-drying cycles of red clay slopes under different rainfall intensities[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(Supp.2): 193-196. (in Chinese with English abstract)

Headcut erosion processes and pore water pressure variation on Dongzhi tableland of China

Shi Qianhua1, Wang Wenlong1,2※, Guo Mingming1, Chen Zhuoxin1, Feng Lanqian2, Zhao Man1

(1.,712100,; 2.,712100,)

Headcut erosion has been the chief cause in reducing soil fertility and harming ecological environment and long-term serious headcut erosion has caused serious consequence to security of Dongzhi tableland. A simulated rainfall combined runoff scouring experiment was carried out to identify the headcut erosion process and pore water pressure variation on Dongzhi tableland of China. The plot was composed of upstream catchment area, gully head and downstream gully bed. The slope gradient of upstream catchment area (1.5 m×5 m) was 1°, 3°, 5° and 7°. The vertical height of gully head was 0.9 m. Besides, the slope gradient of downstream gully bed (1.5 m×1 m) was 1°, 3°, 5° and 7° which was consistent with the upstream catchment area. The constant-intensity rainfall simulator consisting of nozzles spaced 0.67 m apart, and the pure water was pumped to these nozzles, with the raindrop height of 2.05 m. The pore water pressure gauges were installed in the middle of plot, and the distance between pore water pressure gauges and gully head was 30, 60 and 100 cm with the depth was 30 and 60 cm, respectively. The results showed that the frequency of collapse increased with experimental time, which accounted for 27.48% of total amount when the experiment conducted over 150-180 min. The sediment discharge exhibited a decreased logarithmic relationship with experiment time. The sediment yield was 325.66-454.13, 471.13-787.71, 737.34-1 044.18, and 1 073.16-1 533.60 kg, respectively, under different slope gradient of 1°, 3°, 5° and 7°. There was a general tendency that sediment yield increased with increasing flow discharge and slope gradient. By multiple regression analysis, the sediment yield was found to be linearly related with slope gradient and flow discharges. The sediment yield rate increased 34.12%-97.48%, 22.75%-166.48%, 48.36%-324.59%, and 36.55%-131.76%, respectively, under 1°, 3°, 5°, and 7°. Compared to collapse time, the mutant site in sediment yield rate was delayed due to the deposit of sediment. Pore water pressure decreased with the increase in duration of runoff, and there was a significant linear or logarithmic relationship between pore water pressure and duration of test. The increase of pore water pressure was one of the key factors affecting the occurrence of collapse. When the slope gradient was 1° and the flow discharge was 3.0 m3/h, the pore water pressure was 0.86-1.29, 0.72-1.39, 1.00-1.28, 0.52-1.47, 0.67-1.35 and 0.62-1.19 kPa, respectively, of probe 1 to 6 as the tests time was 12 min, and pore water pressure decreased with buried depth. In addition, the pore water pressure at 30 cm was greater than 60 cm due to the decrease of soil infiltration. These findings hold important implications for the eco-recovery of the gully region of Loess Plateau. Study on erosion process and pore water pressure characteristics of Dongzhi tableland can further reveal the mechanism, lay an important foundation for the research on the model of gully erosion process, and provide important information for realization of land resources of Dongzhi tableland in the Loess Plateau.

erosion; collapse; sediments; headcut; pore water pressure; gully region of Loess Plateau; simulated rainfall combined runoff scouring experiment

史倩華,王文龍,郭明明,陳卓鑫,馮蘭茜,趙 滿. 董志塬溝頭溯源侵蝕過程及崩塌中孔隙水壓力變化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(18):110-117.doi:10.11975/j.issn.1002-6819.2019.18.014 http://www.tcsae.org

Shi Qianhua, Wang Wenlong, Guo Mingming, Chen Zhuoxin, Feng Lanqian, Zhao Man. Headcut erosion processes and pore water pressure variation on Dongzhi tableland of China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(18): 110-117. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.18.014 http://www.tcsae.org

2019-04-03

2019-08-10

國家自然科學(xué)基金(41571275、41302199);國家自然科學(xué)基金重大項(xiàng)目(41790444/D0214);中國科學(xué)院西部行動(dòng)計(jì)劃(KZCX-XB3-13);中國科學(xué)院知識(shí)創(chuàng)新工程重大項(xiàng)目(KZZD-EW-04-03)

史倩華,博士生,主要從事土壤侵蝕研究。Email:sqianhua@163.com

王文龍,研究員,博士,主要從事土壤侵蝕與水土保持研究。Email:wlwang@nwafu.edu.cn

10.11975/j.issn.1002-6819.2019.18.014

S157.1

A

1002-6819(2019)-18-0110-08

猜你喜歡
水流量坡度徑流
格陵蘭島積雪區(qū)地表徑流增加研究
枯水期前婆橋村生態(tài)溝渠水體的污染指標(biāo)削減狀況研究
基于SWAT模型的布爾哈通河流域徑流模擬研究
M701F4燃?xì)廨啓C(jī)TCA系統(tǒng)冷卻水流量異常分析
EGR冷卻器液側(cè)沸騰特性及流量參數(shù)優(yōu)化研究
Aqueducts
雅魯藏布江河川徑流變化的季節(jié)性規(guī)律探索
基于遠(yuǎn)程監(jiān)控的道路坡度提取方法
基于重力方向影響的低壓渦輪葉片水流量測(cè)量數(shù)值計(jì)算
放緩坡度 因勢(shì)利導(dǎo) 激發(fā)潛能——第二學(xué)段自主習(xí)作教學(xué)的有效嘗試
天祝| 威宁| 扶余县| 新建县| 建阳市| 太湖县| 离岛区| 蒙山县| 和龙市| 海原县| 合肥市| 西昌市| 顺义区| 大城县| 余江县| 宁明县| 麻栗坡县| 旌德县| 上高县| 洞口县| 丽江市| 城市| 黑山县| 全椒县| 同江市| 哈巴河县| 乌海市| 石嘴山市| 时尚| 天柱县| 广水市| 磐石市| 西青区| 井研县| 双城市| 巧家县| 襄垣县| 宁阳县| 永兴县| 丽江市| 南木林县|