羊國根 程家森
(1. 安徽農(nóng)業(yè)大學(xué)植物保護(hù)學(xué)院,合肥 230036;2. 華中農(nóng)業(yè)大學(xué)農(nóng)業(yè)微生物學(xué)國家重點(diǎn)實(shí)驗(yàn)室 華中農(nóng)業(yè)大學(xué)湖北省作物病害監(jiān)測和安全控制重點(diǎn)實(shí)驗(yàn)室,武漢 430070)
核盤菌(S. sclerotiorum(Lib.)de Bary)是一類世界性分布的重要植物病原真菌。在分類地位上,歸屬于真菌界(Fungi)、子囊菌門(Ascomycota)、錘舌菌綱(Leotiomycetes)、錘舌菌亞綱(Leotiomycetidae)、柔膜菌目(Helotiales)、核盤菌科(Sclerotiniaceae)、核盤菌屬(Sclerotinia)[1]。核盤菌可侵染75個科450多種植物,主要侵染雙子葉植物,如油菜、大豆、向日葵和番茄等;也可以侵染單子葉植物,如洋蔥和郁金香等[2]。核盤菌引起的植物病害稱為菌核病,也稱作白腐病、莖腐病和軟腐病等。核盤菌在侵染后期可形成菌核進(jìn)行越夏越冬,菌核可以在土壤中存活很多年[3]。菌核病的病害循環(huán)復(fù)雜,菌核在適宜的溫度和濕度條件下,可萌發(fā)形成子囊盤,釋放子囊孢子侵染寄主,也可直接萌發(fā)成菌絲侵染植物[4]。核盤菌是典型的死體營養(yǎng)型植物病原真菌,致病機(jī)理復(fù)雜。已有報(bào)道仍主要集中研究核盤菌分泌的植物細(xì)胞壁降解酶類(Plant cell wall degrading enzymes,PCWDEs)和草酸(Oxalic acid,OA)等致病因子在侵染過程中的作用及其機(jī)制,而最近研究表明分泌蛋白也參與了核盤菌的致病過程并發(fā)揮重要功能。本文綜述了有關(guān)核盤菌致病機(jī)理的最新研究進(jìn)展,可為核盤菌的分子致病機(jī)制研究和抗菌核病分子育種提供重要參考。
主要包括角質(zhì)酶(Cutinase)、細(xì)胞壁降解酶類和蛋白酶(Protease)類等。例如,核盤菌的角質(zhì)酶編碼基因SsCut在侵染葉片1 h后,表達(dá)量顯著上調(diào)[5];重組蛋白SsCut可引起植物細(xì)胞壞死,誘導(dǎo)寄主植物產(chǎn)生抗性,并增強(qiáng)植物對核盤菌等病原菌的抗性[6]。核盤菌在侵染寄主植物時(shí)可分泌不同的植物細(xì)胞壁降解酶,包括纖維素酶(Cellulases)、半纖維素酶(Hemicellulose)、果膠酶(Pectinases)和木聚糖酶(Xylanases)等。核盤菌總共有183個植物細(xì)胞壁降解相關(guān)酶(包括木質(zhì)素酶),其中果膠降解酶類有33個,果膠酶類占比在所有死體營養(yǎng)型真菌中是較高的[7],其研究報(bào)道也較多,尤以多聚半乳糖醛酸酶(Polygalacturonases,PGs)為主,分別有5個內(nèi)切多聚半乳糖醛酸酶(endo-PGs)和5個外切多聚半乳糖醛酸酶(exo-PGs)[7-9]。endo-PGs在侵染植物時(shí)表達(dá)存在差異,次生代謝產(chǎn)物的積累和酸性pH環(huán)境可激活或者抑制不同endo-PGs的表達(dá)[9-10]。SsPG1參與了核盤菌早期侵染和病斑擴(kuò)展,碳水化合物缺乏可以誘導(dǎo)Sspg1顯著表達(dá),但半乳糖醛酸可以抑制該基因的表達(dá)[5]。SsPG3和SsPG6可以在擬南芥上引起依賴于光周期的細(xì)胞壞死,而體外真核表達(dá)的BnPGIP1重組蛋白可以抑制核盤菌SsPG6酶的活性[11]。其它植物細(xì)胞壁降解酶類的研究相對較少,Yu等[12]報(bào)道了一個編碼 endo-β-1,4-xylanase的基因SsXyl1,該基因與核盤菌菌絲生長、菌核形成及致病過程均密切相關(guān)。此外,植物細(xì)胞壁還含有豐富的蛋白質(zhì),核盤菌可以分泌大量的蛋白酶,如天冬氨酸蛋白酶家族等,如SsAp1在核盤菌侵染油菜和菜豆的早期表達(dá)量顯著上升,推測其可能參與了核盤菌早期侵染過程[9,13]。
Godoy等[14]在1990年報(bào)道核盤菌產(chǎn)生的草酸是其致病的決定因子,他們發(fā)現(xiàn)紫外誘變獲得的突變體A2不能產(chǎn)草酸,同時(shí)喪失了致病力;而在加入琥珀酸鈉后,突變體A2恢復(fù)了產(chǎn)草酸能力并可在大豆葉片上形成病斑。隨后更多研究表明草酸在核盤菌致病過程中的作用主要體現(xiàn)在以下幾個方面:(1)草酸可以螯合植物細(xì)胞中游離的Ca2+,形成草酸鈣結(jié)晶。植物細(xì)胞壁被降解后會產(chǎn)生游離的Ca2+,草酸可螯合這些Ca2+,保護(hù)侵染點(diǎn)區(qū)域的菌絲免受高濃度Ca2+的傷害[15]。核盤菌侵染油菜6 h和72 h時(shí),侵染點(diǎn)的莖稈分別有46%和100%可見草酸鈣結(jié)晶[16];(2)草酸使寄主植物保衛(wèi)細(xì)胞功能失調(diào),阻止氣孔正常關(guān)閉。寄主植物被核盤菌侵染后,氣孔在夜間仍處于打開狀態(tài),導(dǎo)致水分蒸發(fā)較快,從而引起植物葉片的萎蔫;草酸也可抑制脫落酸引起的氣孔關(guān)閉[17];(3)草酸可抑制寄主植物的活性氧(Reactive oxygen species,ROS)爆發(fā)。侵染早期,核盤菌分泌草酸抑制活性氧爆發(fā)和胼胝質(zhì)的積累,促進(jìn)核盤菌菌絲的定殖;侵染后期,草酸又可刺激寄主植物產(chǎn)生大量的ROS,誘發(fā)植物組織的程序性細(xì)胞死亡(Programmed cell death,PCD),促進(jìn)核盤菌侵染和擴(kuò)展[18];(4)草酸可抑制寄主植物的細(xì)胞自噬(Autophagy)[19];(5)草酸可以降低周圍環(huán)境的pH值,從而有利于核盤菌的侵染。有研究表明是草酸導(dǎo)致的低pH環(huán)境,而不是草酸根本身,在核盤菌致病中發(fā)揮重要作用。核盤菌體內(nèi)存在著一個pH感應(yīng)轉(zhuǎn)錄因子pacC/RIM1同源蛋白pac1,伴隨著環(huán)境pH值升高而積累量升高,激活pac1介導(dǎo)的下游信號轉(zhuǎn)導(dǎo),有利于草酸的生物合成[20]。草酸缺失的核盤菌突變體可直接侵染葉片表面pH值低的豆科植物,而利用緩沖液降低葉片表面的pH值后,草酸缺失的核盤菌突變體也可成功侵染這些豆科植物[21],進(jìn)一步證實(shí)了草酸營造的低pH環(huán)境在核盤菌致病過程中發(fā)揮重要作用。
效應(yīng)子(Effector)在活體營養(yǎng)型病原菌和半活體營養(yǎng)型病原菌與寄主植物互作中發(fā)揮著重要作用[22-23];死體營養(yǎng)型病原真菌也可分泌效應(yīng)子促進(jìn)其侵染[24-26]。有研究者認(rèn)為,核盤菌可能也存在短暫的活體營養(yǎng)階段,菌絲在侵染初期在植物細(xì)胞的質(zhì)外體空間生長而不穿透植物的細(xì)胞壁,通過分泌草酸和效應(yīng)蛋白來抑制植物的免疫反應(yīng),促進(jìn)核盤菌的侵染[27]。早期研究發(fā)現(xiàn),核盤菌中存在一個類似整聯(lián)蛋白(Ss-Integrin-like,SSITL)的分泌蛋白,該蛋白有典型的整聯(lián)蛋白的FG-GAP重復(fù)結(jié)構(gòu)域。SSITL基因在侵染早期表達(dá)急劇上升,該基因沉默后引起核盤菌致病力下降,而超表達(dá)SSITL的寄主植株也更加感病,進(jìn)一步研究表明SSITL蛋白參與了核盤菌抑制JA/ET信號途徑介導(dǎo)的局部和系統(tǒng)性抗病反應(yīng),因此SSITL在核盤菌致病過程中發(fā)揮類似效應(yīng)子的功能[28]。而核盤菌的分泌蛋白質(zhì)組分析結(jié)果表明,有486個植物誘導(dǎo)表達(dá)的小分泌蛋白參與了核盤菌與寄主植物的互作,其中78個被認(rèn)為是候選的效應(yīng)蛋白[29]。Derbyshire等[8]利用單分子實(shí)時(shí)測序和RNA-seq手段也鑒定到了70個候選效應(yīng)蛋白,但與Guyon等[29]預(yù)測的有所不同。上述結(jié)果提示核盤菌中也存在大量的候選效應(yīng)子并可能在其致病過程中發(fā)揮重要作用。
隨著研究的深入,更多分泌蛋白在核盤菌中的作用及其作用機(jī)制被闡述,為進(jìn)一步理解核盤菌的致病機(jī)制提供了新的思路和視角。Lyu等[30]在核盤菌上分離鑒定了一個富含半胱氨酸的小分泌蛋白SsSSVP1,該蛋白不含任何已知保守結(jié)構(gòu)域,編碼有163個氨基酸,其中有8個半胱氨酸殘基,半胱氨酸含量超過4%。SsSSVP1僅在核盤菌屬和灰葡萄孢屬中存在同源蛋白。SsSSVP1在核盤菌侵染早期(3 hpi)表達(dá)即明顯升高,該基因沉默后引起核盤菌的致病力下降。SsSSVP1瞬時(shí)表達(dá)可以引起煙草葉片的壞死,熒光定位及突變試驗(yàn)證明從菌絲分泌后,SsSSVP1可以自主轉(zhuǎn)運(yùn)至寄主植物的細(xì)胞質(zhì)中,進(jìn)而劫持寄主植物的線粒體蛋白QCR8,干擾QCR8正常的亞細(xì)胞定位和功能,促進(jìn)核盤菌的侵染,因此SsSSVP1在核盤菌侵染過程中發(fā)揮類似效應(yīng)子的功能。核盤菌SsCP1是cerato-platanin(CP)蛋白家族的典型成員,被證實(shí)是一個可以被植物識別的PAMP,可引起依賴于水楊酸途徑的植物免疫反應(yīng),增加寄主植物對病原菌的抗性。但另一方面,SsCP1可在寄主植物的質(zhì)外體與PR1互作。菌絲分泌的SsCP1與PR1互作降低PR1對核盤菌菌絲的抑制作用,從而有利于核盤菌的侵染。與此同時(shí),隨著侵染過程的發(fā)展和SsCP1的累積,高濃度的SsCP1可引起寄主植物細(xì)胞壞死,從而有利于死體營養(yǎng)型的核盤菌獲取營養(yǎng)物質(zhì)[31]。有趣的是,SsSSVP1和SSCP1兩個效應(yīng)分子的互作蛋白QCR8和PR1均為植物中非常保守并且功能重要的蛋白,這與核盤菌的寄主范圍廣泛這一特性是相吻合的。
誘導(dǎo)寄主植物細(xì)胞死亡的效應(yīng)子有利于死體營養(yǎng)型病原菌的侵染[32]。前述分泌蛋白SsSSVP1和SSCP1均可促進(jìn)寄主植物細(xì)胞的死亡,與核盤菌死體營養(yǎng)型的特性是符合的。此外報(bào)道顯示核盤菌中其它一些分泌蛋白也可導(dǎo)致寄主植物細(xì)胞死亡,如核盤菌中有2個編碼壞死和乙烯誘導(dǎo)多肽(NEPs)的基因SsNep1和SsNep2,在本氏煙中瞬時(shí)表達(dá)均可誘導(dǎo)植物細(xì)胞壞死,同時(shí)SsNep2在壞死區(qū)域和侵染頂端的菌絲都能表達(dá),并依賴于Ca2+和環(huán)磷酸腺苷的信號轉(zhuǎn)導(dǎo)[33]?;移咸焰叽罅糠置诘囊粋€類似IgE結(jié)合蛋白BcIEB1,BcIEB1可以引起植物的細(xì)胞死亡和抑制幼苗生長[34];BcIEB1可以誘導(dǎo)植物產(chǎn)生PTI,同時(shí)可以與PR5(Osmotin)結(jié)合抑制PR5的抗真菌活性[35]。我們發(fā)現(xiàn)核盤菌的基因組中也存在著2個編碼IEB1的保守蛋白,并且其氨基酸序列基本一致,可能存在類似的功能[8]。子囊菌中特有的分泌蛋白SsCDI1,可以誘導(dǎo)本氏煙等茄科植物的細(xì)胞壞死,但不能在擬南芥、大豆等雙子葉植物以及單子葉植物上引起細(xì)胞壞死[36]。
此外,有些分泌蛋白參與了核盤菌侵染墊的形成。例如,分泌蛋白Ss-Caf1含有EF-hand結(jié)構(gòu),在核盤菌侵染過程中發(fā)揮重要作用,Ss-Caf1的T-DNA插入突變體其草酸產(chǎn)量是野生型菌株的4倍,但突變體不能在健康葉片上致病,可以在有傷口的葉片上致病。電鏡觀察發(fā)現(xiàn),突變體不能形成正常的侵染墊,表明侵染墊在核盤菌致病中有著重要作用[37]。具有Rhs重復(fù)結(jié)構(gòu)的分泌蛋白Ss-Rhs1參與了復(fù)合侵染墊的形成,基因沉默突變體在擬南芥和油菜葉片上形成較小的病斑[38]。有研究表明核盤菌在SA類似物苯并噻二唑(BTH)預(yù)處理后的油菜上形成的病斑減少約40%,表達(dá)降解水楊酸的NahG擬南芥對核盤菌更加敏感,表明SA在植物抵抗核盤菌侵染中具有積極作用[39-40]。Kabbage等[27]也報(bào)道了在核盤菌中存在一個類似效應(yīng)子的分泌型分支變位酶SsCm1,與玉米黑粉病菌的Cmu1高度同源,將分支酸轉(zhuǎn)化為預(yù)苯酸阻斷水楊酸的合成,從而抑制植物的免疫反應(yīng)促進(jìn)核盤菌的侵染[19,40-41]。還有一些分泌蛋白被證實(shí)與核盤菌的致病密切相關(guān),但具體功能及作用機(jī)制需要進(jìn)一步探討,如核盤菌的一個小分泌蛋白SsCVNH(Cyanovirin-N homology)在核盤菌致病和菌核發(fā)育同樣發(fā)揮著重要作用[42];核盤菌發(fā)酵液中的蛋白激發(fā)子SCFE1,可以誘導(dǎo)植物產(chǎn)生依賴于受體蛋白RLP30的PTI,RLP30突變體對核盤菌更加感病,證實(shí)SCFE1有利于核盤菌的侵染[43];編碼假定蛋白的ssv263缺失后,突變體的致病力顯著下降[44]。
除分泌蛋白外,其它致病相關(guān)蛋白在核盤菌致病過程中也發(fā)揮重要作用,如核盤菌NADPH氧化酶(SsNOX1和SsNOX2)與ROS產(chǎn)生相關(guān),Ssnox1沉默突變體中ROS水平降低,草酸產(chǎn)量下降,表明清除ROS或提高氧化激發(fā)的耐受力,在核盤菌侵染過程中也發(fā)揮作用[45]。編碼γ-谷氨酰轉(zhuǎn)肽酶的Ss-Ggt1基因影響核盤菌侵染墊的形成,在沒有傷口的葉片上形成病斑的時(shí)間推遲,而在有傷口的葉片上沒有區(qū)別,Ss-Ggt1與核盤菌的早期侵染相關(guān)[46]。SsSOD1編碼一個Cu/Zn超氧化物歧化酶,基因破壞后不會影響核盤菌的菌絲生長,而突變體致病力受到影響,進(jìn)一步研究表明SsSOD1是耐受ROS和氧化應(yīng)激所必須的[47-48]。Ss-Bi1編碼一個凋亡相關(guān)的Bax抑制子,與核盤菌響應(yīng)各種環(huán)境壓力相關(guān),基因沉默后引起致病力下降,表明細(xì)胞凋亡的精細(xì)調(diào)控與致病力相關(guān)[49]。轉(zhuǎn)錄因子SsFKH1與核盤菌的致病力也密切相關(guān),其基因沉默突變體在番茄葉片上的致病力顯著下降[50]。
核盤菌寄主范圍廣泛,其引起的菌核病導(dǎo)致作物產(chǎn)量下降和品質(zhì)降低。由于缺乏有效的抗病品種,目前菌核病的防治主要依賴殺菌劑,但田間已出現(xiàn)了抗藥性菌株,導(dǎo)致化學(xué)防治效果不佳。因此,深入解析核盤菌的致病機(jī)理,開發(fā)和利用植物自身的抗病相關(guān)基因,將有助于發(fā)展菌核病綠色防控新策略。例如,草酸是核盤菌的重要致病因子,降解草酸是提高作物抗性的途徑之一。在大豆、油菜和煙草中表達(dá)來自外源的草酸氧化酶,可以大大提高作物對核盤菌的抗性[51-53];表達(dá)草酸脫羧酶的大豆和番茄可降解草酸,也增強(qiáng)了對核盤菌的抗性[54-55]。過量表達(dá)病程相關(guān)蛋白也可提高寄主植物對核盤菌的抗性,如PR1具有結(jié)合甾醇和抑制病原菌生長的作用,過量表達(dá)PR1可提高寄主植物的抗性[31,56]。PR3(幾丁質(zhì)酶)和PGIP共同表達(dá)的油菜也增強(qiáng)了對核盤菌的抗性[57]。此外,利用植物自身的PTI也可提高植物對核盤菌的抗性納入受體蛋白RLP23特異性識別nlp20(NLPs的保守的20 aa),介導(dǎo)依賴于SOBIR1-BAK1的免疫反應(yīng),異源表達(dá)RLP23的番茄對核盤菌的抗性水平顯著提高[58]。
深入解析核盤菌的分子致病機(jī)理,有助于在植物中發(fā)現(xiàn)更多的抗病相關(guān)蛋白。利用基因組編輯技術(shù)進(jìn)行基因定向改造,或精細(xì)調(diào)控抗病相關(guān)基因的表達(dá),有望獲得具有一定抗性的品種應(yīng)用于菌核病的安全防控。
[1] Hibbett DS, Binder M, Bischoff JF, et al. A higher-level phylogenetic classification of the Fungi[J]. Mycological Research, 2007, 111(5):509-547.
[2] Bolton MD, Thomma BPHJ, Nelson BD.Sclerotinia sclerotiorum(Lib. )de Bary:biology and molecular traits of a cosmopolitan pathogen[J]. Molecular Plant Pathology, 2006, 7(1):1-16.
[3] Adams PB, Ayers WA. Ecology ofSclerotiniaspecies[J].Phytopathology, 1979, 69(8):896-899.
[4] Clarkson JP, Phelps K, Whipps JM, et al. ForecastingSclerotiniadisease on lettuce:a predictive model for carpogenic germination ofSclerotinia sclerotiorumsclerotia[J]. Phytopathology, 2007, 97(5):621-631.
[5] Bashi ZD, Rimmer SR, Khachatourians GG, et al. Factors governing the regulation ofSclerotinia sclerotiorumcutinase A and polygalacturonase 1 during different stages of infection[J].Canadian Journal of Microbiology, 2012, 58(5):605-616.
[6] Zhang H, Wu Q, Cao S, et al. A novel protein elicitor(SsCut)fromSclerotinia sclerotioruminduces multiple defense responses in plants[J]. Plant Molecular Biology, 2014, 86(4-5):495-511.
[7] Amselem J, Cuomo CA, van Kan JA, et al. Genomic analysis of the necrotrophic fungal pathogensSclerotinia sclerotiorumandBotrytis cinerea[J]PLoS Genetics, 2011, 7(8):e1002230.
[8] Derbyshire M, Denton-Giles M, Hegedus D, et al. The complete genome sequence of the phytopathogenic fungusSclerotinia sclerotiorumreveals insights into the genome architecture of broad host range pathogens[J]. Genome Biology and Evolution, 2017, 9(3):593-618.
[9] Seifbarghi S, Borhan MH, Wei Y, et al. Changes in theSclerotinia sclerotiorumtranscriptome during infection ofBrassicanapus[J].BMC Genomics, 2017, 18(1):266.
[10] Kasza Z, Vagv?lgyi C, Févre M, Cotton P. Molecular characterization and in planta detection ofSclerotinia sclerotiorumendopolygalacturonase genes[J]. Current Microbiology, 2004, 48(3):208-213.
[11] Bashi ZD, Rimmer SR, Khachatourians GG, et al.Brassica napuspolygalacturonase inhibitor proteins inhibitSclerotinia sclerotiorumpolygalacturonase enzymatic and necrotizing activities and delay symptoms in transgenic plants[J]. Canadian Journal of Microbiology, 2013, 59(2):79-86.
[12] Yu Y, Xiao J, Du J, et al. Disruption of the gene encoding endo-β-1, 4-xylanase affects the growth and virulence ofSclerotinia sclerotiorum[J]. Frontiers in Microbiology, 2016, 7:1787.
[13] Oliveira MB, de Andrade RV, Grossi-de-Sá MF, et al. Analysis of genes that are differentially expressed during theSclerotinia sclerotiorum-Phaseolus vulgarisinteraction[J]. Frontiers in Microbiology, 2015, 6:1162.
[14] Godoy G, Steadman JR, Dickman MB, et al. Use of mutants to demonstrate the role of oxalic acid in pathogenicity ofSclerotinia sclerotiorumonPhaseolus vulgaris[J]. Physiological and Molecular Plant Pathology, 1990, 37(3):179-191.
[15] Heller A, Witt-Geiges T. Oxalic acid has an additional, detoxifying function inSclerotinia sclerotiorumpathogenesis[J]. PLoS One,2013, 8(8):e72292.
[16] Uloth MB, Clode PL, You MP, et al. Calcium oxalate crystals:an integral component of theSclerotinia sclerotiorum/Brassica carinatapathosystem[J]. PLoS One, 2015, 10(3):e0122362.
[17] Guimaraes RL, Stotz HU. Oxalate production bySclerotinia sclerotiorumderegulates guard cells during infection[J]. Plant Physiology, 2004, 136(3):3703-3711.
[18] Williams B, Kabbage M, Kim HJ, et al. Tipping the balance:Sclerotinia sclerotiorumsecreted oxalic acid suppresses host defenses by manipulating the host redox environment[J]. PLoS Pathogens, 2011, 7(6):e1002107.
[19] Kabbage M, Williams B, Dickman MB. Cell death control:the interplay of apoptosis and autophagy in the pathogenicity ofSclerotinia sclerotiorum[J]. PLoS Pathogens, 2013, 9(4):e1003287.
[20] Rollins JA. TheSclerotinia sclerotiorumpac1gene is required for sclerotial development and virulence[J]. Molecular Plant-Microbe Interactions, 2003, 16(9):785-795.
[21] Xu L, Xiang M, White D, et al. pH dependency of sclerotial development and pathogenicity revealed by using genetically defined oxalate-minus mutants ofSclerotinia sclerotiorum[J].Environmental Microbiology, 2015, 17(8):2896-2909.
[22] Stergiopoulos I, de Wit PJ. Fungal effector proteins[J]. Annual Review of Phytopathology, 2009, 47(1):233-263.
[23] Lo Presti L, Lanver D, Schweizer G, et al. Fungal effectors and plant susceptibility[J]. Annual Review of Plant Biology, 2015,66(1):513-545.
[24] Ciuffetti LM, Manning VA, Pandelova I, et al. Host-selective toxins,Ptr ToxA and Ptr ToxB, as necrotrophic effectors in thePyrenophora tritici-repentis-wheat interaction[J]. New Phytologist, 2010, 187(4):911-919.
[25] Marshall R, Kombrink A, Motteram J, et al. Analysis of two in planta expressed LysM effector homologs from the fungusMycosphaerella graminicolareveals novel functional properties and varying contributions to virulence on wheat[J]. Plant Physiology,2011, 156(2):756-769.
[26] Lorang J, Kidarsa T, Bradford CS, et al. Tricking the guard :exploiting plant defense for disease susceptibility[J]. Science,2012, 338(6107):659-662.
[27] Kabbage M, Yarden O, Dickman MB. Pathogenic attributes ofSclerotinia sclerotiorum:switching from a biotrophic to necrotrophic lifestyle[J]. Plant Science, 2015, 233 :53-60.
[28] Zhu W, Wei W, Fu Y, et al. A secretory protein of necrotrophic fungusSclerotinia sclerotiorumthat suppresses host resistance[J]. PLoS One, 2013, 8(1):e53901.
[29] Guyon K, Balague C, Roby D, et al. Secretome analysis reveals effector candidates associated with broad host range necrotrophy in the fungal plant pathogenSclerotinia sclerotiorum[J]. BMC Genomics, 2014, 15:336.
[30] Lyu X, Shen C, Fu Y, et al. A small secreted virulence-related protein is essential for the necrotrophic interactions ofSclerotinia sclerotiorumwith its host plants[J]. PLoS Pathogens, 2016, 12(2):e1005435.
[31] Yang G, Tang L, Gong Y, et al. A cerato-platanin protein SsCP1 targets plant PR1 and contributes to virulence ofSclerotinia sclerotiorum[J]. New Phytologist, 2018 217(2):739-755.
[32] Dickman MB, de Figueiredo P. Death be not proud-cell death control in plant fungal interactions[J]. PLoS Pathogens, 2013, 9(9):e1003542.
[33] Bashi ZD, Hegedus DD, Buchwaldt L, et al. Expression and regulation ofSclerotinia sclerotiorumnecrosis and ethyleneinducing peptides(NEPs)[J]. Molecular Plant Pathology,2010, 11(1):43-53.
[34] Frías M, González M, González C, et al. BcIEB1, aBotrytis cinereasecreted protein, elicits a defense response in plants[J]. Plant Science, 2016, 250:115-124.
[35] González M, Brito N, González C. TheBotrytis cinereaelicitor protein BcIEB1 interacts with the tobacco PR5-family protein osmotin and protects the fungus against its antifungal activity[J].New Phytologist, 2017, 215(1):397-410.
[36] Franco-Orozco B, Berepiki A, Ruiz O, et al. A new proteinaceous pathogen-associated molecular pattern(PAMP)identified in Ascomycete fungi induces cell death in Solanaceae[J]. New Phytologist, 2017, 214(4):1657-1672.
[37] Xiao X, Xie J, Cheng J, et al. Novel secretory protein Ss-Caf1 of the plant-pathogenic fungusSclerotinia sclerotiorumis required for host penetration and normal sclerotial development[J]. Molecular Plant-Microbe Interactions, 2014, 27(1):40-55.
[38] Yu Y, Xiao J, Zhu W, et al. Ss-Rhs1, a secretory Rhs repeatcontaining protein, is required for the virulence ofSclerotinia sclerotiorum[J]. Molecular Plant Pathology, 2017, 18(8):1052-1061.
[39] Guo X, Stotz HU. Defense againstSclerotinia sclerotioruminArabidopsisis dependent on jasmonic acid, salicylic acid, and ethylene signaling[J]. Molecular Plant-Microbe Interactions,2007, 20(11):1384-1395.
[40] Novakova M, Sasek V, Dobrev PI, et al. Plant hormones in defense response ofBrassica napustoSclerotinia sclerotiorum- reassessing the role of salicylic acid in the interaction with a necrotroph[J].Plant Physiology and Biochemistry, 2014, 80:308-317.
[41] Djamei A, Schipper K, Rabe F, et al. Metabolic priming by a secreted fungal effector[J]. Nature, 2011, 478(7369):395-398.
[42] Lyu X, Shen C, Fu Y, et al. Comparative genomic and transcriptional analyses of the carbohydrate-active enzymes and secretomes of phytopathogenic fungi reveal their significant roles during infection and development[J]. Scientific Reports, 2015, 5:15565.
[43] Zhang WG, Fraiture M, Kolb D, et al.ArabidopsisRECEPTORLIKE PROTEIN30 and receptor-like kinase SUPPRESSOR OF BIR1-1/EVERSHED mediate innate immunity to necrotrophic fungi[J]. The Plant Cell, 2013, 25(10):4227-4241.
[44] Liang Y, Yajima W, Davis MR, et al. Disruption of a gene encoding a hypothetical secreted protein fromSclerotinia sclerotiorumreduces its virulence on canola(Brassica napus)[J]. Canadian Journal of Plant Pathology, 2013, 35(1):46-55.
[45] Kim HJ, Chen C, Kabbage M, et al. Identification and characterization ofSclerotinia sclerotiorumNADPH oxidases[J]. Appl Environ Microbiol, 2011, 77(21):7721-7729.
[46] Li M, Liang X, Rollins JA.Sclerotinia sclerotiorumγ-glutamyl transpeptidase(Ss-Ggt1)is required for regulating glutathione accumulation and development of sclerotia and compound appressoria[J]. Molecular Plant-Microbe Interactions, 2012, 25(3):412-420.
[47] Veluchamy S, Williams B, Kim K, et al. The CuZn superoxide dismutase fromSclerotinia sclerotiorumis involved with oxidative stress tolerance, virulence, and oxalate production[J].Physiological and Molecular Plant Pathology, 2012, 78:14-23.
[48] Xu L, Chen W. Random T-DNA mutagenesis identifies a Cu/Zn superoxide dismutase gene as a virulence factor ofSclerotinia sclerotiorum[J]. Molecular Plant-Microbe Interactions, 2013, 26(4):431-441.
[49] Yu Y, Xiao J, Yang Y, et al.Ss-Bi1encodes a putative BAX inhibitor-1 protein that is required for full virulence ofSclerotinia sclerotiorum[J]. Physiological and Molecular Plant Pathology,2015, 90:115-122.
[50] Fan H, Yu G, Liu Y, et al. An atypical forkhead-containing transcription factor SsFKH1 is involved in sclerotial formation and is essential for pathogenicity inSclerotinia sclerotiorum[J].Molecular Plant Pathology, 2017, 18(7):963-975.
[51] Donaldson PA, Anderson T, Lane BG, et al. Soybean plants expressing an active oligomeric oxalate oxidase from the wheat gf-2. 8(germin)gene are resistant to the oxalate secreting pathogenSclerotina sclerotiorum[J]. Physiological and Molecular Plant Pathology, 2001, 59:297-307.
[52] Liu F, Wang M, Wen J, et al. Overexpression of barley oxalate oxidase gene induces partial leaf resistance toSclerotinia sclerotiorumin transgenic oilseed rape[J]. Plant Pathology,2015, 64(6):1407-1416.
[53] Zhang Y, Wang X, Chang X, et al. Overexpression of germin-like protein GmGLP10 enhances resistance toSclerotinia sclerotiorumin transgenic tobacco[J]. Biochemical and Biophysical Research Communications, 2018, 497(1):160-166.
[54] Cunha WG, Tinoco MLP, Pancoti HL, et al. High resistance toSclerotinia sclerotiorumin transgenic soybean plants transformed to express an oxalate decarboxylase gene[J]. Plant Pathology,2010, 59(4):654-660.
[55] Ghosh S, Narula K, Sinha A, et al. Proteometabolomic analysis of transgenic tomato overexpressing oxalate decarboxylase uncovers novel proteins potentially involved in defense mechanism againstSclerotinia[J]. Journal of Proteomics, 2016, 143:242-253.
[56] Gamir J, Darwiche R, van’t Hof P, et al. The sterol-binding activity of PATHOGENESIS-RELATED PROTEIN 1 reveals the mode of action of an antimicrobial protein[J]. The Plant Journal, 2017,89(3):502-509.
[57] Ziaei M, Motallebi M, Zamani MR, et al. Co-expression of chimeric chitinase and a polygalacturonase-inhibiting protein in transgenic canola(Brassica napus)confers enhanced resistance toSclerotinia sclerotiorum[J]. Biotechnology Letters, 2016, 38(6):1021-1032.
[58] Albert I, B?hm H, Albert M, et al. An RLP23-SOBIR1-BAK1 complex mediates NLP-triggered immunity[J]. Nature Plants,2015, 1:15140.