曾麗霞 馬韻
【摘要】 端粒酶可賦予真核細(xì)胞無(wú)限增殖的能力,而端粒酶逆轉(zhuǎn)錄酶(TERT)是端粒酶活化的重要催化亞單位,其啟動(dòng)子的突變與多種腫瘤包括尿路上皮癌密切相關(guān),提示其是腫瘤形成過(guò)程中的始動(dòng)因素。該文將就近年來(lái)TERT啟動(dòng)子突變與尿路上皮腫瘤的發(fā)生、相關(guān)作用機(jī)制及潛在的臨床應(yīng)用價(jià)值等方面的研究展開(kāi)綜述。
【關(guān)鍵詞】 TERT;啟動(dòng)子突變;尿路上皮癌
中圖分類號(hào):R737.15 ? 文獻(xiàn)標(biāo)志碼:A ? DOI:10.3969/j.issn.1003-1383.2019.05.001
【Abstract】 ? Telomerase activity imparts eukaryotic cells with unlimited proliferation capacity.Telomerase reverse transcriptase(TERT) is the key catalytic subunit of telomerase activation,the mutation of its promoter is closely related to a variety of tumors,including urothelial cancer(UC),which suggests that TERT is the initiating factor in the process of tumor formation.This article reviews recent researches on the relationship between TERT promoter mutation and the occurrence of urothelial cancer,its related mechanisms of action and potential clinical application,etc.
【Key words】 TERT;promoter mutation;urothelial cancer
人端粒存在于細(xì)胞染色體的末端,起到維持染色體的完整性及調(diào)控細(xì)胞衰老的作用[1];端粒酶通過(guò)延長(zhǎng)端粒重復(fù)序列來(lái)維持染色體的穩(wěn)定性。腫瘤細(xì)胞可以通過(guò)上調(diào)端粒酶的活性來(lái)維持端粒的長(zhǎng)度,從而實(shí)現(xiàn)腫瘤細(xì)胞的永生化。端粒酶主要由三部分組成:RNA成分(TR)、端粒酶相關(guān)蛋白及主要的催化亞單位和活性成分端粒酶逆轉(zhuǎn)錄酶(telomerase reverse transcriptase,TERT)。TERT是端粒酶的活性組分及限速步驟[1]。人TERT基因位于染色體的5p15.33上,其啟動(dòng)子區(qū)是調(diào)控端粒酶活性表達(dá)的重要結(jié)構(gòu)。該基因的核心啟動(dòng)子區(qū)包含260個(gè)堿基,啟動(dòng)子富含GC序列,缺少TATA盒和CAAT盒,包含5個(gè)以上的SP1結(jié)合位點(diǎn),2個(gè)E-boxes盒及1個(gè)轉(zhuǎn)錄起始點(diǎn),可結(jié)合多種轉(zhuǎn)錄因子,比如:c-Myc、SP1、STAT3、p53等調(diào)控TERT的轉(zhuǎn)錄[2~4]。一些原癌基因的激活和抑癌基因的沉默被發(fā)現(xiàn)可以通過(guò)誘導(dǎo)TERT的轉(zhuǎn)錄來(lái)實(shí)現(xiàn)腫瘤的永生化[5]。TERT啟動(dòng)子區(qū)位于轉(zhuǎn)錄起始點(diǎn)附近的富于GC區(qū),可以通過(guò)甲基化等途徑來(lái)調(diào)控腫瘤的表觀遺傳學(xué)改變[6]。近來(lái)發(fā)現(xiàn)在多種腫瘤中TERT啟動(dòng)子突變?cè)诩せ疃肆C富钚赃^(guò)程中發(fā)揮重要作用,該啟動(dòng)子突變后可上調(diào)TERT的表達(dá),與某些腫瘤的不良預(yù)后密切相關(guān)[7];但也有一些研究表明TERT啟動(dòng)子突變與預(yù)后無(wú)關(guān),具體機(jī)制有待進(jìn)一步研究?,F(xiàn)就近年來(lái)TERT啟動(dòng)子突變與尿路上皮腫瘤的發(fā)生、相關(guān)作用機(jī)制及潛在的臨床應(yīng)用價(jià)值等方面的研究展開(kāi)綜述。
1 腫瘤組織中的TERT啟動(dòng)子突變
2013年在對(duì)黑色素瘤全基因組的測(cè)序研究中首次發(fā)現(xiàn)TERT啟動(dòng)子區(qū)核心區(qū)域序列中存在兩個(gè)高頻突變位點(diǎn),即1295 228 C>T和1295 250 C>T[8~9]。隨后對(duì)多種腫瘤的檢測(cè)發(fā)現(xiàn)TERT啟動(dòng)子區(qū)突變可較高頻率存在于肉瘤、膀胱癌、膠質(zhì)瘤、甲狀腺癌及肝癌等多種腫瘤中,并且發(fā)現(xiàn)這種高突變組的腫瘤均來(lái)源于自我更新率相對(duì)較低的組織[10~13]。TERT在正常體細(xì)胞中表達(dá)受到抑制,在腫瘤細(xì)胞中其激活機(jī)制不甚清楚。在一些腫瘤中發(fā)現(xiàn)了有TERT啟動(dòng)子區(qū)突變的組織,其基因表達(dá)量明顯高于未突變的野生型[11~14]。研究表明TERT啟動(dòng)子突變只有形成特異性的Ets/TCF轉(zhuǎn)錄因子結(jié)合位點(diǎn)并且募集轉(zhuǎn)錄因子后才能夠?qū)ERT的表達(dá)有影響;部分Ets/TCF轉(zhuǎn)錄因子是MAPK信號(hào)通路的下游靶點(diǎn)[15~16]。通過(guò)對(duì)國(guó)內(nèi)13種不同類型的腫瘤、799例組織來(lái)源于腫瘤患者的研究顯示[17],TERT啟動(dòng)子突變?cè)谀z質(zhì)母細(xì)胞瘤、尿路上皮癌、少突膠質(zhì)細(xì)胞瘤、髓母細(xì)胞瘤及肝細(xì)胞癌中的突變率分別為83.9%、64.5%、70.0%、33.3%及31.4%,C228T與C250T是最常見(jiàn)的突變位點(diǎn);TERT啟動(dòng)子的高頻突變提示其是腫瘤形成過(guò)程中的始動(dòng)因素。
在成人膠質(zhì)腫瘤中TERT啟動(dòng)子突變與TERT mRNA的高表達(dá)及端粒酶的活性相關(guān),且可導(dǎo)致EGFR擴(kuò)增和IDH1突變。在甲狀腺癌中可誘導(dǎo)RAS-BRAF信號(hào)通路的激活;TERT啟動(dòng)子的突變可誘導(dǎo)上皮細(xì)胞向間質(zhì)細(xì)胞轉(zhuǎn)化,促使腫瘤遠(yuǎn)處轉(zhuǎn)移和侵襲,可能與腫瘤預(yù)后相關(guān)[12]。除了維持端粒長(zhǎng)度,TERT還有其他不依賴于端粒長(zhǎng)度非經(jīng)典的可影響某些生物學(xué)過(guò)程的功能,比如在神經(jīng)膠質(zhì)瘤中TERT調(diào)節(jié)Wnt/β-Catenin信號(hào)通路促使細(xì)胞去分化,調(diào)控NF-κB的表達(dá)[18]和涉及RNA聚合酶1的DNA轉(zhuǎn)錄,導(dǎo)致細(xì)胞持續(xù)擴(kuò)增[19]。端??梢愿兄?xì)胞的應(yīng)激狀態(tài),誘導(dǎo)細(xì)胞衰老以防止腫瘤的發(fā)生。其中一種重要的機(jī)制是端粒能夠形成G4(G-quadruplex)的復(fù)制叉4鏈結(jié)構(gòu),這種結(jié)構(gòu)在復(fù)制和轉(zhuǎn)錄過(guò)程中優(yōu)先形成。一旦這種G4結(jié)構(gòu)不能被解開(kāi),復(fù)制就會(huì)停滯,削弱細(xì)胞的增殖;而端粒酶參與G4的解除。原癌基因誘導(dǎo)的衰老(oncogene-induced senescence,OIS)[20]和非整倍體誘導(dǎo)的衰老(aneuploidy-induced senescence,AIS)與端粒長(zhǎng)度無(wú)關(guān),可以被活化的端粒酶所抑制,這種抑制作用通常會(huì)使端粒酶陽(yáng)性的細(xì)胞獲得腫瘤始動(dòng)性的突變[21]。端粒酶是如何抑制與端粒長(zhǎng)度無(wú)關(guān)的端粒對(duì)細(xì)胞的保護(hù)功能目前尚不清楚。
2 尿路上皮腫瘤中TERT啟動(dòng)子突變與癌的發(fā)生
尿路上皮腫瘤(Urothelial Carcinoma,UC)是泌尿系統(tǒng)最常見(jiàn)的惡性腫瘤,分為腎盂癌(Renal Pelvis Carcinoma,RPC)、輸尿管癌(Ureteral Carcinoma,UC)和膀胱癌(Urothelial Carcinoma of the Bladder,UCB),其中前兩者合稱為上尿路尿路上皮癌(Upper Tract Urothelial Carcinoma,UTUC)。膀胱尿路上皮癌是泌尿外科最常見(jiàn)的發(fā)生于膀胱的實(shí)體性腫瘤,占膀胱癌的90%以上。UTUC相對(duì)少見(jiàn),且缺乏早期的臨床癥狀,被發(fā)現(xiàn)時(shí)病變已為浸潤(rùn)性。研究表明起源于尿路上皮的癌是通過(guò)TERT基因的異常激活獲得永生化的[22]。在尿路上皮腫瘤中TERT啟動(dòng)子突變率超過(guò)其他任何突變,并廣泛存在于各種病理組織學(xué)分級(jí)及臨床分期中,提示TERT啟動(dòng)子突變是腫瘤發(fā)生的早期事件[23]。
膀胱癌形成過(guò)程至少有2種不同的分子途徑。約75%為非肌層浸潤(rùn)性膀胱癌(Non-muscle Invasive Bladder Cancer,NMIBC),有特征性FGFR3和HRAS基因突變,有極高的復(fù)發(fā)率,僅少數(shù)進(jìn)展為肌層浸潤(rùn)性癌。肌層浸潤(rùn)性膀胱癌(Muscle Invasive Bladder Cancer,MIBC)有特征性p53及RB基因的缺失。膀胱癌中TERT以C228T和C250T的突變最常見(jiàn)[24]。Hosen等[13]對(duì)327例膀胱尿路上皮癌的研究發(fā)現(xiàn),TERT啟動(dòng)子突變比FGFR3常見(jiàn),且兩者呈相關(guān)性。
對(duì)比尿路上皮癌和正常尿路上皮細(xì)胞,研究人員發(fā)現(xiàn)UCB樣本中的基底細(xì)胞(CD44和CK5為+,CK20為-)中存在TERT啟動(dòng)子的突變,且以C228T為主;而正常尿路上皮的基底細(xì)胞無(wú)該類突變。將有C228T突變的基因恢復(fù)到野生型序列,小鼠異種移植實(shí)驗(yàn)中的膀胱癌細(xì)胞的成瘤能力被消除[25]。這表明TERT啟動(dòng)子突變是人類尿路上皮細(xì)胞惡性轉(zhuǎn)化的關(guān)鍵事件,優(yōu)先發(fā)生在缺乏端粒酶活性的增殖活性低的細(xì)胞惡性轉(zhuǎn)化過(guò)程中。在2015年發(fā)表的一項(xiàng)研究中,研究人員在人類胚胎干細(xì)胞(human embryonic stem cells,hESCs)中引入了常見(jiàn)的TERT啟動(dòng)子突變,并證明這些突變可激活TERT啟動(dòng)子及端粒酶的活性,阻止了端??s短,從而使細(xì)胞具有無(wú)限增殖的能力[26]。Borah等[27]對(duì)23種不同的人尿路上皮癌細(xì)胞系的研究表明,TERT啟動(dòng)子突變與其mRNA、蛋白、酶活性的表達(dá)及端粒的長(zhǎng)度相關(guān)。
TERT啟動(dòng)子突變?cè)谀蚵飞掀つ[瘤的發(fā)生中具有組織特異性,原發(fā)性膀胱癌中,55%~83%的樣本至少存在一種TERT啟動(dòng)子的熱點(diǎn)突變;而在9種良性增殖性尿路上皮病變中只有野生型的TERT啟動(dòng)子序列[23]。通過(guò)對(duì)11例膀胱小細(xì)胞的研究發(fā)現(xiàn),TERT啟動(dòng)子的突變率為100%,突變位點(diǎn)均為C228T,提示其來(lái)源于尿路上皮腫瘤細(xì)胞,而其他組織來(lái)源的小細(xì)胞癌均未檢測(cè)出TERT突變[28]。在15例膀胱鱗狀細(xì)胞癌中發(fā)現(xiàn),TERT啟動(dòng)子突變率為80%,其中83%為-124bp G>A,17%為-146bp G>A[29]。在膀胱腺癌中,TERT啟動(dòng)子突變僅限于非腸型腺癌[30]。
3 TERT啟動(dòng)子突變的預(yù)后價(jià)值
膀胱癌中TERT啟動(dòng)子區(qū)突變的頻率最高;同時(shí)存在此類突變的膀胱癌患者生存時(shí)間明顯短于未突變患者,且易于復(fù)發(fā)[31]。國(guó)內(nèi)吳松等人[32]通過(guò)對(duì)302例泌尿生殖系統(tǒng)惡性腫瘤的篩查及分析發(fā)現(xiàn),TERT啟動(dòng)子突變?cè)诟鞣N類型的腫瘤中差異極大,突變率為0~63.7%;這種突變上調(diào)了TERT的表達(dá),促進(jìn)了腫瘤細(xì)胞的侵襲性;并與腫瘤的TP53/RB1信號(hào)通路有關(guān)。王坤等人[33~34]研究提示尿路上皮癌組織及尿液中存在TERT啟動(dòng)子突變,上尿路腎盂及下尿路尿路上皮癌的突變率明顯高于輸尿管者,并與預(yù)后相關(guān)。有研究人員評(píng)估了兩個(gè)UCB的獨(dú)立化療組的TERT啟動(dòng)子突變和TERT mRNA表達(dá)水平與患者生存的相關(guān)性,發(fā)現(xiàn)TERT mRNA的量與總生存率密切相關(guān)[27]。而另一組研究分析了230例NMIBC和25例MIBC的尿液樣本,發(fā)現(xiàn)TERT啟動(dòng)子突變與NMIBC向MIBC演進(jìn)有顯著的相關(guān)性[35]。同樣值得關(guān)注的是TERT啟動(dòng)子突變與UTUC的遠(yuǎn)處轉(zhuǎn)移有關(guān)[34]。但歐洲的一些學(xué)者研究發(fā)現(xiàn)[36],TERT啟動(dòng)子的突變與其mRNA表達(dá)、臨床病理學(xué)參數(shù)及膀胱癌患者的預(yù)后無(wú)關(guān),與存在FGFR3突變相關(guān)。TERT啟動(dòng)子突變?cè)诓煌巳杭安煌M織學(xué)類型的尿路上皮腫瘤中的預(yù)后作用及相關(guān)作用機(jī)制有待深入研究。
4 TERT啟動(dòng)子突變的診斷作用及治療應(yīng)用前景
關(guān)于TERT啟動(dòng)子突變可能有助于尿路上皮腫瘤病理學(xué)診斷及鑒別診斷的報(bào)道極少。有研究報(bào)道[37],72%的伴有腺樣分化的尿路上皮癌的TERT啟動(dòng)子有突變;TERT啟動(dòng)子突變與尿路上皮癌相關(guān),而與膀胱其他類型的腺樣病變無(wú)關(guān)。結(jié)合形態(tài)特征、免疫表型及臨床信息,TERT啟動(dòng)子突變可以較好地用于伴有腺樣分化的尿路上皮癌和其他類型膀胱腺樣病變的鑒別;同時(shí)也提示無(wú)TERT啟動(dòng)子突變的原發(fā)性膀胱腺癌是一組在起源上與尿路上皮癌發(fā)生不同的疾病。Cheng等[38]檢測(cè)了26例內(nèi)翻性乳頭狀瘤,26例尿路上皮癌(內(nèi)翻型),普通型的尿路上皮癌(包括36例非浸潤(rùn)性和35例浸潤(rùn)性尿路上皮癌)及25例腺性膀胱炎病變組織樣本中TERT啟動(dòng)子的突變狀況,發(fā)現(xiàn)內(nèi)翻性乳頭狀瘤、內(nèi)翻型的尿路上皮癌、普通型的尿路上皮癌及腺性膀胱炎中TERT啟動(dòng)子突變率分別為15%(4/26)、58%(15/26)、63%(45/71)及0%(0/25);其中以C228T突變?yōu)橹?,高達(dá)97%;在膀胱尿路上皮惡性腫瘤中,TERT啟動(dòng)子突變與性別、組織學(xué)分級(jí)及病理分期無(wú)關(guān),同時(shí)也提示小部分膀胱的內(nèi)翻性乳頭狀瘤可能會(huì)經(jīng)歷與尿路上皮癌發(fā)生相似的路徑;對(duì)TERT啟動(dòng)子突變的篩查有助于膀胱癌更客觀的診斷。Zhong等[39]發(fā)現(xiàn),膀胱巢狀變異型尿路上皮癌存在高頻率C228T的突變,與之相似的良性病變中無(wú)TERT啟動(dòng)子突變,提示其可成為這兩種良惡性疾病鑒別的重要依據(jù)。
無(wú)創(chuàng)性的尿液檢測(cè)是目前用于非浸潤(rùn)性UCB的復(fù)發(fā)及高危人群UCB篩查的常規(guī)手段,但缺乏有效的診斷分子標(biāo)志物。尿中檢測(cè)到TERT啟動(dòng)子突變往往提示有尿路上皮惡性腫瘤可能。一項(xiàng)回顧性研究表明,尿中TERT啟動(dòng)子突變是檢測(cè)疾病復(fù)發(fā)的合適指標(biāo)[27]。然而關(guān)于該突變臨床檢測(cè)的應(yīng)用價(jià)值還有待于大量前瞻性研究的進(jìn)行。
大部分人類惡性腫瘤中有活性端粒酶,其是腫瘤進(jìn)展所需要的重要因素。隨著種系變異的TERT啟動(dòng)子突變和體細(xì)胞突變機(jī)制的進(jìn)一步闡明,勢(shì)必將有助于推動(dòng)端粒酶的靶向治療。針對(duì)端粒酶本身的抑制劑(如Imetelstat),由于有嚴(yán)重的造血功能抑制作用,目前僅限于骨髓增殖性疾病而非實(shí)體瘤的治療[40]。之后的研究顯示,端粒酶底物、端粒保護(hù)蛋白復(fù)合物及端粒酶非經(jīng)典的端粒外功能正成為有效治療靶點(diǎn)篩選的候選因素[41]。
綜上所述,TERT啟動(dòng)子突變是尿路上皮癌中最常見(jiàn)的突變形式,是腫瘤發(fā)生的早期事件,目前的研究結(jié)果顯示其預(yù)后價(jià)值方面仍存在一些爭(zhēng)議;對(duì)不同類型尿路上皮腫瘤診斷價(jià)值的評(píng)估及其是否可以用作預(yù)測(cè)對(duì)端粒酶抑制劑試驗(yàn)患者有效反應(yīng)的標(biāo)志物皆有待多中心、大樣本和進(jìn)一步深入研究。
參 考 文 獻(xiàn)
[1] de Lange T.How telomeres solve the end-protection problem[J].Science,2009,326(5955):948-952.
[2] Xu D,Dwyer J,Li H,et al.Ets2 maintains hTERT gene expression and breast cancer cell proliferation by interacting with c-Myc[J].J Biol Chem,2008,283(35):23567-23580.
[3] Zhao Y,Wang S,Popova EY,et al.Rearrangement of upstream sequences of the hTERT gene during cellular immortalization[J].Genes Chromosomes Cancer,2009,48(11):963-974.
[4] Smith KS,Yadav VK,Pedersen BS,et al.Signatures of accelerated somatic evolution in gene promoters in multiple cancer types[J].Nucleic Acids Res,2015,43(11):5307-5317.
[5] Goueli BS,Janknecht R.Upregulation of the Catalytic Telomerase Subunit by the Transcription Factor ER81 and Oncogenic HER2/Neu,Ras,or Raf[J].Mol Cell Biol,2004,24(1):25-35.
[6] Zhu J,Zhao Y,Wang S.Chromatin and epigenetic regulation of the telomerase reverse transcriptase gene[J].Protein Cell,2010,1(1):22-32.
[7] Vogelstein B,Papadopoulos N,Velculescu VE,et al.Cancer genome landscapes[J].Science,2013,339(6127):1546-1558.
[8] Huang FW,Hodis E,Xu MJ,et al.Highly recurrent TERT promoter mutations in human melanoma[J].Science,2013,339(6122):957-959.
[9] Horn S,F(xiàn)igl A,Rachakonda PS,et al.TERT promoter mutations in familial and sporadic melanoma[J].Science,2013,339(6122):959-961.
[10] Killela PJ,Reitman ZJ,Jiao Y,et al.TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal[J].Proc Natl Acad Sci U S A,2013,110(15):6021-6026.
[11] Liu X,Bishop J,Shan Y,et al.Highly prevalent TERT promoter mutations in aggressive thyroid cancers[J].Endocr Relat Cancer,2013,20(4):603-610.
[12] Landa I,Ganly I,Chan TA,et al.Frequent somatic TERT promoter mutations in thyroid cancer: higher prevalence in advanced forms of the disease[J].J Clin Endocrinol Metab,2013,98(9):E1562-1566.
[13] Hosen I,Rachakonda PS,Heidenreich B,et al.Mutations in TERT promoter and FGFR3 and telomere length in bladder cancer[J].Int J Cancer,2015,137(7):1621-1629.
[14] Tallet A,Nault JC,Renier A,et al.Overexpression and promoter mutation of the TERT gene in malignant pleural mesothelioma[J].Oncogene,2014,33(28):3748-3752.
[15] Heidenreich B,Rachakonda PS,Hemminki K,et al.TERT promoter mutations in cancer development[J].Curr Opin Genet Dev,2014,24:30-37.
[16] Nencha U,Rahimian A,Giry M,et al.TERT promoter mutations and rs2853669 polymorphism:prognostic impact and interactions with common alterations in glioblastomas[J].J Neurooncol,2016,126(3):441-446.
[17] Huang DS,Wang Z,He XJ,et al.Recurrent TERT promoter mutations identified in a large-scale study of multiple tumour types are associated with increased TERT expression and telomerase activation[J].Eur J Cancer,2015,51(8):969-976.
[18] Ghosh A,Saginc G,Leow SC,et al.Telomerase directly regulates NF-kappaB-dependent transcription[J].Nat Cell Biol,2012,14(12):1270-1281.
[19] Xie L,Gazin C,Park SM,et al.A synthetic interaction screen identifies factors selectively required for proliferation and TERT transcription in p53-deficient human cancer cells[J].PLoS Genet,2012,8(12):e1003151.
[20] Suram A,Kaplunov J,Patel PL,et al.Oncogene-induced telomere dysfunction enforces cellular senescence in human cancer precursor lesions[J].EMBO J,2012,31(13):2839-2851.
[21] Hewitt G,Jurk D,Marques FD,et al.Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence[J].Nat Commun,2012,3:708.
[22] Chapman EJ,Kelly G,Knowles MA.Genes involved in differentiation,stem cell renewal,and tumorigenesis are modulated in telomerase-immortalized human urothelial cells[J].Mol Cancer Res,2008,6(7):1154-1168.
[23] Kurtis B,Zhuge J,Ojaimi C,et al.Recurrent TERT promoter mutations in urothelial carcinoma and potential clinical applications[J].Ann Diagn Pathol,2016,21:7-11.
[24] Theodorescu D,Cech TR.Telomerase in bladder cancer:back to a better future?[J].Eur Urol,2014,65(2):370-371.
[25] Li C,Wu S,Wang H,et al.The C228T mutation of TERT promoter frequently occurs in bladder cancer stem cells and contributes to tumorigenesis of bladder cancer[J].Oncotarget,2015,6(23):19542-19551.
[26] Chiba K,Johnson JZ,Vogan JM,et al.Cancer-associated TERT promoter mutations abrogate telomerase silencing[J].Elife,2015,4.
[27] Borah S,Xi L,Zaug AJ,et al.Cancer.TERT promoter mutations and telomerase reactivation in urothelial cancer[J].Science,2015,347(6225):1006-1010.
[28] Zheng X,Zhuge J,Bezerra SM,et al.High frequency of TERT promoter mutation in small cell carcinoma of bladder,but not in small cell carcinoma of other origins[J].J Hematol Oncol,2014,7:47.
[29] Cowan M,Springer S,Nguyen D,et al.High prevalence of TERT promoter mutations in primary squamous cell carcinoma of the urinary bladder[J].Mod Pathol,2016,29(5):511-515.
[30] Cowan ML,Springer S,Nguyen D,et al.Detection of TERT promoter mutations in primary adenocarcinoma of the urinary bladder[J].Hum Pathol,2016,53:8-13.
[31] Rachakonda PS,Hosen I,de Verdier PJ,et al.TERT promoter mutations in bladder cancer affect patient survival and disease recurrence through modification by a common polymorphism[J].Proc Natl Acad Sci U S A,2013,110(43):17426-17431.
[32] Wu S,Huang P,Li C,et al.Telomerase reverse transcriptase gene promoter mutations help discern the origin of urogenital tumors: a genomic and molecular study[J].Eur Urol,2014,65(2):274-277.
[33] Wang K,Liu T,Liu C,et al.TERT promoter mutations and TERT mRNA but not FGFR3 mutations are urinary biomarkers in Han Chinese patients with urothelial bladder cancer[J].Oncologist,2015,20(3):263-269.
[34] Wang K,Liu T,Liu L,et al.TERT promoter mutations in renal cell carcinomas and upper tract urothelial carcinomas[J].Oncotarget,2014,5(7):1829-1836.
[35] Critelli R,F(xiàn)asanelli F,Oderda M,et al.Detection of multiple mutations in urinary exfoliated cells from male bladder cancer patients at diagnosis and during follow-up[J].Oncotarget,2016,7(41):67435-67448.
[36] Allory Y,Beukers W,Sagrera A,et al.Telomerase reverse transcriptase promoter mutations in bladder cancer: high frequency across stages,detection in urine,and lack of association with outcome[J].Eur Urol,2014,65(2):360-366.
[37] Vail E,Zheng X,Zhou M,et al.Telomerase reverse transcriptase promoter mutations in glandular lesions of the urinary bladder[J].Ann Diagn Pathol,2015,19(5):301-305.
[38] Cheng L,Davidson DD,Wang M,et al.Telomerase reverse transcriptase(TERT) promoter mutation analysis of benign,malignant and reactive urothelial lesions reveals a subpopulation of inverted papilloma with immortalizing genetic change[J].Histopathology,2016,69(1):107-113.
[39] Zhong M,Tian W,Zhuge J,et al.Distinguishing nested variants of urothelial carcinoma from benign mimickers by TERT promoter mutation[J].Am J Surg Pathol,2015,39(1):127-131.
[40] Baerlocher GM,Oppliger Leibundgut E,Ottmann OG,et al.Telomerase Inhibitor Imetelstat in Patients with Essential Thrombocythemia[J].N Engl J Med,2015,373(10):920-928.
[41] Günes C,Wezel F,Southgate J,et al.Implications of TERT promoter mutations and telomerase activity in urothelial carcinogenesis[J].Nat Rev Urol,2018,15(6):386-393.