国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

光基因技術(shù)調(diào)控星形膠質(zhì)細(xì)胞釋放ATP和谷氨酸及其對阿爾茨海默病神經(jīng)元保護(hù)機(jī)制的研究展望

2017-12-19 10:44柳浦青何冰冰陳鋒
中國醫(yī)藥導(dǎo)報(bào) 2017年31期
關(guān)鍵詞:阿爾茨海默病谷氨酸

柳浦青++何冰冰++陳鋒

[摘要] 阿爾茨海默病是中樞神經(jīng)系統(tǒng)退行性病變之一,其病理機(jī)制主要是各種原因?qū)е碌纳窠?jīng)元Aβ沉積,包括ATP和谷氨酸不足引起的Aβ沉積。應(yīng)用光基因技術(shù)可以選擇性激活表達(dá)光敏感通道蛋白的星形膠質(zhì)細(xì)胞,并促其釋放ATP和谷氨酸,從而阻斷由于ATP和谷氨酸不足引起的Aβ沉積。因此光基因技術(shù)有望應(yīng)用于阿爾茨海默病的治療,并且避免藥物治療在非選擇性及廣泛不良反應(yīng)方面的缺點(diǎn)。

[關(guān)鍵詞] 阿爾茨海默?。还饣蚣夹g(shù);光敏感通道;三磷酸腺苷;谷氨酸

[中圖分類號(hào)] R338 [文獻(xiàn)標(biāo)識(shí)碼] A [文章編號(hào)] 1673-7210(2017)11(a)-0040-04

The research progress in mechanism of optogenetics activated astrocytes release ATP and glutamate to protect neurons in Alzheimer′s disease

LIU Puqing HE Bingbing CHEN Feng

Department of Pharmacy, the Second Affiliated Hospital of Zhejiang Chinese Medicine University Xinhua Hospital of Zhejiang Province, Hangzhou 310005, China

[Abstract] Alzheimer disease′s (AD) is one kind of degenereratly neuropathic disease. The pathomechanism of AD is the deposite of Aβ peptide, including ATP and glutamate insufficiency resulted Aβ deposite. Application of phogenetic technology can selectively activate astrocytes transfected with ChR2, promote the release ATP and glutamate, block the Aβ aggregation producing by insufficient of ATP and glutamate. Conclusion as a result, ChR2 mediated optogenetic technology can be used for AD treatment. This new treropeutical method will avoid the defects of non-selective and extensive side-effects.

[Key words] Alzheimer′s disease; Optogenetic technology; ChR2; ATP; Glutamate

阿爾茨海默病是以一種進(jìn)行性發(fā)展的神經(jīng)系統(tǒng)退行性疾病,尤其在65歲以上老人中多見。隨著全球老年化趨勢加重,阿爾茨海默病問題逐漸凸顯,對于該病的預(yù)防和治療也越來越受到重視。目前臨床上對于阿爾茨海默病的治療水平停留在藥物控制疾病進(jìn)展水平,然而藥物的副作用多且廣泛,并非理想的治療方式。

光基因技術(shù)是將光敏感通道作為一種生物工具,可選擇性作用于特定細(xì)胞,引起相應(yīng)的生理學(xué)功能。目前研究表明運(yùn)用光基因技術(shù)可以選擇性激活星形膠質(zhì)細(xì)胞,而星形膠質(zhì)細(xì)胞的活動(dòng)直接對神經(jīng)元產(chǎn)生調(diào)控作用。如果通過光基因技術(shù)調(diào)控星形膠質(zhì)細(xì)胞從而延緩神經(jīng)元退行性病變,可彌補(bǔ)藥物治療存在的不足,為阿爾茨海默病患者提供新的希望。

1 ATP和谷氨酸對阿爾茨海默病神經(jīng)元退行性病變的保護(hù)作用

阿爾茨海默病是一種神經(jīng)退行性疾病,其病因和發(fā)病機(jī)制目前尚未完全明了。目前認(rèn)為AD的病理改變主要表現(xiàn)為老年斑和神經(jīng)元纖維纏結(jié)的形成,前者與β-淀粉樣蛋白(Aβ)的沉積有關(guān)。Aβ由淀粉樣蛋白前體物質(zhì)APP分解而得,其中42/43肽的Aβ則是老年性斑塊中細(xì)胞外淀粉樣蛋白的主要成分,并且這種老年性斑塊和神經(jīng)活動(dòng)有關(guān)。APP在體內(nèi)有兩種代謝途徑:若先經(jīng)β分泌酶作用,產(chǎn)生sAPPβ和C99,C99再經(jīng)γ分泌酶作用產(chǎn)生Aβ和AICD;若先經(jīng)α分泌酶作用,產(chǎn)生sAPPα和C83,C83再經(jīng)γ分泌酶作用產(chǎn)生p3和AICD。β分泌酶途徑產(chǎn)生的Aβ沉積損傷神經(jīng)元細(xì)胞,而α分泌酶途徑產(chǎn)生的sAPPα對神經(jīng)元產(chǎn)生神經(jīng)營養(yǎng)和保護(hù)作用[1-2]。國內(nèi)外研究表明,ATPα合成酶可以抑制Aβ介導(dǎo)的神經(jīng)毒性損傷,并且抑制Aβ的聚集;而拮抗ATP合成的自身抗體則誘導(dǎo)神經(jīng)元凋亡并損害小鼠的認(rèn)知功能[3]。最近有研究發(fā)現(xiàn),ATP等能量物質(zhì)可有效增加APP的α分泌酶途徑,減少雙氧水、魚藤酮引起的能量缺失和氧化應(yīng)激損傷,從而減慢阿爾茨海默病的疾病進(jìn)展[4]。谷氨酸是中樞神經(jīng)系統(tǒng)(CNS) 最主要的興奮性神經(jīng)遞質(zhì),對正常腦功能和CNS疾病發(fā)揮重要的調(diào)節(jié)作用。研究表明谷氨酸作用于代謝型谷氨酸受體mGluR5促進(jìn)sAPPα釋放,減少Aβ的沉積[5]。APP的加工理論認(rèn)為,Aβ的產(chǎn)生與sAPPα的產(chǎn)生存在一種此消彼長的關(guān)系。sAPPα也具有保護(hù)谷氨酸和葡萄糖轉(zhuǎn)運(yùn)體免受氧化應(yīng)激損傷的功能,谷氨酸可以減少APP誘導(dǎo)的神經(jīng)元樹突棘結(jié)構(gòu)大量丟失,進(jìn)一步補(bǔ)充突觸對谷氨酸攝取能力的不足[6]。

2 星形膠質(zhì)細(xì)胞的活動(dòng)及其分泌ATP、谷氨酸等神經(jīng)遞質(zhì)的意義

星形膠質(zhì)細(xì)胞是CNS中主要的神經(jīng)細(xì)胞,占大腦細(xì)胞數(shù)的90%。傳統(tǒng)研究認(rèn)為其主要功能是對神經(jīng)元其營養(yǎng)、支持和保護(hù)作用,但隨著研究的深入發(fā)現(xiàn)其還具有調(diào)控神經(jīng)元信息傳遞功能[7-8]。星形膠質(zhì)細(xì)胞對神經(jīng)元的各種調(diào)控作用與其本身的活動(dòng)息息相關(guān),鈣波是星形膠質(zhì)細(xì)胞活動(dòng)的一種表現(xiàn)形式[9]。星形膠質(zhì)細(xì)胞鈣波產(chǎn)生機(jī)制較復(fù)雜,有自發(fā)產(chǎn)生也有接受外界刺激后產(chǎn)生。鈣波起始時(shí)間,幅度及持續(xù)時(shí)間形式不規(guī)則也較難預(yù)測,表現(xiàn)形式為胞漿內(nèi)鈣離子濃度或一過性升高或起伏變化或持續(xù)升高等。鈣波還可在細(xì)胞與細(xì)胞之間進(jìn)行傳遞[10]。星形膠質(zhì)細(xì)胞作為神經(jīng)元輔助細(xì)胞,其包膜表面表達(dá)各種神經(jīng)遞質(zhì)受體和神經(jīng)調(diào)質(zhì)受體。當(dāng)神經(jīng)元突觸功能失調(diào)時(shí),胞外的神經(jīng)遞質(zhì)和調(diào)質(zhì)失衡。星形膠質(zhì)細(xì)胞可被失衡的胞外環(huán)境激活,產(chǎn)生鈣波振蕩,釋放各種神經(jīng)遞質(zhì)并發(fā)揮相應(yīng)的調(diào)控作用[11]。研究表明,激活的星形膠質(zhì)細(xì)胞可以釋放多種神經(jīng)遞質(zhì),例如ATP、谷氨酸、D-絲氨酸等[12-13]。這些遞質(zhì)可與神經(jīng)元上的神經(jīng)遞質(zhì)受體結(jié)合,對神經(jīng)元產(chǎn)生各種調(diào)控作用。神經(jīng)元上存在嘌呤受體,胞外核苷酸受體稱為P2受體,包括P2X和P2Y兩類。其中P2X受體是配體ATP門控的離子通道,P2X通道與胞外ATP結(jié)合時(shí)打開,讓特定的陽離子通過,激活下游信號(hào),產(chǎn)生一系列生物效應(yīng)[14-15]。ATP亦可通過神經(jīng)元P2X通道進(jìn)入細(xì)胞內(nèi),補(bǔ)充線粒體破裂引發(fā)的能量不足,減少氧化應(yīng)激損傷[16]。谷氨酸是膠質(zhì)細(xì)胞釋放的另一主要遞質(zhì),星形膠質(zhì)細(xì)胞根據(jù)胞外環(huán)境釋放或者攝取谷氨酸,使其維持在相對穩(wěn)定的水平[17-19]。釋放到胞外的谷氨酸作用于臨近的神經(jīng)元谷氨酸受體包括謝型谷氨酸受體mGluR5、AMPA受體、NMDA受體、Kainate受體而引起神經(jīng)元樹突棘形態(tài)和運(yùn)動(dòng)變化已多見報(bào)道[20-21]。谷氨酸作用于代謝型谷氨酸受體mGluR5促進(jìn)sAPPα釋放,減少Aβ的沉積[5]。AMPA受體與Aβ誘導(dǎo)的突觸抑制和樹突棘丟失密切相關(guān),通過穩(wěn)定AMPA受體可能延緩阿爾茨海默病的發(fā)展[22]。endprint

3 光基因調(diào)控—Channelrhodopsin2選擇性激活星形膠質(zhì)細(xì)胞的技術(shù)

光基因技術(shù)是目前國內(nèi)外研究的熱點(diǎn),對于研究神經(jīng)回路研究有其獨(dú)特的優(yōu)越性。既可避免電刺激的不精確性和侵入性,又可避免藥物作用非特異性[23]。其中光敏感通道Channelrhodopsin2是光基因技術(shù)中核心的技術(shù)工具之一。

3.1 基于光敏感通道Channelrhodopsin2的光基因技術(shù)

1991年研究者發(fā)現(xiàn)萊茵衣藻有趨光和避光反應(yīng),這種現(xiàn)象是由一種微生物來源的叫做視紫紅質(zhì)的物質(zhì)調(diào)節(jié)的。經(jīng)過研究發(fā)現(xiàn)萊茵衣藻基因里有兩種視紫紅質(zhì)的cDNA,Chop1和Chop2。Chop1和Chop2的本質(zhì)是與微生物來源的視蛋白具有同源性的脫輔基蛋白,與視黃醛共價(jià)結(jié)合后分別形成Channelrhodopsin-1(ChR1)和Channelrhodopsin-2(ChR2)。ChR2是一個(gè)七次跨膜的非選擇性陽離子通道蛋白,在強(qiáng)光照射下通道打開,細(xì)胞外的陽離子進(jìn)入細(xì)胞內(nèi)形成離子流,該離子流即為光電流。ChR2在460 nm處有最大吸收波長,且對光照的反應(yīng)極為迅速,強(qiáng)光照射下ChR2可以在幾個(gè)微秒內(nèi)形成光電流。ChR2雖然是非選擇性陽離子通道,但是對不同的陽離子的通透性并不相同。根據(jù)離子半徑大小不同,ChR2對陽離子的通透性排列如下:Ca2+>Sr2+>Ba2+>Zn2+>Mg2+(≈0)。

ChR2主要有兩種結(jié)構(gòu),一種是737個(gè)氨基酸組成的全長蛋白ChR2-737,另一種是315個(gè)氨基酸組成的C端經(jīng)過剪切的修飾蛋白ChR2-315,因?yàn)榈?16~715個(gè)氨基酸序列對于ChR2的光電流沒有任何影響。ChR2-315的cDNA能夠在動(dòng)物細(xì)胞HEK-293和BHk內(nèi)表達(dá),并且在光照的誘導(dǎo)下可以產(chǎn)生相當(dāng)大的光電流,這個(gè)電流足以使卵母細(xì)胞和HEK-293發(fā)生去極化。ChR2結(jié)構(gòu)上通常帶有一個(gè)小分子的熒光蛋白,用來標(biāo)記ChR2在細(xì)胞上的表達(dá)情況[24-26]。離子通道蛋白可對化學(xué)分子和電信號(hào)做出反應(yīng),而光敏感通道 Channelrhodopsin2能被特定波長(480 nm)的光線控制,而且該離子通道蛋白的反應(yīng)程度取決于光刺激的強(qiáng)度和持續(xù)時(shí)間。因而可通過調(diào)節(jié)光刺激程序,調(diào)控該通道的開放程度,常規(guī)的物理或化學(xué)刺激手段很難解決這一問題[27]。

3.2 光敏感通道Channelrhodopsin2在星形膠質(zhì)細(xì)胞上的表達(dá)應(yīng)用

星形膠質(zhì)細(xì)胞對發(fā)生退行性病變神經(jīng)元的保護(hù)作用主要通過其活動(dòng)產(chǎn)生的神經(jīng)遞質(zhì)ATP和谷氨酸實(shí)現(xiàn)。如何實(shí)現(xiàn)星形膠質(zhì)細(xì)胞對神經(jīng)元直接的調(diào)控作用,需要解決兩個(gè)技術(shù)問題:其一,選擇性激活混合培養(yǎng)的星形膠質(zhì)細(xì)胞。細(xì)胞內(nèi)鈣升高是星形膠質(zhì)細(xì)胞活動(dòng)的一個(gè)主要形式,是星形膠質(zhì)細(xì)胞釋放信號(hào)分子的先決條件[28]。ChR2對Ca2+的通透性最大,對星形膠質(zhì)細(xì)胞的活動(dòng)意義重大。ChR2作為光基因調(diào)控技術(shù)手段的工具之一已經(jīng)廣泛應(yīng)用于神經(jīng)系統(tǒng)研究。國內(nèi)外研究發(fā)現(xiàn)通過選擇性光調(diào)控神經(jīng)元放電和信息傳遞,已經(jīng)達(dá)到改變動(dòng)物認(rèn)知獎(jiǎng)賞行為、呼吸、睡眠覺醒等行為目的[29-32]。在星形膠質(zhì)細(xì)胞轉(zhuǎn)染光敏感通道Channelrhodopsin2發(fā)現(xiàn)ChR2可以在星形膠質(zhì)細(xì)胞表面穩(wěn)定表達(dá)。用波長480 nm的藍(lán)光刺激膠質(zhì)細(xì)胞,有效地激發(fā)了膠質(zhì)細(xì)胞鈣波,并觀察不同刺激程序?qū)π切文z質(zhì)細(xì)胞鈣波形式的影響。其二,建立星形膠質(zhì)細(xì)胞和神經(jīng)元細(xì)胞混合培養(yǎng)的AD細(xì)胞模型,選擇性激活模型中的星形膠質(zhì)細(xì)胞。在前期研究中實(shí)驗(yàn)室所建立星形膠質(zhì)細(xì)胞和神經(jīng)元細(xì)胞混合培養(yǎng)模型為正常生理?xiàng)l件模型。為建立AD細(xì)胞模型,采用轉(zhuǎn)基因AD小鼠(Tg2576)。Tg2576小鼠在APP基因的表達(dá)、淀粉樣斑塊的形成、神經(jīng)元的退變和記憶丟失等方面表現(xiàn)出許多與AD患者的相似性。Tg2576小鼠為AD的研究提供了理想的動(dòng)物模型,其原代培養(yǎng)的神經(jīng)元細(xì)胞用于神經(jīng)元退行性病變的機(jī)制研究[33-35]。

4 展望

星形膠質(zhì)細(xì)胞對神經(jīng)元具有營養(yǎng)、支持、保護(hù)作用,其功能主要通過激發(fā)鈣波后釋放 ATP、谷氨酸、D-絲氨酸等神經(jīng)遞質(zhì)實(shí)現(xiàn)。星形膠質(zhì)細(xì)胞對阿爾茨海默病神經(jīng)元的保護(hù)作用雖早有報(bào)道,但是否通過激發(fā)星形膠質(zhì)鈣波從而對神經(jīng)元Aβ生成產(chǎn)生抑制尚不明確。過去科學(xué)家一直在尋找利用化學(xué)物質(zhì)直接促進(jìn)神經(jīng)元交流,本研究運(yùn)用光基因技術(shù)、熒光成像技術(shù)及分子生化技術(shù),圍繞星形膠質(zhì)細(xì)胞興奮能否保護(hù)退行性病變的神經(jīng)元細(xì)胞展開,建立阿爾茨海默病細(xì)胞模型,探索其保護(hù)機(jī)制是否通過ATP/谷氨酸-sAPPα-Aβ分子信號(hào)通路實(shí)現(xiàn)。旨在探明星形膠質(zhì)細(xì)胞活動(dòng)對AD神經(jīng)元的保護(hù)機(jī)制,為進(jìn)一步開展阿爾茨海默病小鼠行為學(xué)實(shí)驗(yàn)奠定基礎(chǔ),為AD治療研究提供新方法和新思路。

[參考文獻(xiàn)]

[1] Baek SH,Park SJ,Jeong JI,et al. Inhibition of Drp1 Ameliorates Synaptic Depression,Aβ Deposition,and Cognitive Impairment in an Alzheimer's Disease Model [J]. Neurosci J,2017,37(20):5099-5110.

[2] Kiprowska MJ,Stepanova A,Todaro DR,et al. Neurotoxic mechanisms by which the USP14 inhibitor IU1 depletes ubiquitinated proteins and Tau in rat cerebral cortical neurons:Relevance to Alzheimer's disease [J]. Biochim Biophys Acta,2017,1863(6):1157-1170.

[3] Gallart-Palau X,Lee BS,Adav SS,et al. Gender differences in white matter pathology and mitochondrial dysfunction in Alzheimer′s disease with cerebrovascular disease [J]. Mol Brain,2016,17(9):27.endprint

[4] Sawmiller DR,Nguyen HT,Markov O,et al. High-energy compounds promote physiological processing of Alzhermer′s amyloid-β precursor protein and boost cell survival in culture [J]. Neurochem J,2012,123(4):525-531.

[5] Ahuja M,Buabeid M,Abdel-Rahman E,et al. Immunological alteration & toxic molecular inductions leading to cognitive impairment & neurotoxicity in transgenic mouse model of Alzheimer's disease [J]. Life Sci,2017,177:49-59.

[6] Monjas L,Arce MP,León R,et al. Enzymatic and solid-phase synthesis of new donepezil-based L- and d-glutamic acid derivatives and their pharmacological evaluation in models related to Alzheimer's disease and cerebral ischemia [J]. Eur J Med Chem,2017,130:60-72.

[7] Diniz LP,Tortelli V,Matias I,et al. Astrocyte transforming growth factor beta 1 protects synapses against Aβ oligomers in Alzheimer′s disease model [J]. Journal of Neuroscience the Official Journal of the Society for Neuroscience,2017, 37(28):6797-6809.

[8] Baldwin KT,Eroglu C. Molecular mechanisms of astrocyte-induced synaptogenesis [J]. Curr Opin Neurobiol,2017, 45:113-120.

[9] Wu XM,Qian C,Zhou YF,et al. Bi-directionally protective communication between neurons and astrocytes under ischemia [J]. Redox Biol,2017,13:20-31.

[10] Losi G,Mariotti L,Sessolo M,et al. New Tools to Study Astrocyte Ca2+ Signal Dynamics in Brain Networks In Vivo [J]. Front Cell Neurosci,2017,11:134.

[11] Makitani K,Nakagawa S,Izumi Y,et al.Inhibitory effect of donepezil on bradykinin-induced increase in the intracellular calcium concentration in cultured cortical astrocytes [J]. Pharmacol Sci J,2017,134(1):37-44.

[12] Scemes E,Giaume C. Astrocyte calcium waves:what they are and what they do [J]. Glia,2006,54(7):716-725.

[13] Schipke CG,Kettenmann H. Astrocyte responses to neuronal activity [J]. Glia,2004,47(3):226-232.

[14] Wilkaniec A,Schmitt K,Grimm A,et al. Alzheimer's amyloid-β peptide disturbs P2X7 receptor-mediated circadian oscillations of intracellular calcium [J]. Folia Neuropathol,2016,54(4):360-368.

[15] Qin J,Zhang X,Wang Z,et al. Presenilin 2 deficiency facilitates Aβ-induced neuroinflammation and injury by upregulating P2X7 expression [J]. Sci China Life Sci,2017, 60(2):189-201.

[16] Correia SC,Santos RX,Santos MS,et al. Mitochondrial abnormalities in a streptozotocin-induced rat model of sporadic Alzheimer′s disease [J]. Curr Alzheimer Res,2013, 10(4):406-419.

[17] Scimemi A,Diamond JS. Deriving the time course of glutamate clearance with a deconvolution analysis of astrocytic transporter currents [J]. Journal of Visualized Experiments Jove,2013,7(78):e50708.endprint

[18] Dienel GA. Astrocytic energetics during excitatory neurotransmission:What are contributions of glutamateoxidation and glycolysis?[J].Neurochem Int,2013,63(4):244-258.

[19] Jacobs VL,De Leo JA. Increased glutamate uptake in astrocytes via propentofylline results in increased tumor cell apoptosis using the CNS-1 glioma model [J]. Neurooncol J,2013,114(1):33-42.

[20] Kim SK,Nabekura J,Koizumi S. Astrocyte-mediated synapse remodeling in the pathological brain [J]. Glia,2017,65(11):1719-1727.

[21] Sando R,Bushong E,Zhu Y,et al. Assembly of Excitatory Synapses in the Absence of Glutamatergic Neurotransmission [J]. Neuron,2017,94(2):312-321.

[22] Hsieh H,Boehm J,Sato C,et al. AMPAR removal underlies Abeta-induced synaptic depression and dendritic spine loss [J]. Neuron,2006,52 (5):831-843.

[23] Welberg L. Techniques:Optogenetics takes more control [J]. Nat Rev Neurosci,2013,14(9):587.

[24] Georg N,Tanjef S,Wolfram H,et al. Channelrhodopsin-2,a directly light-gated cation-selective membrane channel [J]. PNAS,2003,100(24):13940-13945.

[25] Nagel G,Szellas T,Kateriya S,et al. Channelrhodopsins:directly light-gated cation channels [J]. Biochem Soc T,2005,33(4):863-866.

[26] Li X,Davina V,Gutierre Z,et al. Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin [J]. PNAS,2005,102(49):17816-17821.

[27] Zhang YP,Oertner TG. Optical induction of synaptic plasticity using a light-sensitive channel. at Methods [J]. Nat Methods,2007,4(2):139-141.

[28] Handy G,Taheri M,White JA,et al. Mathematical investigation of IP3-dependent calcium dynamics in astrocytes [J]. Comput Neurosci J,2017,42(3):257-273.

[29] Adamantidis A,Arber S,Bains JS,et al. Optogenetics:10 years after ChR2 in neurons-views from the community [J]. Nat Neurosci,2015,18(9):1202-1212.

[30] Warren A,Xiang Li,Kevin P, et al. Light Induced Rescue of Breathing After Spinal Cord Injury [J]. Neurosci J,2008,28(46):11862-11870.

[31] Cerritelli S,Hirschberg S,Hill R,et al. Activation of Brainstem Pro-opiomelanocortin Neurons Produces Opioidergic Analgesia,Bradycardia and Bradypnoea [J]. PLoS One,2016,11(4):e0153187.

[32] Antoine RA,F(xiàn)eng Z,Alexander MA,et al. Neural substrates of awakening probed with optogenetic control of hypocretin neurons [J]. Nature,2007,450:420-425.

[33] Snellman A,López-Picón FR,Rokka J,et al. Longitudinal Amyloid Imaging in Mouse Brain with 11C-PIB:Comparison of APP23,Tg2576,and APPswe-PS1dE9 Mouse Models of Alzheimer Disease [J]. Nucl Med J,2013,54(8):1434-1441.

[34] Kishimoto Y,Higashihara E,F(xiàn)ukuta A,et al. Early impairment in a water-finding test in a longitudinal study of the Tg2576 mouse model of Alzheimer's disease [J]. Brain Res,2013,1491:117-126.

[35] Tiwari SS,Mizuno K,Ghosh A,et al. Alzheimer-related decrease in CYFIP2 links amyloid production to tau hyperphosphorylation and memory loss [J]. Brain,2016,139(10):2751-2765.

(收稿日期:2017-06-01 本文編輯:程 銘)endprint

猜你喜歡
阿爾茨海默病谷氨酸
淫羊藿總黃酮對谷氨酸和咖啡因損傷PC12細(xì)胞的保護(hù)作用
基于正交設(shè)計(jì)的谷氨酸發(fā)酵條件優(yōu)化
N-月桂?;劝彼猁}性能的pH依賴性
菌體蛋白水解液應(yīng)用于谷氨酸發(fā)酵的研究
問:如何鑒定谷氨酸能神經(jīng)元
功能磁共振成像在輕度認(rèn)知障礙患者中的應(yīng)用研究進(jìn)展
阿爾茨海默病患者甲狀腺激素水平與抑郁癥狀及生活能力相關(guān)性分析
氧自由基和谷氨酸在致熱原性發(fā)熱機(jī)制中的作用與退熱展望
无极县| 伊宁市| 库尔勒市| 凤凰县| 平江县| 高邮市| 汽车| 蓝田县| 濮阳市| 太和县| 盐池县| 石嘴山市| 池州市| 钟山县| 图片| 宣恩县| 万全县| 修文县| 托里县| 通辽市| 平邑县| 梁河县| 正宁县| 额尔古纳市| 什邡市| 恩平市| 陆河县| 周口市| 平远县| 临安市| 辛集市| 牟定县| 渝北区| 广饶县| 永善县| 博野县| 峨山| 泰宁县| 石阡县| 留坝县| 徐水县|