国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

全秸硬茬地小麥播種機碎秸導(dǎo)流裝置參數(shù)設(shè)計與優(yōu)化

2019-11-08 00:54羅偉文胡志超顧峰瑋徐弘博陳有慶
農(nóng)業(yè)工程學(xué)報 2019年18期
關(guān)鍵詞:導(dǎo)流徑向寬度

羅偉文,胡志超,吳 峰,顧峰瑋,徐弘博,陳有慶

·農(nóng)業(yè)裝備工程與機械化·

全秸硬茬地小麥播種機碎秸導(dǎo)流裝置參數(shù)設(shè)計與優(yōu)化

羅偉文,胡志超※,吳 峰,顧峰瑋,徐弘博,陳有慶

(農(nóng)業(yè)農(nóng)村部南京農(nóng)業(yè)機械化研究所,南京 210014)

針對中國稻麥輪作區(qū)小麥播種時,存在田間秸稈量大和茬口緊等影響小麥播種的問題,提出可直接在全秸硬茬地作業(yè)的小麥“潔區(qū)”寬幅播種農(nóng)藝模式,并基于種帶無播種秸障、碎秸行間條覆的技術(shù)思路設(shè)計相應(yīng)的碎秸導(dǎo)流裝置。通過理論分析作業(yè)時碎秸下拋及與碎秸導(dǎo)流裝置滑切耦合的運動規(guī)律,以清秸率和種帶寬度變異系數(shù)為目標(biāo)函數(shù),確定影響目標(biāo)函數(shù)的主要結(jié)構(gòu)參數(shù)。結(jié)合Box-Benhnken中心組合試驗方法和EDEM離散元仿真技術(shù)對影響碎秸導(dǎo)流裝置作業(yè)性能的參數(shù)進(jìn)行虛擬試驗,利用Design-Expert軟件分析因素對碎秸導(dǎo)流裝置作業(yè)性能的影響,確定最佳參數(shù)組合,并通過田間對比試驗驗證該裝置的作業(yè)性能。試驗結(jié)果表明: 各因素對碎秸導(dǎo)流裝置清秸覆秸性能有顯著影響,其對清秸率影響的主次順序依次為裝置導(dǎo)流寬度、裝置導(dǎo)流長度、徑向距離,對種帶寬度變異系數(shù)影響的主次順序依次為裝置導(dǎo)流長度、徑向距離、裝置導(dǎo)流寬度;最佳參數(shù)組合設(shè)計為裝置導(dǎo)流長度300 mm、徑向距離19 mm和裝置導(dǎo)流寬度298 mm,其對應(yīng)指標(biāo)清秸率為91.83%,種帶寬度變異系數(shù)為10.36%,其田間試驗對應(yīng)指標(biāo)清秸率為90.75%,種帶寬度變異系數(shù)為10.94%,仿真與田間試驗結(jié)果基本吻合。研究結(jié)果可為全秸硬茬地的小麥機播作業(yè)提供技術(shù)與裝備支持,亦可為碎秸行間集覆還田的碎秸導(dǎo)流裝置參數(shù)優(yōu)化提供參考。

農(nóng)業(yè)機械;離散元;優(yōu)化;種帶清秸;碎秸導(dǎo)流裝置

0 引 言

江蘇省常年稻麥輪作總面積約1.6×106hm2,約占全省稻麥種植總面積的60%,輪作區(qū)的小麥產(chǎn)量可達(dá)6 600 kg/hm2;此外,四川、安徽、湖北等地的常年稻麥輪作面積也都接近1.3×106hm2[1]。稻麥輪作兩熟制是中國稻麥生產(chǎn)的重要模式,可有效提高谷物生產(chǎn)總量,在保證國家糧食安全方面占有重要地位[2]。但稻收后小麥播種工序復(fù)雜,通常為稻秸粉碎、翻耕埋茬、旋耕整地、施肥播種、播后鎮(zhèn)壓,同時稻收后播種小麥的茬口非常緊,導(dǎo)致輪作區(qū)的小麥生產(chǎn)不僅成本較高,而且通常無法在適播期內(nèi)完成播種[3]。因此,產(chǎn)區(qū)亟需能直接在秸茬地進(jìn)行下茬小麥播種的作業(yè)設(shè)備。

播前秸茬的及時有效處理,是直接在秸茬地播種的關(guān)鍵環(huán)節(jié),國內(nèi)外專家對此做出大量研究,成效顯著[4-5]。針對不同作業(yè)背景,秸茬處理主要有以下方式:在秸稈被移出并資源化利用后,田間仍有部分秸茬的背景下,主要有“秸稈流動”、“重力切茬”、“條耕”、“粉碎”、和“撥拋”等幾種技術(shù)模式,其相關(guān)設(shè)備適用性強,但在秸稈量大、秸茬不做任何處理的地塊作業(yè)時機具入土部分易掛草雍秸[6-12];在農(nóng)作物收獲后不做任何秸稈移出和耕整地處理的全秸硬茬地背景下,主要有全量秸稈粉碎后播前入土混埋、播后地表均覆、按比例混埋均覆、側(cè)邊集秸、開溝深埋等幾種技術(shù)模式,其相關(guān)設(shè)備均能直接在全秸硬茬地作業(yè),但均需配置相應(yīng)的后續(xù)碎秸處理裝置,整機結(jié)構(gòu)相對復(fù)雜,功耗相對較大[13-20]。同時,由于水稻秸稈量大、韌性強、流動性差等特點,易導(dǎo)致大量秸茬混入土壤造成架種晾種,大量秸稈覆蓋地表影響出苗等問題[21-24]。

因此,針對上述2種背景下的秸茬處理問題,本文結(jié)合小麥寬幅播種農(nóng)藝要求與課題組研制的全秸硬茬地小麥潔區(qū)播種機工作機理,提出播種帶無秸障、碎秸行間集覆的輪作區(qū)小麥機播技術(shù)思路,設(shè)計了一種能夠高效集秸、行間覆秸的碎秸導(dǎo)流裝置,具有組配方便、高度集成、高效低耗等優(yōu)點,既能滿足在全秸硬茬地高質(zhì)順暢播種需求,又能實現(xiàn)提升地溫、封閉行間雜草、改善土壤結(jié)構(gòu)的功能,可為一年兩熟、多熟耕作區(qū)保護(hù)性耕作提供技術(shù)與裝備支持[25]。

1 播種方式及結(jié)構(gòu)設(shè)計

1.1 行間覆秸小麥潔區(qū)播種方式

小麥寬幅播種具有優(yōu)化群體結(jié)構(gòu)、均衡營養(yǎng)面積等優(yōu)勢[26]。結(jié)合以往試驗,在全秸硬茬地作業(yè)工況下,提出了一種幅距為300 mm,播幅為240 mm(播幅內(nèi)等距排列3組開溝器,每組開溝器播種幅寬為80 mm),并將全量秸茬粉碎后覆蓋于行間的小麥“潔區(qū)”(種帶無播種秸障)寬幅播種農(nóng)藝模式,如圖1所示,目前該農(nóng)藝模式已在江蘇、河南等地區(qū)進(jìn)行應(yīng)用示范。

1.小麥種子 2.潔區(qū)種帶 3.覆秸帶

1.2 整機結(jié)構(gòu)

全秸硬茬地小麥播種機(碎秸行間集覆式)整機結(jié)構(gòu)如圖2所示,主要包括秸稈粉碎裝置(壓秸輥、碎秸刀罩殼、碎秸刀、調(diào)節(jié)橫梁)、碎秸導(dǎo)流裝置、種帶旋耕裝置(可調(diào)支撐輥、阻隔板、旋耕刀組、旋耕刀罩殼)、多功能施肥播種裝置(種箱、肥箱、撒肥器、開溝器、鎮(zhèn)壓輪)、機架、懸掛系統(tǒng)、傳統(tǒng)系統(tǒng)等,主要技術(shù)參數(shù)如表1所示。

1.牽引架 2.變速箱 3.機架 4.后橋 5.肥箱 6.排肥器 7.播種機架 8.種箱 9.鎮(zhèn)壓裝置 10.開溝器 11.阻隔板 12.旋耕刀組 13.旋耕刀罩殼 14.后壓秸輥 15.碎秸導(dǎo)流裝置 16.調(diào)節(jié)橫梁 17.碎秸刀 18.碎秸刀罩殼 19.前壓秸輥

表1 主要技術(shù)參數(shù)

1.3 碎秸導(dǎo)流裝置

碎秸導(dǎo)流裝置如圖3所示,主要包括斜面導(dǎo)流板、定型板和安裝板。該裝置安裝在撿拾粉碎裝置與種帶旋耕裝置之間。4組碎秸導(dǎo)流裝置固定于撿拾粉碎裝置后下方的調(diào)節(jié)橫梁上,相鄰碎秸導(dǎo)流裝置沿作業(yè)幅寬方向等距分布,裝置與地面的間隙為20 mm。作業(yè)時,撿拾粉碎裝置的碎秸刀將作業(yè)幅寬內(nèi)秸稈撿拾并粉碎,粉碎后的秸稈沿碎秸刀罩殼內(nèi)側(cè)壁向下噴射,位于覆秸帶(行間)幅寬內(nèi)的碎秸直接落在覆秸帶上,位于清秸帶(種帶)幅寬內(nèi)的碎秸在碎秸噴射與碎秸導(dǎo)流裝置的滑切耦合作用下,自行向碎秸導(dǎo)流裝置兩側(cè)分開,并下落于種帶兩側(cè)的覆秸帶上,形成無秸稈障礙的“潔區(qū)”播種帶和相鄰碎秸導(dǎo)流裝置間的覆秸帶。后續(xù)種帶旋耕和播種作業(yè)均在所形成的無秸稈障礙的種帶上進(jìn)行。

圖3 碎秸導(dǎo)流裝置結(jié)構(gòu)圖

2 碎秸顆粒運動學(xué)特性

注:oxz為坐標(biāo)系;P1、P2分別為碎秸顆粒下拋起止點;D、D1分別為過P2的裝置導(dǎo)流刃線的平行線與坐標(biāo)軸交點;Q為刀軸回轉(zhuǎn)中心;R為回轉(zhuǎn)中心與碎秸下拋點P1的距離,mm;a為裝置導(dǎo)流長度,mm;c為裝置高度,mm;h為碎秸導(dǎo)流裝置底面與回轉(zhuǎn)中心所在水平面的距離,mm。r為碎秸刀回轉(zhuǎn)面半徑,mm;t為導(dǎo)流刃線與碎秸刀回轉(zhuǎn)面的徑向距離(以下簡稱徑向距離),mm;a為導(dǎo)流刃線與水平面夾角,(°);b為粉碎裝置回轉(zhuǎn)中心和碎秸質(zhì)心兩點連線與水平面夾角,(°)。

2.1 碎秸下拋運動規(guī)律

碎秸從粉碎室噴出后,在重力和空氣阻力作用下,做下拋運動。任取碎秸導(dǎo)流裝置豎直方向一截面為研究域,離散化碎秸為單個顆粒,碎秸顆粒從1點運動到2點做下拋運動[27],下拋過程中碎秸在坐標(biāo)系的運動微分方程為

式中為空氣阻力因子,描述碎秸下拋過程中所受空氣阻力;為重力加速度,m/s2。

初始條件為

設(shè)碎秸下拋運動時間為1,忽略碎秸下拋點1到碎秸刀罩殼的距離,則0≤<1時,碎秸的運動軌跡為

式中1x、1z分別表示碎秸下拋點1的初速度沿、軸的分速度,m/s。

且碎秸的下拋終點位置滿足關(guān)系式

由式(3)、式(4)可知,在下拋過程中,秸稈粉碎裝置參數(shù)和前進(jìn)速度確定后,影響碎秸下拋終點位置、速度的因素有徑向距離、裝置導(dǎo)流長度、導(dǎo)流刃線與水平面夾角和碎秸導(dǎo)流裝置單側(cè)分秸角。

2.2 碎秸與導(dǎo)流裝置滑切運動規(guī)律

碎秸下拋至碎秸導(dǎo)流裝置時,與斜面導(dǎo)流板進(jìn)行滑切耦合,從而改變碎秸運動軌跡。以碎秸為研究對象,碎秸從2點運動到3點為滑切耦合的過程,忽略碎秸在該過程中受到的空氣阻力,分析碎秸顆粒受力情況,如圖5所示。結(jié)合文獻(xiàn)[4],在滑切過程中碎秸所受支持力為

式中為導(dǎo)流裝置高度,由安裝橫梁與地面高度決定,=250 mm;為碎秸自然休止角,(°)。

式中為碎秸與斜面導(dǎo)流板之間的摩擦角,斜面導(dǎo)流板材質(zhì)確定,為一定值,(°)。

Note:is coordinate system;,, andare the three corner points of the deflector, whereis the front end of the deflector, and C is the highest point of the deflector;3is the sliping point of smashed straw;is the support force perpendicular to the deflector, N;is the friction parallel to the deflector, N;is the half width of the device, mm;0is the quality of smashed straw, kg;is the distance between2and the symmetry plane of the device, mm;is the unilateral guiding angle of straw flow guiding device,(°).

圖5 稻秸受力分析圖

Fig.5 Force analysis diagram of rice straw

式中2x、2y、2z分別為滑切耦合過程中的初速度在、、軸的分速度,m/s。

從式(7)可知,影響滑切運動軌跡的因素包括滑切運動的初始位置和速度、裝置導(dǎo)流長度、裝置單側(cè)寬度。而滑切運動的初始位置、速度與下拋運動終點位置、速度有關(guān);同時,由碎秸導(dǎo)流裝置結(jié)構(gòu)可知,導(dǎo)流刃線與水平面夾角、碎秸導(dǎo)流裝置單側(cè)分秸角、裝置單側(cè)寬度均與碎秸導(dǎo)流裝置結(jié)構(gòu)參數(shù)有關(guān),分別有如下幾何關(guān)系

式中為裝置導(dǎo)流寬度,mm。

因此,在秸稈粉碎裝置參數(shù)與前進(jìn)速度確定后,影響碎秸運動軌跡的因素為裝置導(dǎo)流長度、徑向距離和裝置導(dǎo)流寬度。

3 離散元仿真試驗

為分析裝置導(dǎo)流長度、徑向距離和裝置導(dǎo)流寬度對碎秸導(dǎo)流裝置作業(yè)性能的影響,并尋找最佳參數(shù)組合,設(shè)計了種帶清秸性能的仿真試驗。碎秸在碎秸導(dǎo)流裝置的作用下條覆于行間,該過程涉及大量碎秸離散體運動,運用離散元仿真軟件EDEM對碎秸導(dǎo)流裝置行間覆秸過程進(jìn)行分析,可提高工作效率,降低試驗成本[28]。通過建立裝置—碎秸—土壤間作用模型,模擬碎秸導(dǎo)流裝置的田間作業(yè)環(huán)境,并建立以清秸率和種帶寬度變異系數(shù)為主的評價指標(biāo),為后續(xù)對影響作業(yè)性能的主要因素進(jìn)行分析和尋找最佳參數(shù)組合準(zhǔn)備。

3.1 三維仿真平臺搭建

3.1.1 工作模型建立

為平衡計算機處理效率與仿真效果,在進(jìn)行模型構(gòu)建時適當(dāng)簡化模型。運用SolidWorks軟件簡化建模秸稈粉碎裝置(碎秸刀罩殼、碎秸刀輥)和碎秸導(dǎo)流裝置,并以.igs格式導(dǎo)入EDEM軟件Geometry 項。同時,為了便于分析仿真后碎秸的分布情況,在碎秸導(dǎo)流裝置下方20 mm處建立土槽簡化模型,土槽尺寸(長×寬×高)為4 000 mm×2 500 mm×20 mm,槽內(nèi)土壤顆粒直徑為8 mm[29]。根據(jù)稻秸粉碎長度及參考文獻(xiàn)[29],采用直徑為7 mm、球心間距為3.5 mm的球體組合成總長為90 mm的長線型模型作為稻秸顆粒模型。裝置—碎秸—土壤間作用模型搭建如圖6所示。

1.罩殼 2.土槽 3.碎秸 4.碎秸刀輥 5.碎秸導(dǎo)流裝置

3.1.2 材料間的接觸模型

在行間覆秸作業(yè)過程中,碎秸與碎秸、導(dǎo)流裝置、土壤之間的接觸模型采用Hert—Mindlin無滑動接觸模型。導(dǎo)流裝置模型材料屬性設(shè)置為45號鋼,根據(jù)相關(guān)文獻(xiàn)確定碎秸顆粒、導(dǎo)流裝置模型、土壤的相關(guān)材料與接觸力學(xué)參數(shù),如表2所示[29-30]。

表2 材料間接觸模型的參數(shù)設(shè)置

3.2 仿真試驗設(shè)計

根據(jù)參考文獻(xiàn)[14],設(shè)定仿真作業(yè)速度為1.2 m/s,粉碎裝置轉(zhuǎn)速為2 000 r/min。以江蘇省稻麥輪作區(qū)稻秸產(chǎn)量為參考,草谷比均值為1.6,草谷總質(zhì)量均值為2.2 kg/m2,設(shè)置顆粒工廠生產(chǎn)稻秸顆粒的速度為3.9 kg/s(≥田間秸稈覆蓋量)[26]。

依據(jù)Box—Benhken試驗理論,設(shè)計3因素3水平分析試驗,通過EDEM虛擬仿真試驗,對裝置導(dǎo)流長度、徑向距離、裝置導(dǎo)流寬度3因素進(jìn)行響應(yīng)面試驗研究[31-32]。在以往單因素試驗基礎(chǔ)上,選取裝置導(dǎo)流長度的取值區(qū)間為200~300 mm,徑向距離的取值區(qū)間10~40 mm,裝置導(dǎo)流寬度的取值區(qū)間280~350 mm,試驗因素水平編碼如表3所示。EDEM仿真性能試驗如圖7所示。

表3 試驗因素和水平

1.覆秸帶 2.潔區(qū)種帶

3.3 碎秸導(dǎo)流裝置清秸性能評價指標(biāo)

通過查閱相關(guān)資料并結(jié)合實際作業(yè)情況,選取清秸率、種帶寬度變異系數(shù)為試驗評價指標(biāo)[33]。在模擬種床的中間區(qū)域選取長度為3 000 mm的作業(yè)帶,應(yīng)用EDEM后處理Selection模塊設(shè)置Grid Bin Group,將各潔區(qū)種帶和各覆秸帶均分為10個網(wǎng)格單元,如圖8所示。

1.覆秸帶 2.潔區(qū)種帶

清秸率指作業(yè)后種帶上被清除的碎秸數(shù)量與作業(yè)前種帶碎秸總數(shù)量的比值,其值越大表明碎秸導(dǎo)流裝置的清秸性能越好,清秸率的計算方法為

式中為清秸率,%;c為仿真作業(yè)后第行第列網(wǎng)格小區(qū)的種帶碎秸數(shù)量;為仿真作業(yè)前種帶網(wǎng)格小區(qū)內(nèi)碎秸總數(shù)量;為測量種帶行數(shù),=4;為每行種帶測量網(wǎng)格數(shù),=10。

種帶寬度變異系數(shù)值越小,碎秸導(dǎo)流裝置清理出的種帶寬度越接近農(nóng)藝要求的播幅。種帶寬度變異系數(shù)計算方法為

4 結(jié)果分析

試驗包括12個分析因子和5個零點估計誤差,共17個試驗點。運用Design-Expert 8.0.6軟件對試驗數(shù)據(jù)進(jìn)行回歸分析,并利用響應(yīng)面分析法對各因素相關(guān)性和交互效應(yīng)的影響規(guī)律進(jìn)行分析研究。試驗方案與響應(yīng)值如表4所示。

表4 試驗設(shè)計方案及響應(yīng)值

4.1 回歸分析

用Design-Expert 8.0.6軟件對表4的數(shù)據(jù)進(jìn)行分析和多元回歸擬合,清秸率1、種帶寬度變異系數(shù)2的方差分析結(jié)果如表5所示。分別建立清秸率、種帶寬度變異系數(shù)對裝置導(dǎo)流長度1、徑向距離2和裝置導(dǎo)流寬度33個自變量的多項式回歸方程,并檢驗其顯著性。

4.1.1 清秸率的顯著性分析

4.1.2 種帶寬度變異系數(shù)的顯著性分析

4.2 響應(yīng)曲面分析

4.2.1 因素對清秸率的影響分析

當(dāng)徑向距離位于中心位置(25 mm)時,裝置導(dǎo)流長度和裝置導(dǎo)流寬度對清秸率1的交互作用影響如圖9a所示,隨著裝置導(dǎo)流長度增加,清秸率增大,隨著裝置導(dǎo)流寬度增加,清秸率先增大后減小。當(dāng)裝置導(dǎo)流長度位于中心位置(250 mm)時,徑向距離和裝置導(dǎo)流寬度對清秸率的交互作用影響如圖9b所示,隨著徑向距離增加,清秸率先增大后減小,隨著裝置導(dǎo)流寬度增加,清秸率先增大后減小。各因素對清秸率1的總體影響趨勢為:隨著裝置導(dǎo)流長度增加,清秸率增大;隨著徑向距離、裝置導(dǎo)流寬度增加,清秸率先增大后減小。

分析原因可知:隨著裝置導(dǎo)流長度增加,碎秸導(dǎo)流裝置本身壅秸情況減弱,對碎秸產(chǎn)生的雍滯影響減小,清秸率增大。當(dāng)徑向距離過小時,碎秸慣性力大,碎秸易被反彈至潔區(qū)種帶;但當(dāng)徑向距離過大時,碎秸與導(dǎo)流裝置耦合位置過低,耦合滑切能力減弱,同時慣性力減弱,碎秸經(jīng)耦合滑切后落至覆秸帶概率減小。在整個清秸過程中,始終有少量碎秸通過導(dǎo)流裝置與地面間隙漏入種帶,隨著裝置導(dǎo)流寬度增加,漏秸區(qū)域變化不大,但作業(yè)前的碎秸量增幅較大,清潔率增大;裝置導(dǎo)流寬度增加到一定程度后,碎秸滑出潔區(qū)的橫向位移過大,滑切后落至種帶的碎秸量增加,清潔率減小。

4.2.2 因素對種帶寬度變異系數(shù)的影響分析

當(dāng)徑向距離位于中心位置(25 mm)時,裝置導(dǎo)流長度和裝置導(dǎo)流寬度對種帶寬度變異系數(shù)的交互作用影響如圖9c所示,隨著裝置導(dǎo)流長度增加,種帶寬度變異系數(shù)減小,隨著裝置導(dǎo)流寬度增加,種帶寬度變異系數(shù)先減小后增大。當(dāng)裝置導(dǎo)流長度位于中心位置(250 mm)時,徑向距離和裝置導(dǎo)流寬度對種帶寬度變異系數(shù)2的交互作用影響如圖9d所示,隨著徑向距離增加,種帶寬度變異系數(shù)增大,隨著裝置導(dǎo)流寬度增加,種帶寬度變異系數(shù)先減小后增大。各因素對種帶寬度變異系數(shù)的總體影響趨勢為:隨著裝置導(dǎo)流長度增加,種帶寬度變異系數(shù)減?。浑S著徑向距離增加,種帶寬度變異系數(shù)增大;隨著裝置導(dǎo)流寬度增加,種帶寬度變異系數(shù)先減小后增大。

分析原因可知:隨著裝置導(dǎo)流長度增加,導(dǎo)流裝置本身壅秸情況減弱,碎秸分流流向性越好,雍秸滯秸、覆秸成團(tuán)的情況減弱,種帶寬度變異系數(shù)減小;隨著徑向距離增加,耦合位置降低以及碎秸慣性力減小,碎秸流向種帶趨勢增大,種帶寬度變異系數(shù)增大;隨著裝置導(dǎo)流寬度增加,碎秸滑切后橫向位移增大,橫向分秸能力增強,種帶寬度變異系數(shù)減小,但超過一定寬度后,相鄰導(dǎo)流裝置間隔變小,易出現(xiàn)漏秸區(qū)滯秸堆秸和碎秸成團(tuán)集覆等問題,導(dǎo)致種帶變異系數(shù)增大。

表5 回歸方程方差分析

注:<0.01(極顯著);0.01≤<0.05(顯著);0.05≤<0.1(較顯著)。

Note:<0.01 (highly significant); 0.01≤<0.05 (very significant); 0.05≤<0.1 (significant).

圖9 交互因素對清秸率和種帶寬度變異系數(shù)的影響

5 參數(shù)優(yōu)化與驗證

5.1 參數(shù)優(yōu)化

為達(dá)到種帶清秸與行間覆秸的最優(yōu)性能,采用多目標(biāo)變量優(yōu)化方法,以清秸率最大、種帶寬度變異系數(shù)最小為優(yōu)化目標(biāo),對裝置導(dǎo)流長度、徑向距離和裝置導(dǎo)流寬度進(jìn)行優(yōu)化設(shè)計,結(jié)合試驗約束條件,建立目標(biāo)及約束函數(shù)

運用Design-Expert8.0.6軟件對2指標(biāo)的數(shù)學(xué)模型進(jìn)行分析求解,優(yōu)化后選取最佳參數(shù)組合為:裝置導(dǎo)流長度300 mm、徑向距離19 mm和裝置導(dǎo)流寬度298 mm,對應(yīng)理論清秸率、種帶寬度變異系數(shù)分別為92.60%、9.77%。選取優(yōu)化后的參數(shù)組合進(jìn)行仿真驗證,其清秸率、種帶寬度變異系數(shù)分別為91.83%、10.36%,與優(yōu)化后的理論結(jié)果基本一致。

5.2 驗證試驗

為驗證碎秸導(dǎo)流裝置的田間作業(yè)性能,于2018年10月在江蘇省農(nóng)業(yè)科學(xué)院泗洪水稻種植基地進(jìn)行田間試驗。試驗地為全量稻秸硬茬地,平均留茬高度為≥400 mm,水稻品種為南粳9108號,土質(zhì)為重黏性土壤。碎秸導(dǎo)流裝置結(jié)構(gòu)參數(shù)為優(yōu)化后的結(jié)果:裝置導(dǎo)流長度300 mm,徑向距離19 mm,裝置導(dǎo)流寬度298 mm,進(jìn)行5次重復(fù)試驗,取其平均值,機具田間試驗及作業(yè)前后種帶清秸與行間覆秸效果如圖10所示。試驗結(jié)果為清秸率90.75%,種帶寬度變異系數(shù)10.94%,與優(yōu)化后仿真結(jié)果相比偏差均小于5個百分點,誤差在可接受范圍內(nèi),驗證了參數(shù)組合的可行性和準(zhǔn)確性。

圖10 導(dǎo)流裝置最優(yōu)參數(shù)驗證試驗

根據(jù)本文研究,該類型小麥播種方式及碎秸導(dǎo)流裝置已在江蘇、河南等地進(jìn)行示范應(yīng)用,并對該播種方式的小麥長勢進(jìn)行跟蹤,如圖11所示,隨著小麥生長分蘗,覆秸帶逐漸被小麥植株覆蓋,與其他稻秸還田方式的小麥長勢相比未出現(xiàn)明顯弱苗現(xiàn)象,證明了該種小麥生產(chǎn)方式應(yīng)用于稻麥輪作的可行性。

a. 小麥出苗狀況a. Wheat emergence statusb. 小麥生長狀況b. Wheat growth status

6 結(jié)論與討論

1)針對一年兩熟稻麥輪作區(qū),提出了直接在全秸硬茬地工況下進(jìn)行種帶清秸、行間覆秸的小麥“潔區(qū)”寬幅播種生產(chǎn)模式,對碎秸導(dǎo)流裝置進(jìn)行了參數(shù)設(shè)計,通過對碎秸的運動過程進(jìn)行分析,得出影響碎秸導(dǎo)流裝置性能的結(jié)構(gòu)參數(shù)為裝置導(dǎo)流長度、徑向距離和裝置導(dǎo)流寬度。

2)搭建了離散元法模擬碎秸導(dǎo)流裝置工作過程的試驗平臺,采用Box-Benhnken試驗方法,對裝置導(dǎo)流長度、徑向距離和裝置導(dǎo)流寬度對清秸率和種帶寬度變異系數(shù)的影響趨勢進(jìn)行了仿真分析并建立了優(yōu)化模型。研究表明,碎秸導(dǎo)流裝置各因素對清秸率影響的主次順序依次為裝置導(dǎo)流寬度、裝置導(dǎo)流長度、徑向距離,對種帶寬度變異系數(shù)影響的主次順序依次為裝置導(dǎo)流長度、徑向距離、裝置導(dǎo)流寬度。

3)碎秸導(dǎo)流裝置最佳參數(shù)組合為裝置導(dǎo)流長度300 mm、徑向距離19 mm、裝置導(dǎo)流寬度298 mm,優(yōu)化后仿真結(jié)果為清秸率91.83%,種帶寬度變異系數(shù)10.36%,田間作業(yè)性能試驗結(jié)果為清秸率90.75%,種帶寬度變異系數(shù)10.94%,與理論計算及仿真結(jié)果均基本吻合,驗證了回歸模型的建立是準(zhǔn)確可行的。

由于試驗時間與自然條件限制,本研究沒有考慮粉碎裝置轉(zhuǎn)速、機具前進(jìn)速度與稻秸本身差異性等對作業(yè)質(zhì)量的影響。在后續(xù)試驗中將對影響碎秸導(dǎo)流裝置作業(yè)性能的參數(shù)做進(jìn)一步分析與試驗。

[1] 劉正平,何瑞銀. 江蘇稻麥輪作區(qū)機械化生產(chǎn)模式分析[J]. 中國農(nóng)機化學(xué)報,2017,38(7):112-116.

Liu Zhengping, He Ruiyin. Analysis on mechanized production mode of rice and wheat rotation area in Jiangsu Province[J]. Journal of Chinese Agricultural Mechanization, 2017, 38(7): 112-116. (in Chinese with English abstract)

[2] 房煥,李奕,周虎,等. 稻麥輪作區(qū)秸稈還田對水稻土結(jié)構(gòu)的影響[J]. 農(nóng)業(yè)機械學(xué)報,2018,49(4):297-302.

Fang Huan, Li Yi, Zhou Hu, et al. Effects of straw incorporation on paddy soil structure in rice-wheat rotation system[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(4): 297-302. (in Chinese with English abstract)

[3] 吳峰,徐弘博,顧峰瑋,等. 秸稈粉碎后拋式多功能免耕播種機秸稈輸送裝置改進(jìn)[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(24):18-26.

Wu Feng, Xu Hongbo, Gu Fengwei, et al. Improvement of straw transport device for straw-smashing back-throwing type multi-function no-tillage planter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(24): 18-26. (in Chinese with English abstract)

[4] 施印炎,羅偉文,胡志超,等. 全量秸稈粉碎條鋪與種帶分型清秸裝置設(shè)計與試驗[J]. 農(nóng)業(yè)機械學(xué)報,2019,50(4):58-67.

Shi Yinyan, Luo Weiwen, Hu Zhichao, et al. Design and test of equipment for straw crushing with strip-laying and seed-belt classification with cleaning under full straw mulching[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 50(4): 58-67. (in Chinese with English abstract)

[5] 廖慶喜,高煥文,舒彩霞. 免耕播種機防堵技術(shù)研究現(xiàn)狀與發(fā)展趨勢[J]. 農(nóng)業(yè)工程學(xué)報,2004,20(1):108-112.

Liao Qingxi, Gao Huanwen, Shu Caixia. Present situations and prospects of anti-blocking technology of no-tillage planter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions7 of the CSAE), 2004, 20(1): 108-112. (in Chinese with English abstract)

[6] Ahmad F, Ding W, Ding Q, et al. Forces and straw cutting performance of double disc furrow opener in no-till paddy soil[J]. Plos One, 2015, 10( 3): 1-14.

[7] 朱瑞祥,李成鑫,程陽,等. 被動式圓盤刀作業(yè)性能優(yōu)化試驗[J]. 農(nóng)業(yè)工程學(xué)報,2014,30(18):47-54.

Zhu Ruixiang, Li Chengxin, Cheng Yang, et al. Working performance of passive disc coulte[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(18): 47-54. (in Chinese with English abstract)

[8] 何進(jìn),李洪文,李慧,等. 往復(fù)切刀式小麥固定壟免耕播種機[J]. 農(nóng)業(yè)工程學(xué)報,2009,25(11):133-138.

He Jin, Li Hongwen, Li Hui, et al. No-till planter with reciprocating powered-cutter for wheat permanent raised beds cultivation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(11): 133-138. (in Chinese with English abstract)

[9] 高娜娜,張東興,楊麗,等. 玉米免耕播種機滾筒式防堵機構(gòu)的設(shè)計與試驗[J]. 農(nóng)業(yè)工程學(xué)報,2012,28(12):31-37.

Gao Nana, Zhang Dongxing, Yang Li, et al. Design and experiment of drum-type anti-blocking mechanism of no-till planter for maize[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(12): 31-37. (in Chinese with English abstract)

[10] 陳海濤,查韶輝,頓國強,等. 2BMFJ 系列免耕精量播種機清秸裝置優(yōu)化與試驗[J]. 農(nóng)業(yè)機械學(xué)報,2016,47(7):96-102.

Chen Haitao, Zha Shaohui, Dun Guoqiang, et al. Optimization and experiment of cleaning device of 2BMFJ type no-till precision planter[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(7): 96-102. (in Chinese with English abstract)

[11] 賈洪雷,趙佳樂,姜鑫銘,等. 行間免耕播種機防堵裝置設(shè)計與試驗[J]. 農(nóng)業(yè)工程學(xué)報,2013,29(18):16-25.

Jia Honglei, Zhao Jiale, Jiang Xinming, et al. Design and experiment of anti-blocking mechanism for inter-row no-tillage seeder[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(18): 16-25. (in Chinese with English abstract)

[12] 何進(jìn),李洪文,陳海濤,等. 保護(hù)性耕作技術(shù)與機具研究進(jìn)展[J]. 農(nóng)業(yè)機械學(xué)報,2018,49(4):1-19.

He Jin, Li Hongwen, Chen Haitao, et al. Research progress of conservation tillage technology and machine[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(4): 1-19. (in Chinese with English abstract)

[13] 朱惠斌,李洪文,何進(jìn),等. 稻茬地雙軸驅(qū)動防堵式小麥免耕播種機[J]. 農(nóng)業(yè)機械學(xué)報,2013,44(6):39-44.

Zhu Huibin, Li Hongwen, He Jin, et al. No-till wheat seeder with two-axel drive anti-blocking in rice stubble field[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(6): 39-44. (in Chinese with English abstract)

[14] 顧峰瑋,胡志超,陳有慶,等.“潔區(qū)播種”思路下麥茬全秸稈覆蓋地花生免耕播種機研制[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(20):15-23.

Gu Fengwei, Hu Zhichao, Chen Youqing, et al. Development and experiment of peanut no-till planter under full wheat straw mulching based on “clean area planting”[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(20): 15-23. (in Chinese with English abstract)

[15] 徐弘博,胡志超,吳峰,等. 全量稻秸還田小麥播種機秸稈分流還田裝置設(shè)計[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(9):19-28.

Xu Hongbo, Hu Zhichao, Wu Feng, et al. Design of straw distributed retention device of wheat planter under full rice straw retention[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(9): 29-28. (in Chinese with English abstract)

[16] 李小聰,吳明亮,邱進(jìn),等. 稻秸稈對行拋撒裝置的結(jié)構(gòu)設(shè)計與試驗[J]. 湖南農(nóng)業(yè)大學(xué)學(xué)報,2016,42(4):454-459.

Li Xiaocong, Wu Mingliang, Qiu Jin, et al. Design and experiment of row-controlled throwing mechanism for ricestraw[J]. Journal of Hunan Agricultural University, 2016, 42(4): 454-459. (in Chinese with English abstract)

[17] 鄭智旗. 玉米秸稈撿拾粉碎溝埋還田機研究[D]. 北京:中國農(nóng)業(yè)大學(xué),2017.

Zheng Zhiqi. Study on Corn Straw Pickup-Chopping and Ditch-Burying Returning Field Machine[D]. Beijing: China Agricultural University, 2017. (in Chinese with English abstract)

[18] 胡紅,李洪文,李傳友,等. 稻茬田小麥寬幅精量少耕播種機的設(shè)計與試驗[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(4):24-32.

Hu Hong, Li Hongwen, Li Chuanyou, et al. Design and experiment of broad width and precision minimal tillage wheat planter in rice stubble field[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(4): 24-32. (in Chinese with English abstract)

[19] 章志強,何進(jìn),李洪文,等. 可調(diào)節(jié)式秸稈粉碎拋撒還田機設(shè)計與試驗[J]. 農(nóng)業(yè)機械學(xué)報,2017,48(9):76-87.

Zhang Zhiqiang, He Jin, Li Hongwen, et al. Design and experiment on straw chopper cum spreader withadjustable spreading device[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(9): 76-87. (in Chinese with English abstract)

[20] 田陽,林靜,李寶筏,等. 氣力式 1JH-2 型秸稈深埋還田機設(shè)計與試驗[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(14):10-18.

Tian Yang, Lin Jing, Li Baofa, et al. Design and test of pneumatic 1JH-2 style straw deep burying and returning machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(14): 10-18. (in Chinese with English abstract)

[21] 王紅妮,王學(xué)春,黃晶,等. 秸稈還田對土壤還原性和水稻根系生長及產(chǎn)量的影響[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(20):116-126.

Wang Hongni, Wang Xuechun, Huang Jing, et al. Effect of straw incorporated into soil on reducibility in soil and root system and yield of rice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(20): 116-126. (in Chinese with English abstract)

[22] 李華,劉世平,陳暢,等. 連續(xù)免耕與秸稈還田對土壤養(yǎng)分含量的影響[J]. 江蘇農(nóng)業(yè)科學(xué),2018,46(15):237-241.

[23] Olaf E, Umar F, Malik R K, et al. On-farm impacts of zero tillage wheat in South Asia’s rice-wheat systems[J]. Field Crops Research, 2008, 105(3): 240-252.

[24] Botta G, Tolón-becerra A, Lastra-bravo X, et al. Alternatives for handling rice (.) straw to favor its decomposition in direct sowing systems and their incidence on soil compaction[J]. Geoderma, 2015, 239/240: 213-222.

[25] 胡志超. 全秸稈覆蓋地機械化免耕播種技術(shù)研發(fā)取得重大突破[J]. 基層農(nóng)技推廣,2015(4):40.

[26] 石玉華,初金鵬,尹立俊,等. 寬幅播種提高不同播期小麥產(chǎn)量與氮素利用率[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(17):127-133.

Shi Yuhua, Chu Jinpeng, Yin Lijun, et al. Wide-range sowing improving yield and nitrogen use efficiency of wheat sown at different dates[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(17):127-133. (in Chinese with English abstract)

[27] 章志強. 玉米秸稈粉碎拋撒還田機的設(shè)計與秸稈運動特性研究[D]. 北京:中國農(nóng)業(yè)大學(xué),2018.

Zhang Zhiqiang. Research on Corn Straw Chopping and Spreading Machine Design and Dynamic Characteristic of Straw[D]. Beijing: China Agricultural University, 2018. (in Chinese with English abstract)

[28] 王奇,賈洪雷,朱龍圖,等. 免耕播種機星齒凹面盤式清秸防堵裝置設(shè)計與試驗[J]. 農(nóng)業(yè)機械學(xué)報,2019,50(2):68-77.

Wang Qi, Jia Honglei, Zhu Longtu, et al. Design and experiment of star-toothed concave disk row cleaners for no-till Planter[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(2): 68-77. (in Chinese with English abstract)

[29] 方會敏,姬長英,郭俊,等. 基于離散元法的旋耕過程土壤運動行為分析[J]. 農(nóng)業(yè)機械學(xué)報,2016,47(3):22-28.

Fang Huimin, Ji Changying, Guo Jun, et al. Analysis of soil dynamic behavior during rotary tillage based on distinct element method[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(3): 22-28. (in Chinese with English abstract)

[30] Lenaerts B, Aertsen T, Tijisken E, et al. simulation of grain-straw separation by discrete element modeling with bendabke straw particles[J]. Computers and Electronics in Agriculture, 2014, 101(7441): 24-33.

[31] 任露泉. 試驗設(shè)計及其優(yōu)化[M]. 北京:科學(xué)出版社,2009.

[32] 呂金慶,王英博,李紫輝,等. 加裝導(dǎo)流板的舀勺式馬鈴薯播種機排種器性能分析與試驗[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(9):19-28.

Lü Jinqing, Wang Yingbo, Li Zhihui, et al. Performance analysis and experiment of cup-belt type patato seed-metering device with flow deflector[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(9): 19-28. (in Chinese with English abstract)

[33] 中華人民共和國農(nóng)業(yè)部. NY/T 500-2002 秸稈還田機作業(yè)質(zhì)量[S]. 北京:中國標(biāo)準(zhǔn)出版社,2002.

Design and optimization for smashed straw guide device of wheat clean area planter under full straw field

Luo Weiwen, Hu Zhichao※, Wu Feng, Gu Fengwei, Xu Hongbo, Chen Youqing

(Nanjing Research Institute for Agricultural Mechanization, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China)

The rice-wheat alternate planting system is the main grain production model in most areas of China which has a great significance to ensure food security in China. The wheat sowing season after the rice harvest is relatively short, combined with the complexity of the traditional wheat planting process, which not only result in the higher sowing costs, but also fails to complete all works during the wheat sowing season. . Seeding directly in the field without straw treatment is an effective way to avoid the aforementioned problems. However, the following issues often occur during the application: for example, the soil-buried parts of the machine are blocked by grass which can’t guarantee the steady operation; a large amount of straw is mixed into the soil which will take the seeds outside the soil and lead to the seeds exposed. To handle the above problems, this paper provided a new sowing method and an efficient guiding device, which adopted the planting technology in the full amount of straw and root stubble field. After the straw was pulverized, all the smashed straw could be placed on inter-rows by using the guiding device to form a sown strip containing few stalks, and the subsequent sowing operations could be completed on the strip. Through the theoretical analysis of the motion of the smashed straw, length of the diversion, radial distance and width of the diversion as key parameters affect the performance of the equipment were verified. The discrete element platform for simulating the operation of the device was established, and the platform mainly was composed of a pellet factory, a crushing device cover, a smashed straw guiding device and a soil trough. Based on the Box-Benhnken central composite test method and EDEM technique, the three-factor and three-level orthogonal rotating quadratic combination experiment was carried out with straw cleaned rate andvariable coefficient of the strip width as the evaluation indexes. The influence of the three key parameters was analyzed. Furthermore, the regression equations were established to describe the relationships between the various factors and each assessment index by using the regression analysis and response surface analysis by software Design-Expert 8.0.6. The optimum combination of the selected parameters was obtained, and it was verified by numerical simulations and field trials. The experiment results indicated that various factors had a significant impact on straw cleaned rate and variable coefficient of the strip width. Depending on the order of significance of the impacts, the factors affecting straw cleaned rate were arranged as follows: width of the diversion, length of the diversion, radial distance. Likewise, the factors affecting variable coefficient of the strip width were arranged as follows: length of the diversion, radial distance and width of the diversion. The combination result of parameter optimum design was presented as follows: length of the diversion is 300 mm, radial distance is 19 mm and width of the diversion is 298 mm. The straw cleaned rate and the variable coefficient of the strip width were (91.83%, 10.36%) and (90.75%, 10.94%), which were determined through simulation experiment and field experiment respectively. Hence, the results of the two verification tests were basically consistent. The study should provide technical and equipment reference for no-tillage seeding of wheat after the rice harvest in the rice-wheat alternate season in China.

agricultural machinery; discrete element method; optimization; seeding strip straw removal; smashed straw guide device

羅偉文,胡志超,吳 峰,顧峰瑋,徐弘博,陳有慶. 全秸硬茬地小麥播種機碎秸導(dǎo)流裝置參數(shù)設(shè)計與優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(18):1-10.doi:10.11975/j.issn.1002-6819.2019.18.001 http://www.tcsae.org

Luo Weiwen, Hu Zhichao, Wu Feng, Gu Fengwei, Xu Hongbo, Chen Youqing. Design and optimization for smashed straw guide device of wheat clean area planter under full straw field[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2019, 35(18): 1-10. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.18.001 http://www.tcsae.org

2019-05-17

2019-07-03

江蘇省農(nóng)業(yè)科技自主創(chuàng)新資金子項目(CX(17)1002-03)。

羅偉文,助理工程師,主要從事農(nóng)機裝備研發(fā)。Email:luoweiwensc@163.com

胡志超,研究員,博士,博士生導(dǎo)師,主要從事農(nóng)機裝備研究。Email:nfzhongzi@163.com

10.11975/j.issn.1002-6819.2019.18.001

S223.2

A

1002-6819(2019)-18-0001-10

猜你喜歡
導(dǎo)流徑向寬度
專利名稱: 導(dǎo)流筒鉬質(zhì)固定裝置
導(dǎo)流格柵對發(fā)射箱內(nèi)流場環(huán)境影響研究
風(fēng)電葉片成型所用導(dǎo)流網(wǎng)導(dǎo)流速率研究
非均布導(dǎo)流下頁巖氣藏壓裂水平井產(chǎn)量模擬
淺探徑向連接體的圓周運動
雙級徑向旋流器對燃燒性能的影響
新型非接觸式徑向C4D傳感器優(yōu)化設(shè)計
一種可承受徑向和軸向載荷的超聲懸浮軸承
孩子成長中,對寬度的追求更重要
你有“馬屁股的寬度”嗎?
西宁市| 南康市| 玉林市| 乡城县| 南雄市| 玉环县| 区。| 哈巴河县| 沁阳市| 苗栗县| 铁力市| 河源市| 曲水县| 渭源县| 丰县| 大埔县| 罗平县| 察哈| 丰镇市| 垣曲县| 宽甸| 金平| 青川县| 揭东县| 广水市| 黄浦区| 石林| 彭山县| 平湖市| 重庆市| 常熟市| 淳化县| 淳安县| 拉萨市| 石狮市| 南江县| 察哈| 方山县| 阜南县| 兰溪市| 吕梁市|