国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

納米材料的密度梯度離心分離的研究進(jìn)展(上)

2017-01-20 01:25:33李鵬松孫曉明
石油化工 2016年6期
關(guān)鍵詞:單壁密度梯度離心法

李鵬松,蔡 釗,李 莉,羅 亮,鄺 允,孫曉明

(北京化工大學(xué) 化工資源有效利用國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京 100029)

納米材料的密度梯度離心分離的研究進(jìn)展(上)

李鵬松,蔡 釗,李 莉,羅 亮,鄺 允,孫曉明

(北京化工大學(xué) 化工資源有效利用國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京 100029)

納米材料的性能與它的尺寸及形貌有著密切的聯(lián)系。對(duì)于液相合成的大多數(shù)納米材料,很難控制它們的尺寸和形貌具有嚴(yán)格的單一性。通過(guò)納米分離手段獲得單分散的功能納米材料對(duì)其應(yīng)用和發(fā)展有重大的意義。密度梯度離心法由于分離體系具有高度的可調(diào)控性,對(duì)不同形貌、尺寸、合成體系的納米材料的分離純化具有普適性和高效性。對(duì)密度梯度離心分離的原理、方法、體系與應(yīng)用進(jìn)行了闡述,總結(jié)了該領(lǐng)域近年來(lái)的一些研究進(jìn)展,并對(duì)其發(fā)展前景進(jìn)行了展望。

納米材料;納米分離;密度梯度離心;單分散納米結(jié)構(gòu)

納米材料是三維空間尺度至少有一維處于納米量級(jí)(0.1~100 nm)的材料。由于這類材料具有巨大的外表面積以及由小尺寸所產(chǎn)生的量子尺寸效應(yīng),從而產(chǎn)生不同于普通材料的特殊性能,進(jìn)而在光學(xué)、電學(xué)和磁學(xué)等領(lǐng)域具有巨大的應(yīng)用價(jià)值。納米材料的性能與它的尺寸和形貌有著密切的聯(lián)系。長(zhǎng)期以來(lái),人們主要依靠合成方法的改進(jìn)來(lái)獲得尺寸相對(duì)單一的單分散納米顆粒。但由于溫度場(chǎng)、濃度場(chǎng)等合成條件的不均一性,有時(shí)會(huì)使得單分散納米顆粒的獲得較為困難。合成的產(chǎn)物中各種尺寸和形貌的納米顆?;祀s在一起,會(huì)造成一定的顆粒分布,這就大大限制了納米材料性能的單一性,從而限制了它的有效利用。因此,想要獲得單一尺寸或形貌的納米材料,發(fā)展高效納米分離方法勢(shì)在必行。

密度梯度離心分離由于分離體系具有高度的可調(diào)控性,對(duì)不同形貌、不同尺寸、不同合成體系的納米材料的分離純化具有普適性和高效性,從而成為納米材料的高效分離方法。

本文對(duì)密度梯度離心分離的原理、方法、體系與應(yīng)用進(jìn)行了闡述,總結(jié)了該領(lǐng)域近年來(lái)的一些研究進(jìn)展,并對(duì)其發(fā)展前景進(jìn)行了展望。

1 密度梯度離心法簡(jiǎn)介

納米材料的性質(zhì)與其大小或形貌有著密切的關(guān)系[1-3],然而傳統(tǒng)無(wú)機(jī)合成得到的納米結(jié)構(gòu)大都具有一定的尺寸分布[4-5]。因此,如何獲得尺寸、形貌單一的單分散納米結(jié)構(gòu)對(duì)納米材料的應(yīng)用尤為重要。盡管無(wú)機(jī)納米材料的液相合成方法發(fā)展了近30年,但單分散納米結(jié)構(gòu)的可控合成還局限在僅有的幾個(gè)體系,對(duì)于大多數(shù)液相合成的納米材料,后期的分離純化必不可少。現(xiàn)有用于分離的方法主要包括色譜法[6]、磁分離法[7]、膜分離法[8]、離心沉降法[9-11]以及電泳法[12-14]等,然而這些分離方法對(duì)于特定的分離體系具有較大的局限性。因此,建立一種高效、通用的分離方法勢(shì)在必行。密度梯度離心法是由于分子生物學(xué)不斷發(fā)展而建立起來(lái)的一種精確的實(shí)驗(yàn)分離方法,起初廣泛地應(yīng)用于蛋白、線粒體、溶酶體、植物病毒、RNA、DNA等生物大分子的分離純化[15-20]。而納米材料在尺度上與生物大分子類似,因此,對(duì)于納米材料的分離純化,密度梯度離心法同樣適用。

2005年,Arnold等[21]首先將密度梯度離心分離應(yīng)用于納米科學(xué),他們成功地利用這種完全的液相分離方法把單壁碳納米管按直徑的大小進(jìn)行了分離,實(shí)現(xiàn)了生物學(xué)到納米科學(xué)的跨越。隨后,Hersam課題組、Sun課題組和Ozin課題組對(duì)納米材料的分離純化做了深入的研究,得到了各種單分散的納米材料,并建立了較為完善的分離體系。本文從探討密度梯度離心法的原理入手,介紹了不同的分離體系,探討了密度梯度離心法在納米材料分離純化與反應(yīng)機(jī)理研究等方面的應(yīng)用。

2 密度梯度離心分離的原理及分類

密度梯度離心法就是用介質(zhì)在離心管中配制成一個(gè)階梯的或連續(xù)的密度梯度,然后把納米顆粒置于梯度的頂部,通過(guò)離心場(chǎng)作用使納米顆粒分離的一種純化方法[22]。在離心管中,具有不同特征的納米顆粒受到離心力作用后會(huì)產(chǎn)生不同的運(yùn)動(dòng)速度,由于納米顆粒的運(yùn)動(dòng)速度不同,使得不同特征的納米顆粒得到分離和純化[23]。不同大小的納米顆粒在多層密度梯度上的分離和核殼結(jié)構(gòu)模型及其表觀密度表達(dá)式[24]見圖1。

圖1 不同大小的納米顆粒在多層密度梯度上的分離(A)和核殼結(jié)構(gòu)模型及其表觀密度表達(dá)式(B)[24]Fig.1 Schematic diagram of density gradient centrifugation tube(A) and hydraodynamical colloidal nanoparticle model(B)[24].ρ:density of medium;d:sedimentation distance;ρc:core density;ρh:shell density;ρp:core-shell apparent density;r:radius of nanoparticle;D:thickness of solvation layer.

具體來(lái)說(shuō),在密度梯度離心中,利用不同密度的介質(zhì)在離心管中配制密度梯度,介質(zhì)要求穩(wěn)定,不能與要分離的顆粒產(chǎn)生反應(yīng)。把要分離的納米粒子放到離心管的上層,并施加一個(gè)離心力,使顆粒開始加速運(yùn)動(dòng),當(dāng)此力與浮力、粘滯阻力達(dá)到平衡后[25],不同的納米顆粒會(huì)有不同的沉降速率[24]。對(duì)于球形顆粒,其沉降速率可以表達(dá)為:

式中,v為沉降速率,cm/s;r為納米顆粒半徑,nm;D為溶劑化層厚度,nm;ρp為納米顆粒的表觀密度,g/cm3;ρm為介質(zhì)的密度,g/cm3;ηm為介質(zhì)的黏度,Pa·s;g′為離心場(chǎng)加速度,m/s2。由式(1)可見,ρm和ηm的增大均會(huì)使沉降速率變小,而較大顆粒會(huì)具有較大的沉降速率,所以具有較大密度和較大半徑的納米顆??上瘸两档诫x心管的下部。當(dāng)離心力被撤掉時(shí),納米顆粒由于受阻力的影響最終會(huì)分布在離心管的不同位置(如圖1A所示),圖1B 為球形納米顆粒在梯度介質(zhì)中的核殼結(jié)構(gòu)模型,外層為溶劑化層,厚度為D,而納米顆粒的半徑為r,由此可以得到ρp。

密度梯度離心法一般可分為兩種:等密度離心法[26]和速率區(qū)帶離心法[27]。在離心力的作用下,低密度的納米粒子會(huì)沉降到與它表觀密度相等的梯度密度對(duì)應(yīng)區(qū)域中,不管加多大的離心力和多長(zhǎng)的離心時(shí)間,納米粒子都會(huì)停留在相應(yīng)的區(qū)域,反映在沉降速率方程上就是ρp=ρm。對(duì)于高密度的納米粒子,由于其表觀密度比梯度介質(zhì)密度大(即ρp>ρm),在相對(duì)較長(zhǎng)的時(shí)間后,所有的納米粒子都會(huì)沉降到離心管的底部,因此在用速率區(qū)帶離心法時(shí)一定要選擇合適的離心力和離心時(shí)間。等密度離心法和速率區(qū)帶離心法的示意圖見圖2。從圖2可看出,在做納米顆粒分離時(shí),對(duì)于這兩種分離方法的選擇主要取決于顆粒的表觀密度與介質(zhì)密度的關(guān)系:當(dāng)要分離的顆粒的表觀密度與介質(zhì)密度相等時(shí)就選用等密度離心法;當(dāng)要分離的顆粒的表觀密度大于介質(zhì)密度時(shí)就選用速率區(qū)帶離心法。一般的金屬納米顆粒的表觀密度都很大,很難找到與它密度相等的梯度介質(zhì),所以一般選用速率區(qū)帶離心法。因?yàn)樘技{米材料的密度相對(duì)較小,所以一般分離碳納米材料時(shí)可以采用等密度離心法。

圖2 等密度離心法(A)和速率區(qū)帶離心法(B)示意圖Fig.2 Schematic illustration of typical isopycnic separation(A) andrate-zonal separation(B).ρm:density of gradient medium.

3 零維納米材料的分離

零維納米顆粒主要包括原子團(tuán)簇、人造原子和納米微粒。它們都有著顯著的納米尺寸效應(yīng)[28]。對(duì)于納米材料,尺寸的單一性對(duì)納米尺寸效應(yīng)有很大的影響,分離得到單分散的納米顆粒顯得尤為重要。

3.1 水相密度梯度分離FeCo@C等水溶性納米顆粒

在密度梯度離心法制備單分散零維材料的研究中,梯度介質(zhì)是影響分離效果的關(guān)鍵因素,因此梯度介質(zhì)的選擇要考慮很多因素:為了避免梯度介質(zhì)對(duì)納米顆粒的影響,梯度介質(zhì)必須是惰性的,且還要與納米顆粒有好的相容性,不會(huì)導(dǎo)致顆粒的聚沉;為了得到很好的分離效果,還要考慮密度梯度的密度范圍和黏度與納米顆粒的匹配性;最好梯度介質(zhì)可以很容易地從分離產(chǎn)物中剔除,且不產(chǎn)生污染。

對(duì)于典型的水溶性納米顆粒,如FeCo@C納米晶,它顯示了卓越的磁學(xué)性能,在生物標(biāo)簽和核磁成像中有很好的應(yīng)用前景。然而合成的局限和較強(qiáng)的磁性使得單分散FeCo@C納米晶的獲得較困難。Sun等[24]為此建立了水相密度梯度分離方法,將制備的平均尺寸為4 nm的FeCo@C納米晶用聚乙二醇分子充分包覆并在碘克沙醇密度梯度液中進(jìn)行分離,最終得到1.5~5.6 nm的納米晶,展示出密度梯度分離優(yōu)越的精細(xì)度(如圖3所示)。與傳統(tǒng)的滲析、過(guò)濾、色譜和電泳等方法不同,該方法在液相密度梯度中完成分離,避免了由于固-固相互作用造成的膠體顆粒的損失和分離體系的失效,并可通過(guò)調(diào)整密度梯度的梯度差、溫度和分離時(shí)間等參數(shù)達(dá)到不同的分離效果,具有通用、高效、省時(shí)、產(chǎn)品無(wú)損失和體系易重建等優(yōu)點(diǎn),展現(xiàn)出很好的分離效果和巨大的應(yīng)用潛力。

3.2 有機(jī)密度梯度分離Au、CdSe和硅納米晶等油溶性納米顆粒

在有機(jī)體系中合成納米顆粒的可控性以及單分散性均高于水相體系[29-30],然而即使在有機(jī)體系中也不能達(dá)到完全的單分散。因此,為了獲得更加單分散的試樣,同時(shí)為了避免顆粒聚集,發(fā)展高精度的有機(jī)相分離方法勢(shì)在必行。Bai等[31]發(fā)現(xiàn)四氯化碳和環(huán)己烷的混合溶液能夠溶解大部分有機(jī)相合成的顆粒,同時(shí)能夠提供較寬的密度梯度范圍,非常適合油溶性納米顆粒的密度梯度離心分離。他們利用環(huán)己烷和四氯化碳配制成有機(jī)密度梯度液,成功地把在油胺中合成的Au膠體納米粒子按尺寸大小進(jìn)行分離,得到了平均尺寸分別為4.8,7.2,8.0,9.3,10.9 nm的Au膠體顆粒,且尺寸的誤差范圍不超過(guò)1.5 nm(如圖4所示)。

與水相密度梯度分離法相比,有機(jī)體系的分離可減少納米粒子不必要的團(tuán)聚,使其保持合成出來(lái)的原貌,且有機(jī)密度梯度介質(zhì)不含難揮發(fā)物質(zhì),所以密度介質(zhì)在經(jīng)過(guò)分餾或蒸發(fā)后可以不留下任何殘留,有利于得到單分散膠體的純凈物。因此,有機(jī)相梯度介質(zhì)在某些方面有一定優(yōu)勢(shì)。同樣Bai等[31]還利用類似的方法得到了單分散的硒化鎘量子點(diǎn)(直徑2.5~5.5 nm,直徑誤差范圍小于0.5 nm),從而為研究硒化鎘量子點(diǎn)尺寸大小與其熒光性能的關(guān)系提供了可能。

圖3 密度梯度離心分離FeCo@C顆粒[24]Fig.3 Separation of FeCo@C nanoparticles by density gradient centrifugation[24].A Digital camera images of ultracentrifuge tubes taken in 30 min interval;B TEM images of diferent samples labeled in A

圖4 密度梯度離心分離有機(jī)相Au納米顆粒[31]Fig.4 Separation of Au nanoparticles suspended in organic media by density gradient centrifugation[31].A Digital images of ultracentrifuge vessels containing Au nanoparticles before(left vessel) and after(right vessel) separation at 25 000 r/min for 12 min;B TEM images of typical fractions The graph in the bottom right corner of B showed a comparison of the size distribution diference before(red columns in the upper section) and after(colored columns in the lower section) centrifugation separation,each size histograms was measured from at least 200 particles.

由于納米尺寸效應(yīng),不同大小的半導(dǎo)體納米晶會(huì)有不同的物理性能[32],這使得它在光電設(shè)備[33-34]以及生物醫(yī)學(xué)設(shè)備[35-36]上有廣泛應(yīng)用。通過(guò)研磨氫氟酸刻蝕法[37]、等離子體合成法[38]或SiCl4溶液還原法[39]得到的硅納米顆粒大多數(shù)是多分散的。為了解決單分散問題,Mastronardi等[40]通過(guò)油相密度梯度離心法實(shí)現(xiàn)了烷基包覆納米硅晶的尺寸分離(如圖5所示)。

圖5 密度梯度離心分離硅納米顆粒[40]Fig.5 Separation of Si nanoparticles by density gradient centrifugation[40].A Schematic of decyl-capped Si;B Images of a colloidal suspension of decyl-capped Si in hexane under ambient light(left) and photoexcitation(right);C Size analysis of monodisperse Si fractions;D PL spectra of Si fractions extracted from fuorescence maps at 345 nm for diferent DGU fractions,the inset showed the wavelength of the peak center of the DGU fraction plotted against the fraction number,summarizing the blue shift in PL observed with increasing fraction number

Miller等[28]也通過(guò)密度梯度離心法得到了高度單分散的硅納米晶體,并對(duì)其量子產(chǎn)率、熒光壽命和光致發(fā)光性質(zhì)進(jìn)行了研究。研究結(jié)果表明,具有高度統(tǒng)一尺寸的硅納米晶體減小了發(fā)射線的寬度且量子產(chǎn)率對(duì)尺寸大小有著很高的依賴性。類似地,Speranskaya等[41]在有機(jī)溶劑里合成了具有核殼結(jié)構(gòu)的CuInS2/ZnS納米量子點(diǎn),然后用密度梯度離心法提純得到純度較高的CuInS2/ZnS納米量子點(diǎn),在免疫分析領(lǐng)域有很高的應(yīng)用價(jià)值。因此,密度梯度離心法不僅可實(shí)現(xiàn)零維納米顆粒按尺寸分離,還可以對(duì)零維納米材料進(jìn)行純化。

4 一維納米材料的分離

密度梯度離心法在一維材料方面的應(yīng)用主要集中在碳納米管[42]上。由于碳納米管的密度較小,一般是靠它的表觀密度來(lái)實(shí)現(xiàn)分離[21,43-44]。傳統(tǒng)的密度梯度離心法一般是用水相介質(zhì)作為密度梯度介質(zhì),在分離碳納米材料時(shí)就要用一些化學(xué)表面活性劑使疏水碳材料分散到水中,因此在水相分離碳納米管時(shí)的表觀密度主要取決于封裝用的表面活性劑[45-46],表面活性劑的選擇對(duì)分離效果有很大的調(diào)節(jié)性。例如,選用膽酸鈉和十二烷基磺酸鈉表面活性劑可以把單壁碳納米管按直徑的大小進(jìn)行分離,且純度可達(dá)99%[47](如圖6A~6C所示)。此外,膽酸鹽對(duì)不同手性的功能化單壁碳納米管有著不同的吸附,這樣可以對(duì)單壁碳納米管的旋光性進(jìn)行分離[48](如圖6D~6E)。最近的研究結(jié)果表明,單壁碳納米管的離心分離具有很強(qiáng)的適應(yīng)性,特別是在電解質(zhì)[49]、二萘嵌苯表面活性劑[50]、共價(jià)官能團(tuán)活化[51]、梯度溶液[52]和有機(jī)溶劑[53]等方面。通過(guò)短暫而高效的操作,密度梯度離心法也可以用來(lái)分離不同長(zhǎng)度的碳納米管[54]。密度梯度離心分離碳納米材料的可靠性已被很多實(shí)例證明:包括雙壁碳納米管[55-56](如圖6F所示)、多壁碳納米管[57]、單壁碳納米管的超短膠囊[58]和單壁碳納米角[59]等。Liu等[60]綜述了采用密度梯度離心法分離碳納米管。

圖6 密度梯度離心分離碳納米管[60]Fig.6 Separation of carbon nanotubes by density gradient centrifugation[60].ρrepresenting density, the right is the corresponding optical absorbance spectra.A-C Monodisperse metallic single-walled carbon nanotubes(SWNTs) are isolated using density gradient centrifugation;D-E DGU is used to sort Co/Mo catalyst SWNTs by chiral handedness using the chiral surfactant sodium cholate A Photograph of the centrifuge tube and corresponding optical absorbance spectra of SWNTs,labels starting with S and M representing semiconductor and metal,respectively;B Photograph of the centrifuge tube and corresponding optical absorbance spectra for laser ablation SWNTs;C Photograph of the centrifuge tube and corresponding optical absorbance spectra for arc discharge SWNTs;D Photograph of the centrifuge tube and corresponding optical absorbance spectra,f was the fraction number;E Circular dichroism(CD) spectra providing the direct evidence of enantiomer enrichment;F Monodisperse double-walled carbon nanotubes(DWNTs) isolated using DGU

另外,通過(guò)密度梯度離心富集的半導(dǎo)體型單壁碳納米管,能使光電設(shè)備的光電交換比率和光電流顯著增強(qiáng)[61]。同時(shí),富集后的單壁碳納米管具有很高的半導(dǎo)體場(chǎng)效應(yīng),頻率高達(dá)80 GHz[62]。

長(zhǎng)度大于100 nm的單壁碳納米管很容易合成出來(lái),然而更短的碳納米管(長(zhǎng)度小于100 nm)的合成一直是科學(xué)界的難題。不管是通過(guò)化學(xué)法還是物理法切割碳管獲得超短碳納米管,尺寸都不能得到有效的控制。利用密度梯度離心法對(duì)多分散的超短單壁碳納米管進(jìn)行分離,可以得到長(zhǎng)度上比較單分散的碳納米管[63]。Sun等[58]通過(guò)密度梯度離心分離,獲得了平均長(zhǎng)度僅為7 nm的短碳納米管,將“最短碳納米管”的長(zhǎng)度降低了約一個(gè)數(shù)量級(jí),并首次在超短納米管上觀察到納米管光吸收與發(fā)射光譜的長(zhǎng)度依賴性。Arnold等[46]通過(guò)等密度離心分離得到了不同粗細(xì)的單壁碳納米管(其中97%的試樣的直徑從最大到最小只有0.02 nm的差別)。

同零維納米材料一樣,密度梯度離心法也可以對(duì)一維納米材料進(jìn)行純化,Sun課題組[31]用實(shí)驗(yàn)對(duì)此進(jìn)行了證明,他們把直徑小于2 nm的Au納米線與Au納米顆粒進(jìn)行混合,然后通過(guò)密度梯度離心技術(shù)把這兩種形貌的納米粒子分開,主要是利用納米線(ρp=2.87 g/cm3)與納米顆粒(ρp=8.61 g/cm3)表觀密度的差別比較大,在密度梯度離心過(guò)程中,通過(guò)梯度介質(zhì)對(duì)表觀密度的選擇性實(shí)現(xiàn)了納米顆粒與納米線的分離純化。

[1]Park Tae-Jin,Papaefthymiou G C,Viescas A J,et al. Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3nanoparticles[J]. Nano Lett,2007,7(3):766 -772.

[2]Park Seung-won,Jang Jung-tak,Cheon Jinwoo,et al. Shape-dependent compressibility of TiO2anatase nanoparticles[J]. J Phys Chem C,2008,112(26):9627 - 9631.

[3]Zheng Chan,Du Yuhong,F(xiàn)eng Miao,et al. Shape dependence of nonlinear optical behaviors of nanostructured silver and their silica gel glass composites[J]. Appl Phys Lett,2008,93(14):143108.

[4]Pileni Marie-Paule. The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals[J]. Nat Mater,2003,2(3):145 - 150.

[5]Walker D A,Browne K P,Kowalczyk B,et al. Self-assembly of nanotriangle superlattices facilitated by repulsive electrostatic interactions[J]. Angew Chem,Int Ed,2010,49(38):6760 - 6763.

[6]Jimenez V L,Leopold M C,Mazzitelli C,et al. HPLC of monolayer-protected gold nanoclusters[J]. Anal Chem,2003,75(2):199 - 206.

[7]Latham A H,F(xiàn)reitas R S,Schifer P,et al. Capillary magnetic feld fow fractionation and analysis of magnetic nanoparticles[J]. Anal Chem,2005,77(15):5055 - 5062.

[8]Akthakul A,Hochbaum A I,Stellacci F,et al. Size fractionation of metal nanoparticles by membrane filtration[J]. Adv Mater,2005,17(5):532 - 535.

[9]Zhao Wenting,Lin Li,Hsing I-Ming. Nucleotide-mediated size fractionation of gold nanoparticles in aqueous solutions[J]. Langmuir,2010,26(10):7405 - 7409.

[10]Anand M,Odom L A,Roberts C B. Finely controlled size-selective precipitation and separation of CdSe/ZnS semiconductor nanocrystals using CO2-gas-expanded liquids[J]. Langmuir,2007,23(13):7338 - 7343.

[11]Saunders S R,Roberts C B. Size-selective fractionation of nanoparticles at an application scale using CO2gas-expanded liquids[J]. Nanotechnology,2009,20(47):475605.

[12]DanieláLilly G. Free fow electrophoresis for the separation of CdTe nanoparticles[J]. J Mater Chem,2009,19(10):1390 - 1394.

[13]Arnaud I,Abid Jean-Pierre,Roussel C,et al. Size-selective separation of gold nanoparticles using isoelectric focusing electrophoresis(IEF)[J]. Chem Commun,2005(6):787 - 788.

[14]Hanauer M,Pierrat S,Zins I,et al. Separation of nanoparticles by gel electrophoresis according to size and shape[J]. Nano Lett,2007,7(9):2881 - 2885.

[15]McBain J W. Opaque or analytical ultracentrifuges[J]. Chem Rev,1939,24(2):289 - 302.

[16]Harvey E N. Physical and chemical constants of the egg of the sea urchin,Arbacia punctulata[J]. Biol Bull,1932,62(2):141 - 154.

[17]Brakke M K. Density gradient centrifugation:A new separation technique1[J]. J Am Chem Soc,1951,73(4):1847 -1848.

[18]Thomson J F,Klipfel F J. Fractionation of rat liver particulates using polyvinylpyrrolidone gradients[J]. Exp Cell Res,1958,14(3):612 - 614.

[19]Moritani Ichiro,Nishida Shinya,Murakami Masuo. The effect of conformation on reactivity.Ⅰ. Acetolysis of the trans-decalyl p-toluenesulfonates;1,3-diaxial interactions as a factor in the chemical behavior of decalyl derivatives[J]. J Am Chem Soc,1959, 81(13):3420 - 3423.

[20]de Duve C,Berthet J,Beaufay H. Gradient centrifugation of cell particles. Theory and applications[J]. Progr Biophys Biophys Chem,1959,9:325.

[21]Arnold M S,Stupp S I,Hersam M C. Enrichment of single-walled carbon nanotubes by diameter in density gradients[J]. Nano Lett,2005,5(4):713 - 718.

[22]金綠松,林元喜. 離心分離[M]. 北京:化學(xué)工業(yè)出版社,2008:7 - 15.

[23]宗晉. 離心沉降分析技術(shù)[M]. 北京:科學(xué)出版社,1983:54 - 70.

[24]Sun Xiaoming,Tabakman S M,Seo Won-Seok,et al. Separation of nanoparticles in a density gradient: FeCo@C and gold nanocrystals[J]. Angew Chem,Int Ed,2009,48(5):939 - 942.

[25]趙風(fēng)章,栗振寶. 超速離心技術(shù)的基本原理與應(yīng)用[J]. 白求恩醫(yī)科大學(xué)學(xué)報(bào),1983,9(6):119 - 124.

[26]Neuburger M,Journet E-P,Bligny R,et al. Purifcation of plant mitochondria by isopycnic centrifugation in density gradients of Percoll[J]. Arch Biochem Biophys,1982,217(1):312 - 323.

[27]Rickwood D. Preparative centrifugation: A practical approach[M]. Oxford:IRL Press at Oxford University Press,1992:404 - 417.

[28]Miller J B,van Sickle A R,Anthony R J,et al. Ensemble brightening and enhanced quantum yield in size-purifed silicon nanocrystals[J]. ACS Nano,2012,6(8):7389 - 7396.

[29]Peng Xiaogang,Manna L,Yang Weidong,et al. Shape control of CdSe nanocrystals[J]. Nature,2000,404(6773):59 - 61.

[30]Gaponik Nikolai,Talapin D V,Rogach A L,et al. Thiol-capping of CdTe nanocrystals:An alternative to organometallic synthetic routes[J]. J Phys Chem B,2002,106(29):7177-7185.

[31]Bai Lu,Ma Xiuju,Liu Junfeng,et al. Rapid separation and purifcation of nanoparticles in organic density gradients[J]. J Am Chem Soc,2010,132(7):2333 - 2337.

[32]Canham L T. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers[J]. Appl Phys Lett,1990,57(10):1046 - 1048.

[33]Talapin D V,Lee Jong-Soo,Kovalenko M V,et al. Prospects of colloidal nanocrystals for electronic and optoelectronic applications[J]. Chem Rev,2009,110(1):389 - 458.

[34]Colvin V L,Schlamp M C,Alivisatos A P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer[J]. Nature,1994,370(6488):354 -357.

[35]Chan W C W,Nie Shuming. Quantum dot bioconjugates for ultrasensitive nonisotopic detection[J]. Science,1998,281(5385):2016 - 2018.

[36]Michalet X,Pinaud F F,Bentolila L A,et al. Quantum dots for live cells,in vivo imaging,and diagnostics[J]. Science,2005,307(5709):538 - 544.

[37]Liu Shu-Man,Yang Yang,Sato S,et al. Enhanced photoluminescence from Si nano-organosols by functionalization with alkenes and their size evolution[J]. Chem Mater,2006,18(3):637 - 642.

[38]Pi X D,Liptak R W,Nowak J D,et al. Air-stable full-visible-spectrum emission from silicon nanocrystals synthesized by an all-gas-phase plasma approach[J]. Nanotechnology,2008,19(24):245603.

[39]Zou Jing,Sanelle P,Pettigrew K A,et al. Size and spectroscopy of silicon nanoparticles prepared via reduction of SiCl4[J]. J Cluster Sci,2006,17(4):565 - 578.

[40]Mastronardi M L,Hennrich F,Henderson E J,et al. Preparation of monodisperse silicon nanocrystals using density gradient ultracentrifugation[J]. J Am Chem Soc,2011,133(31):11928 - 11931.

[41]Speranskaya E S,Beloglazova N V,Abé S,et al. Hydrophilic,bright CuInS2quantum dots as Cd-free fluorescent Labels in quantitative immunoassay[J]. Langmuir,2014,30(25):7567 - 7575.

[42]Hersam M C. Progress towards monodisperse single-walled carbon nanotubes[J]. Nat Nanotechnol,2008,3(7):387 -394.

[43]Arnold M S,Green A A,Hulvat J F,et al. Sorting carbon nanotubes by electronic structure using density diferentiation[J]. Nat Nanotechnol,2006,1(1):60 - 65.

[44]Green A A,Hersam M C. Ultracentrifugation of single-walled nanotubes[J]. Mater Today,2007,10(12):59 - 60.

[45]Martel R. Sorting carbon nanotubes for electronics[J]. ACS Nano,2008,2(11):2195 - 2199.

[46]Arnold M S,Suntivich J,Stupp S I,et al. Hydrodynamic characterization of surfactant encapsulated carbon nanotubes using an analytical ultracentrifuge[J]. ACS Nano,2008,2(11):2291 - 2300.

[47]Green A A,Hersam M C. Colored semitransparent conductive coatings consisting of monodisperse metallic single-walled carbon nanotubes[J]. Nano Lett,2008,8(5):1417 - 1422.

[48]Green A A,Duch M C,Hersam M C. Isolation of single-walled carbon nanotube enantiomers by density diferentiation[J]. Nano Res,2009,2(1):69 - 77.

[49]Niyogi Sandip,Densmore C G,Doorn S K. Electrolyte tuning of surfactant interfacial behavior for enhanced density-based separations of single-walled carbon nanotubes[J]. J Am Chem Soc,2008,131(3):1144 - 1153.

[50]Backes C,Hauke F,Schmidt C D,et al. Fractioning HiPco and CoMoCAT SWCNTs via density gradient ultracentrifugation by the aid of a novel perylene bisimide derivative surfactant[J]. Chem Commun,2009(19):2643 - 2645.

[51]Kim Woo-Jae,Nair N,Lee Chang Young,et al. Covalent functionalization of single-walled carbon nanotubes alters their densities allowing electronic and other types of separation[J]. J Phys Chem C,2008,112(19):7326 - 7331.

[52]Yanagi Kazuhiro,Iitsuka Toshie,F(xiàn)ujii Shunjiro,et al. Separations of metallic and semiconducting carbon nanotubes by using sucrose as a gradient medium[J]. J Phys Chem C,2008,112(48):18889 - 18894.

[53]Stu¨rzl N,Hennrich F,Lebedkin S,et al. Near monochiral single-walled carbon nanotube dispersions in organic solvents[J]. J Phys Chem C,2009,113(33):14628 - 14632.

[54]Fagan J A,Becker M L,Chun J,et al. Length fractionation of carbon nanotubes using centrifugation[J]. Adv Mater,2008,20(9):1609 - 1613.

[55]Green A A,Hersam M C. Processing and properties of highly enriched double-wall carbon nanotubes[J]. Nat Nanotechnol,2009,4(1):64 - 70.

[56]Tsyboulski D A,Hou Ye,F(xiàn)akhri N,et al. Do inner shells of double-walled carbon nanotubes fluoresce?[J]. Nano Lett,2009,9(9):3282 - 3289.

[57]Ji Zongfei,Zhang Danying,Li Ling,et al. The hepatotoxicity of multi-walled carbon nanotubes in mice[J]. Nanotechnology,2009,20(44): 445101.

[58]Sun Xiaoming,Zaric Sasa,Daranciang Dan,et al. Optical properties of ultrashort semiconducting single-walled carbon nanotube capsules down to sub-10 nm[J]. J Am Chem Soc,2008,130(20):6551 - 6555.

[59]Zhang Minfang,Yamaguchi Takashi,Iijima Sumio,et al. Individual single-wall carbon nanohorns separated from aggregates[J]. J Phys Chem C,2009,113(26):11184 - 11186.

[60]Liu Jie,Hersam M C. Recent developments in carbon nanotube sorting and selective growth[J]. MRS Bull,2010,35(4):315 - 321.

[61]Engel M,Small J P,Steiner M,et al. Thin film nanotube transistors based on self-assembled,aligned,semiconducting carbon nanotube arrays[J]. Acs Nano,2008,2(12):2445 -2452.

[62]Nougaret L,Happy H,Dambrine G,et al. 80 GHz feldeffect transistors produced using high purity semiconducting single-walled carbon nanotubes[J]. Appl Phys Lett,2009,94(24):243505.

[63]Tabakman S M,Welsher K,Hong G,et al. Optical properties of single-walled carbon nanotubes separated in a density gradient:Length,bundling,and aromatic stacking effects[J]. J Phys Chem C,2010,114(46):19569 - 19575.

(待續(xù))

(編輯 王 萍)

Recent progresses in density gradient centrifugation separation of nanomaterials

Li Pengsong,Cai Zhao,Li Li,Luo Liang,Kuang Yun,Sun Xiaoming
(State Key Laboratory of Chemical Resource Engineering,Beijing University of Chemical Technology,Beijing 100029,China)

Due to the quantum size ef ect,the properties of nanomaterials are closely connected with their size and morphology,but it is hard to control for most solution based synthesis. Therefore,developing nanoseparation methods to obtain monodisperse nanostructures is of great significance for their application. As a versatile and highly efficient separation method with tunable separation systems,density gradient centrifugation separation method can separate various nanostructures synthesized in dif erent environments,mainly according to their dif erences in size and shape. In this paper,the mechanism,separation method,various separation systems and practical application of the density gradient centrifugation were illustrated,recent research progresses were reviewed and future development was prospected.

nanomaterials;nanoseparation;density gradient centrifugation;monodisperse nanostructure

1000 - 8144(2016)06 - 0648 - 08

TQ 028

A

10.3969/j.issn.1000-8144.2016.06.002

2016 - 03 - 28;[修改稿日期]2016 - 04 - 19。

李鵬松(1992—),男,河南省潢川縣人,碩士生。聯(lián)系人:孫曉明,電話 010 - 64433091,電郵 sunxm@mail.buct.edu.cn。

國(guó)家自然科學(xué)基金資助項(xiàng)目(21125101, 21520102002)。

猜你喜歡
單壁密度梯度離心法
TPMS點(diǎn)陣結(jié)構(gòu)的密度梯度雜交優(yōu)化設(shè)計(jì)
中國(guó)首臺(tái)準(zhǔn)環(huán)對(duì)稱仿星器中離子溫度梯度模的模擬研究*
單壁碳納米管內(nèi)1,4-萘琨電池電極材料性能的研究
云南化工(2021年7期)2021-12-21 07:27:38
自然沉淀法與離心法在自體脂肪移植隆乳術(shù)中的應(yīng)用效果對(duì)比研究
對(duì)Meselson和Stahl半保留復(fù)制實(shí)驗(yàn)的解析
一種改進(jìn)的超聲提取氣相色譜法測(cè)定土壤中15種硝基苯類化合物
離心法和蒸餾法原油化驗(yàn)研究
影響原油含水化驗(yàn)準(zhǔn)確性的因素分析與改進(jìn)措施
多巴胺和腎上腺素在單壁碳納米管修飾電極上的電化學(xué)行為
單壁碳納米管對(duì)微穿孔板吸聲體吸聲性能的影響
阳朔县| 时尚| 揭东县| 永川市| 衡阳市| 二连浩特市| 明水县| 威远县| 滦南县| 苏尼特右旗| 荆州市| 九寨沟县| 神池县| 淄博市| 万山特区| 白山市| 五大连池市| 桑植县| 石嘴山市| 宁强县| 八宿县| 曲水县| 灵川县| 华安县| 福清市| 鄂托克前旗| 沽源县| 尖扎县| 北海市| 土默特右旗| 商洛市| 含山县| 惠水县| 普宁市| 贡山| 郸城县| 石渠县| 甘泉县| 唐海县| 出国| 和政县|