張 帆 史長(zhǎng)河 許予明 張化彪(通訊作者)
鄭州大學(xué)第一附屬醫(yī)院 鄭州 450002
脊髓小腦共濟(jì)失調(diào)3型發(fā)病機(jī)制研究進(jìn)展
張 帆 史長(zhǎng)河 許予明 張化彪(通訊作者)
鄭州大學(xué)第一附屬醫(yī)院 鄭州 450002
共濟(jì)失調(diào);Ataxin-3;發(fā)病機(jī)制
脊髓小腦共濟(jì)失調(diào)3型(Spinocerebellar ataxia type 3,SCA3)又稱為馬查德約瑟夫病(Machado-Joseph Disease,MJD),是我國(guó)遺傳性共濟(jì)失調(diào)(Hereditary Ataxia,HA)中最常見(jiàn)的亞型,約占所有遺傳性共濟(jì)失調(diào)的60%,其患病率為3~5/10萬(wàn),僅我國(guó)就有4萬(wàn)余名患者[1-2]。該病以進(jìn)展性小腦型共濟(jì)失調(diào)為主要臨床表現(xiàn),主要包括步態(tài)不穩(wěn)、肢體搖晃、動(dòng)作準(zhǔn)確性變差等,可伴眼外肌麻痹、吞咽困難、舌肌纖顫、錐體征及錐體外系征等其他臨床表現(xiàn)[3-4],多數(shù)患者在起病后10~20 a內(nèi)失去運(yùn)動(dòng)能力。目前此類(lèi)疾病的常規(guī)治療只能改善臨床癥狀,缺乏有效治療手段,給患者及其家庭造成極大的軀體、精神和經(jīng)濟(jì)負(fù)擔(dān),因此對(duì)脊髓小腦共濟(jì)失調(diào)3型發(fā)病機(jī)制進(jìn)行深入研究,尋找新的治療靶點(diǎn)具有重要意義,本文就其致病基因、致病蛋白、包涵體形成、Ataxia-3毒性片段形成、蛋白質(zhì)質(zhì)量控制系統(tǒng)異常、轉(zhuǎn)錄異常、線粒體功能異常、RNA異常等方面做一簡(jiǎn)要綜述。
1.1 致病基因—Ataxin-3基因 SCA3是一種常染色體顯性遺傳病,由Ataxin-3基因(又稱為MJD1基因)突變所致。1994年,日本科學(xué)家Yoshiya Kawaguchi等[5]首先發(fā)現(xiàn)并報(bào)道了Ataxin-3基因。Ataxia-3基因位于14號(hào)染色體長(zhǎng)臂,含有11個(gè)外顯子,其10號(hào)外顯子中有一段CAG重復(fù)序列(圖1)[6]。正常人Ataxin-3基因CAG重復(fù)次數(shù)為12~44次,當(dāng)CAG重復(fù)次數(shù)≥52次時(shí),即會(huì)發(fā)病,而當(dāng)CAG重復(fù)次數(shù)在45~51次時(shí),疾病不完全外顯(即可能會(huì)發(fā)病或發(fā)病時(shí)癥狀不典型)[7-8],因其由CAG重復(fù)過(guò)多而使其翻譯形成過(guò)長(zhǎng)的多聚谷氨酰胺鏈而致病,故SCA3是一種多聚谷氨酰胺病。
1.2 致病蛋白—Ataxin-3蛋白 Ataxia-3蛋白是一種廣泛表達(dá)的去泛素化酶,分子量約42 kDa(千道爾頓),因多聚谷氨酰胺鏈長(zhǎng)短不一,分子量會(huì)有所差異,該蛋白具有3個(gè)重要結(jié)構(gòu):Josephin結(jié)構(gòu)域、泛素結(jié)合區(qū)(ubiquitin interacting motifs,UIM)和PolyQ序列(圖1)。其Josephin 結(jié)構(gòu)域具有去泛素化酶活性,UIM結(jié)構(gòu)域則可特異地識(shí)別并結(jié)合泛素化的蛋白底物。Ataxia-3通過(guò)其UIM結(jié)構(gòu)特異識(shí)別泛素化的蛋白底物,進(jìn)而通過(guò)其Josephin結(jié)構(gòu)域發(fā)揮去泛素化酶活性,使與其結(jié)合的底物去泛素化,調(diào)節(jié)底物蛋白的活性和穩(wěn)定性[9-10]。Ataxia-3的PolyQ結(jié)構(gòu)為其致病突變直接調(diào)控的結(jié)構(gòu),可抑制組蛋白乙?;^(guò)程而調(diào)節(jié)轉(zhuǎn)錄過(guò)程。
目前SCA3確切發(fā)病機(jī)制仍不十分清楚,下面將從包涵體形成、Ataxia-3毒性片段形成、轉(zhuǎn)錄異常、RNA異常、蛋白質(zhì)質(zhì)量控制系統(tǒng)異常、線粒體功能異常等方面進(jìn)行敘述(圖2)。
2.1 包涵體形成 神經(jīng)元內(nèi)廣泛的包涵體形成是SCA3病人及動(dòng)物模型最早發(fā)現(xiàn)的特征病理改變,主要位于細(xì)胞核內(nèi),此外軸突內(nèi)亦可形成少量包涵體[11-12]。軸突內(nèi)的包涵體可干擾神經(jīng)元的軸漿運(yùn)輸,進(jìn)而導(dǎo)致神經(jīng)元功能受損;而核內(nèi)包涵體形成的意義目前仍存在較大爭(zhēng)議;有研究提示包涵體具有毒性作用,神經(jīng)元內(nèi)包涵體形成的多少與疾病嚴(yán)重程度成相關(guān),包涵體中成分復(fù)雜,其中包括泛素、蛋白酶體組分、分子伴侶、轉(zhuǎn)錄因子、正常Ataxia-3蛋白等細(xì)胞內(nèi)必需組分,這些重要物質(zhì)聚集在包涵體內(nèi),不能正常發(fā)揮相應(yīng)功能,進(jìn)而影響細(xì)胞內(nèi)多種代謝過(guò)程,導(dǎo)致細(xì)胞內(nèi)環(huán)境紊亂[12-13];但也有學(xué)者認(rèn)為包涵體形成具有保護(hù)作用,可將毒性蛋白聚集到包涵體中,避免對(duì)細(xì)胞的進(jìn)一步損傷[11]。目前認(rèn)為包涵體形成是由突變的Ataxia-3蛋白裂解而促發(fā)。
2.2 Ataxia-3毒性片段的形成 Ataxia-3蛋白可被鈣蛋白酶(Calpain)裂解形成C端片段和N端片段,其中polyQ位于C端片段,正常情況下C端片段及N端片段均可被降解,不會(huì)聚集形成包涵體;突變的Ataxia-3被calpain裂解后,其含延長(zhǎng)的polyQ的C-端片段形成不溶性的核內(nèi)包涵體。體內(nèi)動(dòng)物實(shí)驗(yàn)發(fā)現(xiàn)抑制鈣蛋白酶的活性可減少SCA3小鼠動(dòng)物模型的包涵體形成,緩解其神經(jīng)系統(tǒng)退行性變;增強(qiáng)鈣蛋白酶的活性,則使SCA3小鼠模型的神經(jīng)系統(tǒng)退行性變加重[14-15]。相應(yīng)的體外實(shí)驗(yàn)顯示增加鈣蛋白酶的活性可促進(jìn)Ataxia-3 C端毒性片段形成,使不溶性聚集體形成增加,并導(dǎo)致細(xì)胞凋亡增加[16]。且相對(duì)于全長(zhǎng)的Ataxia-3蛋白裂解后形成含延長(zhǎng)的polyQ的C端片段具有更強(qiáng)的毒性,故可將含延長(zhǎng)polyQ的Ataxia-3的 C端片段視為毒性片段[14-16]。
2.3 轉(zhuǎn)錄異常 轉(zhuǎn)錄異常被認(rèn)為在SCA3發(fā)病過(guò)程中起重要作用。在SCA3發(fā)病過(guò)程中,轉(zhuǎn)錄因子可被結(jié)合到核內(nèi)包涵體中,使轉(zhuǎn)錄因子水平下調(diào),不能發(fā)揮正常的轉(zhuǎn)錄調(diào)控功能,引起轉(zhuǎn)錄異常[17]。此外,突變的Ataxia-3失去對(duì)組蛋白乙?;囊种?,組蛋白乙?;缴撸疝D(zhuǎn)錄異常[18]。有研究顯示,突變的Ataxia-3蛋白后,其亮氨酸拉鏈結(jié)構(gòu)與DNA雙鏈的GAGGAA富集區(qū)相互作用異常,影響轉(zhuǎn)錄[19-22]。Chou等[23]利用SCA3小鼠模型對(duì)腦組織進(jìn)行轉(zhuǎn)錄組學(xué)研究,結(jié)果表明:谷氨酸能神經(jīng)遞質(zhì)傳遞相關(guān)的基因、熱休克蛋白(Heat Shock Protein,HSP)、調(diào)控神經(jīng)細(xì)胞存活及分化的轉(zhuǎn)錄因子、伽馬氨基丁酸受體亞基等的轉(zhuǎn)錄水平下調(diào);介導(dǎo)神經(jīng)細(xì)胞死亡的Bax、細(xì)胞周期蛋白D1等基因的轉(zhuǎn)錄水平上調(diào)。但SCA3疾病動(dòng)物模型的轉(zhuǎn)錄情況和SCA3病人并不完全相同,轉(zhuǎn)錄異常的確切機(jī)制有待進(jìn)一步研究。
2.4 RNA異常 在SCA3發(fā)病進(jìn)展過(guò)程中,多種ataxia-3相關(guān)RNA存在異常。
Ataxia-3基因的CAG重復(fù)序列可編碼含CUG重復(fù)序列的RNA。Li等[24]的研究表明,含過(guò)長(zhǎng)CUG重復(fù)序列的RNA片段本身有毒性作用,在果蠅模型中,轉(zhuǎn)錄含過(guò)長(zhǎng)CUG重復(fù)序列的RNA,可導(dǎo)致果蠅神經(jīng)功能退化。進(jìn)一步研究顯示,含過(guò)長(zhǎng)CUG重復(fù)序列的RNA可形成發(fā)夾樣結(jié)構(gòu),并和MBNL1(Muscleblind Like 1)在細(xì)胞核中共定位,提示其可將MBNL1募集到細(xì)胞核中,使MBNL1介導(dǎo)的RNA可變性剪接發(fā)生異常,進(jìn)而導(dǎo)致下游蛋白表達(dá)異常,并導(dǎo)致細(xì)胞功能異常[25]。
microRNA是一類(lèi)內(nèi)源性非編碼的線性小RNA,通過(guò)與靶基因信使RNA(Manage RNA,mRNA)3’端非編碼區(qū)特異性結(jié)合,調(diào)控靶基因表達(dá)。在SCA3病人血液中,發(fā)現(xiàn)miR-34b水平相比于正常人上調(diào),miR-29a、miR25、miR-125b表達(dá)水平相比于正常人下調(diào),提示miRNA參與SCA3發(fā)病過(guò)程[26]。此外,在SCA3動(dòng)物模型中,抑制miRNA的表達(dá),可加重動(dòng)物模型的神經(jīng)功能缺損和病例改變;在SCA3細(xì)胞系中,阻斷miRNA可使Ataxia-3的毒性增加,并使細(xì)胞凋亡增加,提示干預(yù)miRNA可作為潛在靶點(diǎn),但具體機(jī)制及干預(yù)方式仍需進(jìn)一步研究[27]。
此外,非ATG起始的翻譯過(guò)程、雙向轉(zhuǎn)錄等使神經(jīng)細(xì)胞產(chǎn)生多種異常的毒性產(chǎn)物(如聚丙氨酸、聚絲氨酸等),亦可能在SCA3發(fā)病中起到一定作用,影響神經(jīng)細(xì)胞功能,但相關(guān)研究少,具體機(jī)制仍不明確[28]。
2.5 蛋白質(zhì)質(zhì)量控制系統(tǒng)異常 SCA3主要通過(guò)影響分子伴侶系統(tǒng)、內(nèi)質(zhì)網(wǎng)有關(guān)降解途徑、泛素-蛋白酶體系統(tǒng)(ubiquitin-proteasome system,UPS)及自噬溶酶體通路(autophagy-lysosome pathway)等途徑影響蛋白質(zhì)降解過(guò)程。
熱休克蛋白在調(diào)控蛋白質(zhì)質(zhì)量控制系統(tǒng),介導(dǎo)蛋白質(zhì)聚集及解聚,維持細(xì)胞內(nèi)環(huán)境穩(wěn)定等方面起重要作用[29]。在多種多聚谷氨酰胺病中,均發(fā)現(xiàn)在疾病早期熱休克蛋白表達(dá)上調(diào),增加錯(cuò)誤折疊蛋白的在細(xì)胞中的溶解度,減少其聚集,而隨著疾病進(jìn)展,熱休克蛋白的水平持續(xù)下調(diào)[30-31]。在SCA3病人腦組織中,發(fā)現(xiàn)HSP40、HSP90在包涵體中和Ataxia-3共定位;而在SCA3動(dòng)物模型中,可見(jiàn)HSP40、HSP70的表達(dá)水平下調(diào);此外,在SCA3病人來(lái)源的成纖維細(xì)胞中,發(fā)現(xiàn)HSP40的表達(dá)水平和SCA3的發(fā)病年齡相關(guān)聯(lián);而在SCA3細(xì)胞模型中過(guò)表達(dá)HSP40時(shí),神經(jīng)細(xì)胞內(nèi)的包涵體形成減少,可見(jiàn)熱休克蛋白在SCA3發(fā)病過(guò)程中起重要作用,上調(diào)熱休克蛋白可作為潛在的治療策略[23,32- 33]。
Ataxin 3參與調(diào)節(jié)內(nèi)質(zhì)網(wǎng)錯(cuò)誤折疊蛋白的降解。VCP/p97蛋白(valosin-containing protein,VCP)可使內(nèi)質(zhì)網(wǎng)中錯(cuò)誤折疊的分泌型蛋白離開(kāi)內(nèi)質(zhì)網(wǎng),并在蛋白酶體中降解,這一過(guò)程稱為內(nèi)質(zhì)網(wǎng)有關(guān)降解途徑(endoplasmic reticulum associated degradation,ERAD)[34]。Ataxia-3可與VCP/p97結(jié)合,形成Ataxin 3-VCP/p97復(fù)合體,參與ERAD過(guò)程,調(diào)控內(nèi)質(zhì)網(wǎng)錯(cuò)誤折疊蛋白的降解[35]。突變的Ataxia-3蛋白可影響ERAD過(guò)程,突變的Ataxia-3與VCP/p97之間結(jié)合力增加,影響VCP/p97的底物蛋白從內(nèi)質(zhì)網(wǎng)中脫離,使VCP/p97的底物蛋白難以被轉(zhuǎn)運(yùn)至蛋白酶體降解,最終導(dǎo)致內(nèi)質(zhì)網(wǎng)錯(cuò)誤折疊蛋白降解的異常,即ERAD異常[36]。
泛素-蛋白酶體系統(tǒng)的功能在SCA3中受損。對(duì)于突變的Ataxia-3,其去泛素化活性并無(wú)明顯改變,但部分蛋白酶體組分被聚集在包涵體中,使蛋白酶體功能異常[37-38]。此外,泛素E3連接酶CHIP、Parkin在SCA3中表達(dá)下調(diào),CHIP和Parkin均有神經(jīng)保護(hù)作用。突變的Ataxia-3蛋白使Parkin的泛素化水平降低,促使Parkin通過(guò)細(xì)胞自噬途徑降解增加,當(dāng)Ataxia-3聚集形成包涵體時(shí),可與Parkin結(jié)合使其進(jìn)入包涵體中,導(dǎo)致細(xì)胞內(nèi)Parkin量降低,Parkin底物降解異常[39- 40]。一些研究表明,突變的Ataxia-3與CHIP親和力增加,在SCA3動(dòng)物模型中,CHIP表達(dá)下調(diào),使CHIP的底物蛋白降解異常,但其具體機(jī)制尚不明確[40-41]。
自噬溶酶體通路在降解大分子蛋白復(fù)合物及維持細(xì)胞內(nèi)環(huán)境穩(wěn)定的過(guò)程中起重要作用。一系列研究表明,自噬溶酶體通路在SCA3中受損[42-43]。Beclin1在自噬通路中起重要作用,在SCA3小鼠模型中,受累腦區(qū)Beclin1含量減少;過(guò)表達(dá)Beclin1,激活自噬系統(tǒng),可緩解SCA3小鼠模型的神經(jīng)功能缺損并減少神經(jīng)元內(nèi)包涵體形成,提示自噬異常在SCA3發(fā)病過(guò)程中起重要作用,調(diào)控自噬通路可作為潛在的治療靶點(diǎn)[42-43]。
2.6 線粒體功能異常與細(xì)胞凋亡 既往研究表明,在亨廷頓病、脊髓小腦共濟(jì)失調(diào)7型等多種polyQ疾病中,均存在線粒體能量代謝異常[44-45]。在SCA3細(xì)胞模型及動(dòng)物模型中,亦發(fā)現(xiàn)細(xì)胞能量代謝障礙,其線粒體呼吸鏈復(fù)合體活性降低,導(dǎo)致自由基清除能力降低,自由基大量蓄積,一方面導(dǎo)致線粒體DNA損傷,DNA拷貝數(shù)降低,另一方面導(dǎo)致氧化壓力增加,最終促發(fā)細(xì)胞凋亡[46-47]。在SCA3患者受累腦區(qū)進(jìn)行病理染色,亦可見(jiàn)細(xì)胞凋亡的表現(xiàn)如核固縮、凋亡小體形成。目前關(guān)于線粒體功能異常及細(xì)胞凋亡在SCA3發(fā)病過(guò)程中所起到的作用仍不十分明確,有學(xué)者認(rèn)為抗氧化治療可能在SCA3治療中起一定作用,但具體機(jī)制仍需要進(jìn)一步研究。
SCA3目前發(fā)病機(jī)制尚未明確,現(xiàn)主要通過(guò)對(duì)癥治療提高患者的生活質(zhì)量。而隨著科學(xué)的發(fā)展,隨著人類(lèi)對(duì)這一疾病機(jī)制研究的不斷深入,隨著基因治療、細(xì)胞治療等新的治療方式出現(xiàn),必將為疾病治療提供了新的思路,更有效的治療靶點(diǎn)也會(huì)被不斷發(fā)現(xiàn)。相信在不久的將來(lái),人類(lèi)對(duì)這一疾病定能找到更好的治療辦法。
圖1 Ataxin3基因及Ataxin3蛋白的基本結(jié)構(gòu)
圖2 SCA3發(fā)病機(jī)制模式圖
[1] Gan SR,Shi SS,Wu JJ,et al.High frequency of Machado-Joseph disease identified in southeastern Chinese kindreds with spinocerebellar ataxia[J].BMC Med Genet,2010,11:47.
[2] Tang B,Liu C,Shen L,et al.Frequency of SCA1,SCA2,SCA3/MJD,SCA6,SCA7,and DRPLA CAG trinucleotide repeat expansion in patients with hereditary spinocerebellar ataxia from Chinese kindreds[J].Arch Neurol,2000,57(4):540-544.
[3] Riess O,Rub U,Pastore A,et al.SCA3:neurological features,pathogenesis and animal models[J].Cerebellum,2008,7(2):125-137.
[4] Rosenberg RN.Machado-Joseph disease:an autosomal dominant motor system degeneration[J].Mov Disord,1992,7(3):193-203.
[5] Kawaguchi Y,Okamoto T,Taniwaki M,et al.CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1[J].Nat Genet,1994,8(3):221-228.
[6] Heilig R,Eckenberg R,Petit JL,et al.The DNA sequence and analysis of human chromosome 14[J].Nature,2003,421(6 923):601-607.
[7] Evers MM,Toonen LJ,van Roon-Mom WM.Ataxin-3 Protein and RNA Toxicity in Spinocerebellar Ataxia Type 3:Current Insights and Emerging Therapeutic Strategies[J].Mol Neurobiol,2014,49(3):1 513-1 531.
[8] Padiath QS,Srivastava AK,Roy S,et al.Identification of a novel 45 repeat unstable allele associated with a disease phenotype at the MJD1/SCA3 locus[J].Am J Med Genet B Neuropsychiatr Genet,2005,133B(1):124-126.
[9] Burnett B,Li F,Pittman RN.The polyglutamine neurodegenerative protein Ataxin-3 binds polyubiquitylated proteins and has ubiquitin protease activity[J].Hum Mol Genet,2003,12(23):3 195-3 205.
[10] Masino L,Musi V,Menon RP,et al.Domain architecture of the polyglutamine protein Ataxin-3:a globular domain followed by a flexible tail[J].FEBS Lett,2003,549(1-3):21-25.
[11] Seidel K,den Dunnen WFA,Schultz C,et al.Axonal inclusions in spinocerebellar ataxia type 3[J].Acta Neuropathologica,2010,120(4):449-460.
[12] Paulson HL,Perez MK,Trottier Y,et al.Intranuclear inclusions of expanded polyglutamine protein in spinocerebellar ataxia type 3[J].Neuron,1997,19(2):333-344.
[13] Chai Y,Wu L,Griffin JD,et al.The role of protein composition in specifying nuclear inclusion formation in polyglutamine disease[J].J Biol Chem,2001,276(48):44 889-44 897.
[14] Simoes AT,Goncalves N,Koeppen A,et al.Calpastatin-mediated inhibition of calpains in the mouse brain prevents mutant Ataxin 3 proteolysis,nuclear localization and aggregation,relieving Machado-Joseph disease[J].Brain,2012,135(8):2 428-2 439.
[15] Hubener J,Weber JJ,Richter C,et al.Calpain-mediated Ataxin-3 cleavage in the molecular pathogenesis of spinocerebellar ataxia type 3(SCA3)[J].Hum Mol Genet.,2013,22(3):508-518.
[16] Koch P,Breuer P,Peitz M,et al.Excitation-induced Ataxin-3 aggregation in neurons from patients with Machado-Joseph disease[J].Nature,2011,480(7 378):543-546
[17] Perez MK,Paulson HL,Pendse SJ,et al.Recruitment and the role of nuclear localization in polyglutamine-mediated aggregation[J].J Cell Biol,1998,143(6): 1 457-1 470.
[18] Evert B O,Araujo J,Vieira-Saecker AM,et al.Ataxin-3 Represses Transcription via Chromatin Binding,Interaction with Histone Deacetylase 3,and Histone Deacetylation[J].J Neurosci,2006,26(44):11 474-11 486.
[19] Li F,Macfarlan T,Pittman RN,et al.Ataxin-3 is a histone-binding protein with two independent transcriptional corepressor activities[J].J Biol Chem,2002, 277(47):45 004-45 012.
[20] Araujo J,Breuer P,Dieringer S,et al.FOXO4-dependent upregulation of superoxide dismutase-2 in response to oxidative stress is impaired in spinocerebellar ataxia type 3[J].Human Molecular Genetics,2011,20(15): 2 928-2 941.
[21] Wang G,Sawai N,Kotliarova S,et al.Ataxin-3,the MJD1 gene product,interacts with the two human homologs of yeast DNA repair protein RAD23,HHR23A and HHR23B[J].Hum Mol Genet,2000, 9(12):1 795-1 803.
[22] Landschulz WH,Johnson PF,Mcknight SL.The leucine zipper:a hypothetical structure common to a new class of DNA binding proteins[J].Science,1988,240(4860):1 759-1 764.
[23] Chou A,Yeh T,Ouyang P,et al.Polyglutamine-expanded Ataxin-3 causes cerebellar dysfunction of SCA3 transgenic mice by inducing transcriptional dysregulation[J].Neurobiol Dis,2008,31(1):89-101.
[24] Li L,Yu Z,Teng X,et al.RNA toxicity is a component of Ataxin-3 degeneration in Drosophila[J].Nature,2008,453(7198):1 107-1 111.
[25] Mykowska A,Sobczak K,Wojciechowska M,et al.CAG repeats mimic CUG repeats in the misregulation of alternative splicing[J].Nucleic Acids Research,2011,39(20):8 938-8 951.
[26] Shi Y,Huang F,Tang B,et al.MicroRNA profiling in the serums of SCA3/MJD patients[J].Int J Neurosci,2013,124(2):97-101.
[27] Bilen J,Liu N,Burnett BG,et al.MicroRNA pathways modulate polyglutamine-induced neurodegeneration[J].Mol Cell,2006,24(1):157-163.
[28] Zu T,Gibbens B,Doty NS,et al.Non-ATG-initiated translation directed by microsatellite expansions[J].Proc Natl Acad Sci U S A,2011,108(1):260-265.
[29] Kampinga HH,Bergink S.Heat shock proteins as potential targets for protective strategies in neurodegeneration[J].Lancet Neurol,2016,15(7):748-759.
[30] Muchowski PJ,Schaffar G,Sittler A,et al.Hsp70 and hsp40 chaperones can inhibit self-assembly of polyglutamine proteins into amyloid-like fibrils[J].Proc Natl Acad Sci U S A,2000,97(14):7 841-7 846.
[31] Huen NY,Chan HY.Dynamic regulation of molecular chaperone gene expression in polyglutamine disease[J].Biochem Biophys Res Commun,2005,334(4):1 074-1 084.
[32] Zijlstra MP,Rujano MA,Van Waarde MA,et al.Levels of DNAJB family members(HSP40)correlate with disease onset in patients with spinocerebellar ataxia type 3[J].Eur J Neurosci,2010,32(5):760-770.
[33] Ito N,Kamiguchi K,Nakanishi K,et al.A novel nuclear DnaJ protein,DNAJC8,can suppress the formation of spinocerebellar ataxia 3 polyglutamine aggregation in a J-domain independent manner[J].Biochem Biophys Res Commun,2016,474(4):626-633.
[34] Zhong X,Pittman RN.Ataxin-3 binds VCP/p97 and regulates retrotranslocation of ERAD substrates[J].Hum Mol Genet,2006,15(16):2 409-2 420.
[35] Wang Q,Li L,Ye Y.Regulation of retrotranslocation by p97-associated deubiquitinating enzyme Ataxin-3[J].J Cell Biol,2006,174(7):963-971.
[36] Wang Q,Li L,Ye Y.Regulation of retrotranslocation by p97-associated deubiquitinating enzyme Ataxin-3[J].J Cell Biol,2006,174(7):963-971.
[37] Chai Y,Koppenhafer SL,Shoesmith SJ,et al.Evidence for proteasome involvement in polyglutamine disease:localization to nuclear inclusions in SCA3/MJD and suppression of polyglutamine aggregation in vitro[J].Hum Mol Genet,1999,8(4):673-682.
[38] Winborn B J,Travis SM,Todi SV,et al.The deubiquitinating enzyme Ataxin-3,a polyglutamine disease protein,edits Lys63 linkages in mixed linkage ubiquitin chains[J].J Biol Chem,2008,283(39):26 436-26 443.
[39] Durcan TM,Kontogiannea M,Thorarinsdottir T,et al.The Machado-Joseph disease-associated mutant form of Ataxin-3 regulates parkin ubiquitination and stability[J].Human Molecular Genetics,2010,20(1):141-154.
[40] Durcan TM,F(xiàn)on EA.Ataxin-3 and Its E3 Partners:Implications for Machado-Joseph Disease[J].Front Neurol,2013,4:46.
[41] Scaglione KM,Zavodszky E,Todi S V,et al.Ube2w and Ataxin-3 coordinately regulate the ubiquitin ligase CHIP[J].Mol Cell,2011,43(4):599-612.
[42] Nascimento-Ferreira I,Nobrega C,Vasconcelos-Ferreira A,et al.Beclin 1 mitigates motor and neuropathological deficits in genetic mouse models of Machado-Joseph disease[J].Brain,2013,136(7):2 173-2 188.
[43] Nascimento-Ferreira I,Santos-Ferreira T,Sousa-Ferreira L,et al.Overexpression of the autophagic beclin-1 protein clears mutant Ataxin-3 and alleviates Machado-Joseph disease[J].Brain,2011,134(5):1 400-1 415.
[44] Ajayi A,Yu X,Lindberg S,et al.Expanded Ataxin-7 cause toxicity by inducing ROS production from NADPH oxidase complexes in a stable inducible Spinocerebellar ataxia type 7(SCA7)model[J].BMC Neurosci,2012,13(1):86.
[45] Goswami A,Dikshit P,Mishra A,et al.Oxidative stress promotes mutant huntingtin aggregation and mutant huntingtin-dependent cell death by mimicking proteasomal malfunction[J].Biochem Biophys Res Commun,2006,342(1):184-190.
[46] Kazachkova N,Raposo M,Montiel R,et al.Patterns of Mitochondrial DNA Damage in Blood and Brain Tissues of a Transgenic Mouse Model of Machado-Joseph Disease[J].Neurodegener Dis,2013,11(4):206-214.
[47] Emerit J,Edeas M,Bricaire F.Neurodegenerative diseases and oxidative stress[J].Biomed Pharmacother,2004,58(1):39-46.
(收稿2016-11-14)
R744.7
A
1673-5110(2017)06-0124-05