曾元輝 趙淼 張正文 周海倫
doi: 10.11835/j.issn.1000-582X.2022.120
收稿日期:2022-04-22
網(wǎng)絡(luò)出版日期:2022-08-02
基金項(xiàng)目:重慶市自然科學(xué)基金重點(diǎn)項(xiàng)目資助(cstc2020jcyj-zdxmX0021)。
Foundation:Supported by the Key Project of the Natural Science Foundation of Chongqing (cstc2020jcyj-zdxmX0021).
作者簡介:曾元輝(1997—),男,碩士研究生,研究方向?yàn)榻饘僭霾闹圃旌忘c(diǎn)陣結(jié)構(gòu),(E-mail)zengyhl@163.com。
通信作者:張正文,男,教授,博士生導(dǎo)師,(E-mail)zhangzw@cqu.edu.cn。
摘要:三周期極小曲面(triply periodic minimal surface,TPMS)點(diǎn)陣結(jié)構(gòu)因其優(yōu)異的綜合性能受到中外學(xué)者的廣泛關(guān)注。在點(diǎn)陣結(jié)構(gòu)實(shí)際應(yīng)用過程中,常常需要對(duì)其進(jìn)行優(yōu)化設(shè)計(jì)以兼顧輕量化與承載性能兩方面的要求。目前,對(duì)TPMS點(diǎn)陣結(jié)構(gòu)的優(yōu)化設(shè)計(jì)主要集中于密度梯度層面,未綜合考慮載荷方向?qū)ζ淞W(xué)性能的影響。為此,首先研究了TPMS點(diǎn)陣結(jié)構(gòu)的各向異性特征?;谄骄鶊鼍鶆蚧椒ㄇ蠼饬瞬煌愋蚑PMS點(diǎn)陣結(jié)構(gòu)的等效彈性矩陣,通過Matlab插值計(jì)算,繪制了其在三維空間范圍內(nèi)的楊氏模量圖。發(fā)現(xiàn)不同類型的TPMS點(diǎn)陣結(jié)構(gòu)呈現(xiàn)出不同的各向異性特征,其中W點(diǎn)陣結(jié)構(gòu)在[100]等軸線方向上性能較強(qiáng),在[111]等斜向?qū)欠较蛏闲阅茌^弱,而P點(diǎn)陣結(jié)構(gòu)則剛好相反。根據(jù)TPMS點(diǎn)陣結(jié)構(gòu)的各向異性,同時(shí)考慮主應(yīng)力方向以及相對(duì)密度分布對(duì)其性能的影響,提出了TPMS點(diǎn)陣結(jié)構(gòu)的密度梯度雜交優(yōu)化設(shè)計(jì)方法。以懸臂梁模型為基礎(chǔ),基于載荷邊界條件對(duì)其進(jìn)行拓?fù)鋬?yōu)化設(shè)計(jì),并將拓?fù)鋬?yōu)化密度云映射為點(diǎn)陣結(jié)構(gòu)的相對(duì)密度分布,從而實(shí)現(xiàn)密度梯度設(shè)計(jì)。根據(jù)TPMS點(diǎn)陣結(jié)構(gòu)的各向異性特征以及單元主應(yīng)力方向分別選擇W和P點(diǎn)陣單胞填充懸臂梁,使主應(yīng)力方向位于點(diǎn)陣結(jié)構(gòu)性能較強(qiáng)的方向,避免點(diǎn)陣結(jié)構(gòu)在性能薄弱的方向承受較大的應(yīng)力。將不同類型的TPMS點(diǎn)陣單元合理分布后,利用激活函數(shù)將它們進(jìn)行雜交連接,實(shí)現(xiàn)結(jié)構(gòu)梯度設(shè)計(jì)。綜合相對(duì)密度分布和單元結(jié)構(gòu)分布,生成密度梯度雜交點(diǎn)陣結(jié)構(gòu)。采用有限元仿真方法對(duì)比分析優(yōu)化設(shè)計(jì)前后點(diǎn)陣結(jié)構(gòu)的承載性能,結(jié)果表明密度梯度W和P點(diǎn)陣結(jié)構(gòu)的剛度與對(duì)應(yīng)的均質(zhì)點(diǎn)陣結(jié)構(gòu)相比都有明顯提高,而由W和P兩種點(diǎn)陣單胞組成的密度梯度雜交點(diǎn)陣結(jié)構(gòu)剛度最大,比密度梯度W和P點(diǎn)陣結(jié)構(gòu)分別提高4.63%和33.63%。該結(jié)果表明在密度優(yōu)化的基礎(chǔ)上,根據(jù)承載時(shí)單元主應(yīng)力方向?qū)⒉煌愋偷狞c(diǎn)陣結(jié)構(gòu)進(jìn)行合理分布以及混合雜交設(shè)計(jì)能夠進(jìn)一步提高結(jié)構(gòu)的整體剛度。建立的TPMS點(diǎn)陣結(jié)構(gòu)密度梯度雜交優(yōu)化方法為其在輕量化設(shè)計(jì)等方面的應(yīng)用提供了一定的指導(dǎo)。
關(guān)鍵詞:三周期極小曲面;點(diǎn)陣結(jié)構(gòu);密度梯度;雜交;各向異性
中圖分類號(hào):TH164????????? 文獻(xiàn)標(biāo)志碼:A??????? ????? 文章編號(hào):1000-582X(2024)05-076-11
Optimization design for TPMS lattice structures combining density gradient with hybridization
ZENG Yuanhui, ZHAO Miao, ZHANG Zhengwen, ZHOU Hailun
(School of Mechanical and Vehicle Engineering, Chongqing University, Chongqing 400044, P. R. China)
Abstract: The triply periodic minimal surface (TPMS) lattice structures have attracted extensive attention from scholars worldwide. In practical applications, these lattice structures are typically designed optimally to meet the requirements of both lightweight and load-bearing capacity. However, current optimal designs for TPMS lattice structures are limited to density gradients, and the influence of loading directions on their mechanical properties has not been comprehensively considered. To address this gap, the anisotropic characteristics of TPMS lattice structures were investigated. Their equivalent elastic matrixes were calculated by using the homogenization method, and three-dimensional Youngs modulus diagrams were generated with Matlab. The results showed distinct anisotropy characteristics for different types of TPMS lattice structures. For instance, the W structure exhibited higher strength in the axial direction [100] and weaker strength in the diagonal direction [111]; whereas? the P structure showed the opposite trend. Subsequently, an optimization design method was proposed, combining density gradient with hybridization, considering both density distribution and principal stress directions. The optimization process involved topology optimization of a cantilever beam structure, and mapping the obtained density cloud to the relative density distribution of the lattice structure. Based on the anisotropic characteristics of TPMS lattice structures, W and P lattice cells were selected to fill the cantilever beam, aligning the principal stress directions with the strong mechanical properties of the lattice cells. After reasonable distribution of TPMS lattice cells of different types, they were smoothly connected by an activation function. Finally, the relative density and lattice cell type distributions were combined to obtain a density-graded hybrid lattice structure. The load-bearing performances of lattice structures before and after optimization designs were compared through finite element analysis. The results showed that the stiffness of density gradient W and P lattice structures was significantly improved compared with uniform structures. Moreover, the stiffness of the graded hybrid lattice structure was the highest, surpassing the density gradient W and P lattice structures by 4.63% and 33.63%, respectively. This demonstrates that hybridization design, achieved through a reasonable distribution of different lattice cells according to principal stress directions, can further improve overall stiffness. The established optimization method, combining density gradient with hybridization for TPMS lattice structures, provides a guidance for their application in lightweight designs.
Keywords: triply periodic minimal surface; lattice structure; density gradient; hybridization; anisotropic characteristic
在航空航天、汽車船舶等領(lǐng)域,裝備或結(jié)構(gòu)的輕量化是設(shè)計(jì)者們需要考慮的重要目標(biāo)之一[1]。而具有周期孔隙形態(tài)的多孔點(diǎn)陣結(jié)構(gòu)擁有輕質(zhì)高強(qiáng)的特性,是應(yīng)用于輕量化設(shè)計(jì)的理想結(jié)構(gòu)[2]。目前,研究較多的點(diǎn)陣結(jié)構(gòu)可分為兩類[3]。一類是基于CAD方法設(shè)計(jì)的桁架式點(diǎn)陣結(jié)構(gòu),如體心立方[4]、面心立方[5]結(jié)構(gòu)等;另一類是基于三周期極小曲面(triply periodic minimal surface,TPMS)設(shè)計(jì)的點(diǎn)陣結(jié)構(gòu),即TPMS點(diǎn)陣結(jié)構(gòu)。與傳統(tǒng)桁架式點(diǎn)陣結(jié)構(gòu)相比,TPMS點(diǎn)陣結(jié)構(gòu)的力學(xué)性能更加優(yōu)異,更便于進(jìn)行功能梯度設(shè)計(jì)且具有自支撐性[6],應(yīng)用前景十分廣闊,近年來受到了大量中外學(xué)者的關(guān)注和研究。
在工程實(shí)際應(yīng)用過程中,均質(zhì)點(diǎn)陣結(jié)構(gòu)往往難以滿足結(jié)構(gòu)和功能需求。因此,常需要對(duì)點(diǎn)陣結(jié)構(gòu)進(jìn)行相應(yīng)的梯度優(yōu)化設(shè)計(jì)。張明康[7]根據(jù)結(jié)構(gòu)承載時(shí)的應(yīng)力云調(diào)整TPMS點(diǎn)陣結(jié)構(gòu)相對(duì)密度分布,進(jìn)行變密度設(shè)計(jì),使材料更多地分配在應(yīng)力集中區(qū)域,從而大幅增強(qiáng)了結(jié)構(gòu)的抗彎能力。Panesar等[8]根據(jù)載荷邊界條件對(duì)懸臂梁結(jié)構(gòu)進(jìn)行了拓?fù)鋬?yōu)化設(shè)計(jì),并將拓?fù)鋬?yōu)化密度云映射為TPMS點(diǎn)陣結(jié)構(gòu)的相對(duì)密度分布,進(jìn)行密度梯度設(shè)計(jì),從而優(yōu)化了點(diǎn)陣結(jié)構(gòu)的承載剛度。Alkebsi等[9]也對(duì)TPMS點(diǎn)陣結(jié)構(gòu)展開了類似的優(yōu)化設(shè)計(jì)研究。然而,這些研究均只在密度分布層面對(duì)TPMS點(diǎn)陣結(jié)構(gòu)展開優(yōu)化設(shè)計(jì),沒有關(guān)注載荷方向?qū)ζ淞W(xué)性能的影響。
點(diǎn)陣結(jié)構(gòu)具有孔隙特征,在空間范圍內(nèi)的材料分布并不均勻,從而在不同方向上的性能存在差異,呈現(xiàn)出一定的各向異性[10-12],故在設(shè)計(jì)及應(yīng)用過程中有必要關(guān)注載荷方向?qū)ζ湫阅艿挠绊憽D壳埃瑢W(xué)者們對(duì)TPMS點(diǎn)陣結(jié)構(gòu)各向異性的關(guān)注也較少。因此,筆者將首先對(duì)TPMS點(diǎn)陣結(jié)構(gòu)的各向異性行為展開研究,并在此基礎(chǔ)上,綜合考慮相對(duì)密度變化以及載荷方向?qū)ζ淞W(xué)性能的影響,建立TPMS點(diǎn)陣結(jié)構(gòu)的密度梯度雜交優(yōu)化方法,為TPMS點(diǎn)陣結(jié)構(gòu)的應(yīng)用提供設(shè)計(jì)層面的理論參考。
1 TPMS點(diǎn)陣結(jié)構(gòu)設(shè)計(jì)方法
1.1 TPMS點(diǎn)陣結(jié)構(gòu)設(shè)計(jì)
常見的TPMS曲面[13]有Schoen gyroid(簡稱G)、Schwarz diamond(D)、Schwarz primitive(P)以及Schoen I-WP(W),其中W和P曲面的函數(shù)表達(dá)式如下:
(1)
。??? (2)
式中:參數(shù)d可控制曲面的偏置,參數(shù)k可控制曲面周期的大小,曲面一個(gè)周期的長度為2π/k。
如圖1所示,TPMS曲面是點(diǎn)陣結(jié)構(gòu)實(shí)體與孔隙之間的邊界面,2個(gè)邊界面的中間區(qū)域-d≤?(x,y,z)≤d為點(diǎn)陣結(jié)構(gòu)的實(shí)體部分。W和P點(diǎn)陣結(jié)構(gòu)的函數(shù)表達(dá)式分別為
(3)
(4)
在設(shè)計(jì)過程中,通過改變TPMS曲面隱函數(shù)表達(dá)式中參數(shù)k和d的值,調(diào)整曲面的周期長度和邊界面相對(duì)位置,即可改變點(diǎn)陣結(jié)構(gòu)的單胞尺寸和相對(duì)密度。W和P點(diǎn)陣結(jié)構(gòu)的相對(duì)密度ρ與參數(shù)d值的關(guān)系如圖2所示。
1.2 TPMS點(diǎn)陣結(jié)構(gòu)的雜交設(shè)計(jì)
兩種點(diǎn)陣結(jié)構(gòu)的雜交設(shè)計(jì)是將兩種不同類型的點(diǎn)陣結(jié)構(gòu)平滑過渡連接,也稱為結(jié)構(gòu)梯度設(shè)計(jì),可通過以下函數(shù)來實(shí)現(xiàn)[14]:
。??? (5)
式中:α(x,y,z)屬于一種激活函數(shù),它的函數(shù)曲線如圖3所示,其值域?yàn)椋?,1);f(x,y,z)=0代表2種不同結(jié)構(gòu)過渡連接的位置;λ值反映過渡的急劇程度,λ值越小說明過渡越平緩,λ值越大則說明過渡越急劇,本研究中通過對(duì)比發(fā)現(xiàn)λ值取3較為合適?;谠摵瘮?shù),通過等式(6)將W和P點(diǎn)陣結(jié)構(gòu)進(jìn)行雜交,其中?hyb(x,y,z)表示雜交結(jié)構(gòu),在α(x,y,z)的值從0向1轉(zhuǎn)變時(shí),可實(shí)現(xiàn)整個(gè)表達(dá)式從?P(x,y,z)到?W(x,y,z)的轉(zhuǎn)變,從而完成2種結(jié)構(gòu)的平滑過渡。
。??? (6)
2 TPMS點(diǎn)陣結(jié)構(gòu)的各向異性分析
Weissmann等[11]和Choy等[12]將點(diǎn)陣結(jié)構(gòu)進(jìn)行了不同角度的旋轉(zhuǎn)變換,并通過實(shí)驗(yàn)測試了它們在各方向上的力學(xué)性能。然而,他們的方法只能求得點(diǎn)陣結(jié)構(gòu)在少數(shù)不同方向上的性能差異,具有一定局限性。為得到點(diǎn)陣結(jié)構(gòu)在整個(gè)平面或空間連續(xù)范圍內(nèi)的各向異性,朱健峰[15]和Lu等[16]基于平均場均勻化方法求解了點(diǎn)陣結(jié)構(gòu)的等效彈性矩陣,并利用Matlab進(jìn)行插值計(jì)算后繪制了點(diǎn)陣結(jié)構(gòu)在平面和空間范圍內(nèi)的楊氏模量圖,從而可直觀地了解其各向異性。在空間直角坐標(biāo)系中,點(diǎn)陣結(jié)構(gòu)應(yīng)力分量與應(yīng)變分量的關(guān)系為
(7)
式中:σx、σy、σz分別為x、y、z方向的正應(yīng)力;εx、εy、εz分別為x、y、z方向的正應(yīng)變;τxy、τyz、τzx分別為xy平面、yz平面和zx平面內(nèi)的切應(yīng)力;γxy、γyz、γxy分別為xy平面、yz平面和zx平面內(nèi)的切應(yīng)變;C為點(diǎn)陣結(jié)構(gòu)的彈性矩陣,是一個(gè)6×6的對(duì)稱矩陣,即Cij=Cji,包含21個(gè)未知參數(shù)。由于點(diǎn)陣結(jié)構(gòu)是一種正交各向異性材料,獨(dú)立未知參數(shù)可進(jìn)一步減少至9個(gè),即
。??? (8)
由圖1可知,W和P結(jié)構(gòu)均是立方對(duì)稱性結(jié)構(gòu),在x、y、z三個(gè)方向上具有相同的形狀特征,所以該結(jié)構(gòu)在x、y、z三個(gè)方向上的楊氏模量以及xy、yz、zx三個(gè)平面內(nèi)的剪切模量分別相等,從而C11=C22=C33,C21=C31=C32,C44=C55=C66,最終彈性矩陣C剩3個(gè)獨(dú)立參數(shù)。
為求得C11、C21、C44這3個(gè)獨(dú)立參數(shù)的值,可分別在2種不同的載荷狀態(tài)下,對(duì)點(diǎn)陣結(jié)構(gòu)進(jìn)行2次有限元仿真計(jì)算。首先令,使x方向的應(yīng)變分量為0.1,其他方向的應(yīng)變分量保持為0,進(jìn)行仿真分析后導(dǎo)出正應(yīng)力σx和σy的值,代入式(7)中,即可求得C11和C21的值。同樣地,令進(jìn)行仿真分析,導(dǎo)出切應(yīng)力τxy的值,可求得C44的值。通過該方法求得相對(duì)密度為40%的W和P點(diǎn)陣結(jié)構(gòu)的彈性矩陣獨(dú)立參數(shù)值如表1所示。
點(diǎn)陣結(jié)構(gòu)的各向異性可通過的值來評(píng)估[16],若αr趨近于1,則說明點(diǎn)陣結(jié)構(gòu)在各方向上的力學(xué)性能差異較小,接近各向同性;反之若αr的值偏離1較大,則說明點(diǎn)陣結(jié)構(gòu)呈現(xiàn)出明顯的各向異性。根據(jù)表1中的數(shù)據(jù),計(jì)算得到W和P結(jié)構(gòu)的值分別為0.718和1.414,這說明W和P結(jié)構(gòu)均表現(xiàn)出一定的各向異性?;赪和P結(jié)構(gòu)的彈性矩陣,利用Matlab進(jìn)行插值計(jì)算,繪制它們在xy平面內(nèi)的二維楊氏模量圖以及空間三維楊氏模量圖(圖4)。
由圖4可知,W結(jié)構(gòu)和P結(jié)構(gòu)展現(xiàn)出不同的各向異性特征。W結(jié)構(gòu)在[100]等軸線方向上的性能最強(qiáng),而P結(jié)構(gòu)則是在[111]等斜向?qū)欠较蛏闲阅茏顝?qiáng)。在xy平面內(nèi),W和P結(jié)構(gòu)的力學(xué)性能呈現(xiàn)90°周期變化。在[0°,90°]范圍內(nèi),W結(jié)構(gòu)在[0°,30°)∪(60°,90°]方向上性能強(qiáng)于P結(jié)構(gòu),而P結(jié)構(gòu)在(30°,60°)方向上性能強(qiáng)于W結(jié)構(gòu)。
3 TPMS點(diǎn)陣結(jié)構(gòu)的剛度優(yōu)化設(shè)計(jì)
點(diǎn)陣結(jié)構(gòu)是一種各向異性結(jié)構(gòu),其在空間范圍內(nèi)各個(gè)方向上的力學(xué)性能存在較大差異。在受載過程中,點(diǎn)陣結(jié)構(gòu)性能薄弱的方向容易發(fā)生破壞失效從而影響整體結(jié)構(gòu)的承載能力。因此,為提升點(diǎn)陣結(jié)構(gòu)的承載性能,在密度優(yōu)化的基礎(chǔ)上,還應(yīng)充分考慮其各向異性行為。由第2節(jié)的分析可知,W結(jié)構(gòu)和P結(jié)構(gòu)具有互補(bǔ)的各向異性特征,故在設(shè)計(jì)過程中,可根據(jù)主應(yīng)力方向?qū)⑦@2種點(diǎn)陣結(jié)構(gòu)進(jìn)行雜交組合,從而減小單一類型點(diǎn)陣結(jié)構(gòu)各向異性造成的影響。
本節(jié)將以懸臂梁模型為基礎(chǔ)進(jìn)行點(diǎn)陣填充以及剛度優(yōu)化設(shè)計(jì)。設(shè)計(jì)思路如下:首先對(duì)懸臂梁結(jié)構(gòu)進(jìn)行拓?fù)鋬?yōu)化設(shè)計(jì),得到優(yōu)化后的密度分布云圖,并將其映射為點(diǎn)陣結(jié)構(gòu)的相對(duì)密度分布;求解懸臂梁模型每個(gè)單元的主應(yīng)力方向,根據(jù)主應(yīng)力方向的變化分別選擇W和P結(jié)構(gòu)填充懸臂梁模型,并將它們進(jìn)行過渡連接。通過密度優(yōu)化分配和2種點(diǎn)陣結(jié)構(gòu)的雜交組合,最后設(shè)計(jì)得到密度梯度和結(jié)構(gòu)梯度的復(fù)合型梯度點(diǎn)陣結(jié)構(gòu),以優(yōu)化整體結(jié)構(gòu)的承載性能。
3.1 懸臂梁模型分析
懸臂梁模型如圖5所示,其總體尺寸為52 mm×24 mm×4 mm,左端面固定,右端面受到方向豎直向下、大小為5 kN的力的作用。
在Abaqus軟件中構(gòu)建懸臂梁模型,將其劃分為單元尺寸4 mm的六面體網(wǎng)格,并施加邊界及載荷條件,建立有限元模型如圖6(a)所示,圖中RP-1為施加荷載的參考點(diǎn);對(duì)懸臂梁模型進(jìn)行仿真分析,得到其Von Mises應(yīng)力分布云圖(圖6(b)),由圖可知,懸臂梁結(jié)構(gòu)左上角和左下角區(qū)域的應(yīng)力最大。
3.2 密度梯度設(shè)計(jì)
根據(jù)靜力分析結(jié)果對(duì)懸臂梁結(jié)構(gòu)進(jìn)行拓?fù)鋬?yōu)化設(shè)計(jì)。拓?fù)鋬?yōu)化算法設(shè)置為固體各向同性材料懲罰(solid isotropic material with penalization,SIMP)[17]法,該算法懲罰中間密度,使單元的相對(duì)密度分別向0和1靠近,避免出現(xiàn)難以加工成形的中間密度結(jié)構(gòu)。但這會(huì)造成原有結(jié)構(gòu)的部分缺失,為保持其完整性,需尋找一種材料來代替這種中間密度結(jié)構(gòu)。點(diǎn)陣結(jié)構(gòu)恰好具有類似于中間密度結(jié)構(gòu)的屬性,因?yàn)辄c(diǎn)陣結(jié)構(gòu)具有可調(diào)控的孔隙率,其相對(duì)密度值能在0~1之間連續(xù)變化。因此,通過SIMP算法進(jìn)行優(yōu)化求解以后,可將懸臂梁單元的相對(duì)密度對(duì)應(yīng)于點(diǎn)陣結(jié)構(gòu)的相對(duì)密度。設(shè)置優(yōu)化后懸臂梁的體積為初始體積的40%,懸臂梁單元的相對(duì)密度最小值ρmin=0.25,最大值ρmax=0.55,懲罰因子為3,目標(biāo)函數(shù)為最小應(yīng)變能。優(yōu)化算法如下:
;
(9)
式中:f(ρ,U)代表應(yīng)變能;K(ρ)為整體剛度矩陣;U為位移;F為外作用力;V*為優(yōu)化后的總體積;vi為單元i的體積;ρi為單元i的相對(duì)密度;n為單元總數(shù)量。第1個(gè)約束為力平衡方程;第2個(gè)約束為體積約束;第3個(gè)約束為單元相對(duì)密度約束,每個(gè)單元的相對(duì)密度介于ρmin和ρmax之間?;谝陨蠗l件對(duì)懸臂梁結(jié)構(gòu)優(yōu)化后得到的結(jié)果如圖7所示。由圖可知,經(jīng)拓?fù)鋬?yōu)化后,懸臂梁結(jié)構(gòu)的材料更多地分布在應(yīng)力較高的區(qū)域。圖7中拓?fù)鋬?yōu)化后懸臂梁的最大應(yīng)力與圖6中懸臂梁的最大應(yīng)力相比略有上升,這是因?yàn)閮?yōu)化算法削減了懸臂梁的材料,其總質(zhì)量僅為初始時(shí)的40%,故承載效果不如初始結(jié)構(gòu)。
根據(jù)懸臂梁的密度云圖,將懸臂梁模型每個(gè)單元的相對(duì)密度映射為點(diǎn)陣單胞的相對(duì)密度。首先,從Abaqus中導(dǎo)出懸臂梁模型每個(gè)節(jié)點(diǎn)的相對(duì)密度值,然后進(jìn)行線性插值計(jì)算求出懸臂梁模型在其整個(gè)設(shè)計(jì)范圍內(nèi)的相對(duì)密度函數(shù)ρ(x,y,z),并將該函數(shù)設(shè)為TPMS點(diǎn)陣結(jié)構(gòu)的相對(duì)密度函數(shù)。由1.1節(jié)可知,W和P結(jié)構(gòu)的相對(duì)密度與參數(shù)d的關(guān)系分別為d=3.545ρ和d=1.874ρ。根據(jù)d與ρ之間的函數(shù)關(guān)系,可求得d。最后,將d(x,y,z)代入W和P結(jié)構(gòu)的隱函數(shù)表達(dá)式中,生成密度梯度W(Graded-W)和密度梯度P(Graded-P)點(diǎn)陣結(jié)構(gòu)如圖8所示。
圖中,Graded-W和Graded-P結(jié)構(gòu)均由13×6個(gè)點(diǎn)陣單胞組成,每個(gè)單胞的相對(duì)密度分別對(duì)應(yīng)于圖中懸臂梁模型每個(gè)單元的相對(duì)密度,并且結(jié)構(gòu)的整體相對(duì)密度為40%,與拓?fù)鋬?yōu)化設(shè)定的條件一致。
3.3 混合雜交設(shè)計(jì)
上述設(shè)計(jì)過程只是基于拓?fù)鋬?yōu)化密度云對(duì)點(diǎn)陣結(jié)構(gòu)的相對(duì)密度進(jìn)行了優(yōu)化分配,未考慮點(diǎn)陣結(jié)構(gòu)的各向異性行為對(duì)其承載能力的影響。由于懸臂梁處于平面應(yīng)力狀態(tài),因此,需要考慮點(diǎn)陣結(jié)構(gòu)在平面內(nèi)的各向異性。由第2節(jié)可知,在平面范圍內(nèi),W結(jié)構(gòu)在[0°,30°)∪(60°,90°]方向上的力學(xué)性能較強(qiáng),在[30°,60°]方向上性能較弱,而P結(jié)構(gòu)則剛好相反。因此,在懸臂梁承載模型中,若某單元的主應(yīng)力方向位于[30°,60°]時(shí),則該單元中填充P結(jié)構(gòu)更合適,而當(dāng)主應(yīng)力方向在[0°,30°)或(60°,90°]時(shí),選擇W結(jié)構(gòu)更理想。
為求得懸臂梁單元的主應(yīng)力,先從有限元分析結(jié)果中導(dǎo)出每個(gè)單元體的正應(yīng)力σx、σy、σz和切應(yīng)力τxy、τyz、τzx,在該平面應(yīng)力狀態(tài)下,σy、σz、τyz、τzx的值均為0,從而主應(yīng)力方向α可由公式(10)計(jì)算得出:
。??? (10)
依次求解每一個(gè)單元體的主應(yīng)力,并將主應(yīng)力方向α位于[0,30°)或(60°,90°]的單元體標(biāo)記為W,位于[30°,60°]的單元體標(biāo)記為P,得到W和P結(jié)構(gòu)的分布情況如圖9所示。
基于主應(yīng)力方向?qū)和P結(jié)構(gòu)進(jìn)行合理分布后,利用1.2節(jié)中的方法將2種結(jié)構(gòu)雜交連接,從而組成整體懸臂梁結(jié)構(gòu)。圖中W和P結(jié)構(gòu)的雜交分為2個(gè)階段完成,分別為x方向的雜交和y方向的雜交。該結(jié)構(gòu)一共有6層,首先利用S形函數(shù)對(duì)每一層中的W和P結(jié)構(gòu)進(jìn)行雜交連接,隨后將每一層當(dāng)作一個(gè)整體,再利用S形函數(shù)將各相鄰層連接,從而完成整體結(jié)構(gòu)設(shè)計(jì)。從下往上,將每一層依次設(shè)為r1、r2、r3、r4、r5、r6。r1、r2和r3的表達(dá)式分別為
,??? (11)
,??? (12)
。??? (13)
第6、5、4層分別與第1、2、3層結(jié)構(gòu)相同,于是,
(14)
最后,將r1、r2、r3、r4、r5、r6在y方向上進(jìn)行過渡連接,即可得到雜交點(diǎn)陣結(jié)構(gòu),其函數(shù)表達(dá)式可表示為
(15)
根據(jù)上述函數(shù)表達(dá)式,用Matlab生成由W結(jié)構(gòu)和P結(jié)構(gòu)組成的雜交點(diǎn)陣結(jié)構(gòu)(W-P)如圖10所示。
最后,將拓?fù)鋬?yōu)化密度云應(yīng)用于該雜交結(jié)構(gòu)中,進(jìn)行密度梯度和結(jié)構(gòu)梯度的復(fù)合型優(yōu)化設(shè)計(jì),得到密度梯度雜交點(diǎn)陣結(jié)構(gòu)(Graded-W-P)如圖11所示。
4 有限元仿真分析
為驗(yàn)證優(yōu)化設(shè)計(jì)方法的有效性,將優(yōu)化前的相對(duì)密度同為40%的均勻點(diǎn)陣結(jié)構(gòu)(Uniform-W,Uniform-P)和優(yōu)化后的點(diǎn)陣結(jié)構(gòu)Graded-W,Graded-P, Graded-W-P分別在相同的載荷條件下進(jìn)行有限元仿真,并將它們進(jìn)行對(duì)比分析。
將以上5種結(jié)構(gòu)分別劃分為單元類型C3D4的四面體網(wǎng)格,并施加與第3節(jié)中懸臂梁結(jié)構(gòu)相同的載荷邊界條件進(jìn)行模擬仿真,得到點(diǎn)陣結(jié)構(gòu)的應(yīng)力和位移云圖分別如圖12和圖13所示。
由圖12可知,通過密度梯度雜交設(shè)計(jì)后,點(diǎn)陣結(jié)構(gòu)的應(yīng)力集中區(qū)域減少,應(yīng)力分布更加均勻。根據(jù)圖13中的結(jié)果,得到5種點(diǎn)陣結(jié)構(gòu)承受相同載荷時(shí)的最大變形位移和剛度值如表2所示。由表可知,基于拓?fù)鋬?yōu)化密度云設(shè)計(jì)的Graded-W和Graded-P密度梯度點(diǎn)陣結(jié)構(gòu)的最大變形位移與初始均勻點(diǎn)陣結(jié)構(gòu)Uniform-W和Uniform-P相比均明顯降低。進(jìn)行雜交設(shè)計(jì)后,Graded-W-P結(jié)構(gòu)的變形位移進(jìn)一步減小。根據(jù)結(jié)構(gòu)的變形位移,求得其剛度值。Graded-P結(jié)構(gòu)的剛度比Uniform-P結(jié)構(gòu)高56.03%;Graded-W結(jié)構(gòu)的剛度比Uniform-W結(jié)構(gòu)提高了33.18%,說明用拓?fù)鋬?yōu)化方法對(duì)懸臂梁的相對(duì)密度進(jìn)行優(yōu)化分配后能夠明顯改善結(jié)構(gòu)的承載性能。密度梯度雜交結(jié)構(gòu)Graded-W-P的剛度值最高,比Graded-W和Graded-P結(jié)構(gòu)的剛度分別提高4.63%和33.63%,這表明點(diǎn)陣結(jié)構(gòu)的各向異性會(huì)對(duì)其承載性能造成影響,根據(jù)承載時(shí)單元主應(yīng)力方向?qū)⒉煌愋偷狞c(diǎn)陣結(jié)構(gòu)進(jìn)行混合雜交設(shè)計(jì)后能夠進(jìn)一步提升整體結(jié)構(gòu)的承載性能。
5 結(jié)? 論
分析了TPMS點(diǎn)陣結(jié)構(gòu)的各向異性特征,并綜合考慮密度變化和主應(yīng)力方向,對(duì)TPMS點(diǎn)陣結(jié)構(gòu)進(jìn)行了密度梯度雜交優(yōu)化設(shè)計(jì),得到的主要結(jié)論如下。
1)TPMS曲面可由隱函數(shù)調(diào)控,通過調(diào)整隱函數(shù)表達(dá)式中的參數(shù)d值,可改變TPMS點(diǎn)陣結(jié)構(gòu)的相對(duì)密度分布情況,從而實(shí)現(xiàn)復(fù)雜形式的密度梯度設(shè)計(jì)。
2)W和P結(jié)構(gòu)均表現(xiàn)出明顯的各向異性。在空間范圍內(nèi),W結(jié)構(gòu)在[100]等軸線方向上的力學(xué)性能較強(qiáng),在[111]等斜向?qū)欠较蛏系男阅茌^弱;P結(jié)構(gòu)則是在[111]等斜向?qū)欠较蛏系牧W(xué)性能更強(qiáng),在[100]等軸線方向上的性能較差,與W結(jié)構(gòu)剛好相反。將W和P結(jié)構(gòu)的各向異性在平面范圍內(nèi)對(duì)比發(fā)現(xiàn),W結(jié)構(gòu)在[0°,30°)∪(60°,90°]方向上性能強(qiáng)于P結(jié)構(gòu),而P結(jié)構(gòu)在(30°,60°)方向上的性能強(qiáng)于W結(jié)構(gòu)。
3)基于拓?fù)鋬?yōu)化方法對(duì)點(diǎn)陣結(jié)構(gòu)進(jìn)行變密度優(yōu)化設(shè)計(jì)能夠明顯提升結(jié)構(gòu)的整體剛度。除了密度分布以外,點(diǎn)陣結(jié)構(gòu)的各向異性也會(huì)影響其承載性能。在點(diǎn)陣結(jié)構(gòu)設(shè)計(jì)過程中,應(yīng)充分考慮其各向異性特征,盡量避免主應(yīng)力方向位于點(diǎn)陣結(jié)構(gòu)性能薄弱的方向。因此,可基于主應(yīng)力方向?qū)⒉煌愋偷狞c(diǎn)陣結(jié)構(gòu)進(jìn)行混合雜交設(shè)計(jì),使每個(gè)單元的主應(yīng)力方向與點(diǎn)陣結(jié)構(gòu)性能較強(qiáng)的方向一致,以優(yōu)化結(jié)構(gòu)的承載性能。
4)以懸臂梁承載模型為案例,在密度優(yōu)化的基礎(chǔ)上,根據(jù)主應(yīng)力方向,將W和P結(jié)構(gòu)進(jìn)行合理分布和雜交連接。對(duì)優(yōu)化后的結(jié)構(gòu)進(jìn)行有限元仿真,發(fā)現(xiàn)經(jīng)過密度梯度雜交優(yōu)化設(shè)計(jì)后,懸臂梁的剛度比僅由密度梯度W或P結(jié)構(gòu)填充時(shí)的剛度分別提高了4.63%和33.63%。
參考文獻(xiàn)
[1]? 王偉, 袁雷, 王曉巍. 飛機(jī)增材制造制件的宏觀結(jié)構(gòu)輕量化分析[J]. 飛機(jī)設(shè)計(jì), 2015, 35(3): 24-28.
Wang W, Yuan L, Wang X W. Macro-structural lightweight analysis for aircraft parts made by additive manufacturing technology[J]. Aircraft Design, 2015, 35(3): 24-28. (in Chinese)
[2]? Jin X, Li G X, Liu E C, et al. Lightweight design for servo frame based on lattice material[J]. IOP Conference Series: Materials Science and Engineering, 2017, 207: 012035.
[3]? Maconachie T, Leary M, Lozanovski B, et al. SLM lattice structures: properties, performance, applications and challenges[J]. Materials & Design, 2019, 183: 108137.
[4]? Bai L, Gong C, Chen X H, et al. Mechanical properties and energy absorption capabilities of functionally graded lattice structures: experiments and simulations[J]. International Journal of Mechanical Sciences, 2020, 182: 105735.
[5]? Al-Saedi D S J, Masood S H, Faizan-Ur-Rab M, et al. Mechanical properties and energy absorption capability of functionally graded F2BCC lattice fabricated by SLM[J]. Materials & Design, 2018, 144: 32-44.
[6]? 楊磊. 增材制造三周期極小曲面點(diǎn)陣結(jié)構(gòu)的力學(xué)性能研究[D]. 武漢: 華中科技大學(xué), 2020.
Yang L. Research on mechanical properties of additive manufactured triply periodic minimal surface lattice structures[D]. Wuhan: Huazhong University of Science and Technology, 2020. (in Chinese)
[7]? 張明康. 隱式曲面梯度多孔結(jié)構(gòu)優(yōu)化設(shè)計(jì)及激光選區(qū)熔化成形力學(xué)性能研究[D]. 廣州: 華南理工大學(xué), 2020.
Zhang M K. Optimal design and mechanical properties of implicit surface gradient porous structure manufactured by selective laser melting[D]. Guangzhou: South China University of Technology, 2020. (in Chinese)
[8]? Panesar A, Abdi M, Hickman D, et al. Strategies for functionally graded lattice structures derived using topology optimisation for additive manufacturing[J]. Additive Manufacturing, 2018, 19: 81-94.
[9]? Alkebsi E A A, Ameddah H, Outtas T, et al. Design of graded lattice structures in turbine blades using topology optimization[J]. International Journal of Computer Integrated Manufacturing, 2021, 34(4): 370-384.
[10]? Xu S Q, Shen J H, Zhou S W, et al. Design of lattice structures with controlled anisotropy[J]. Materials & Design, 2016, 93: 443-447.
[11]? Wei?mann V, Bader R, Hansmann H, et al. Influence of the structural orientation on the mechanical properties of selective laser melted Ti6Al4V open-porous scaffolds[J]. Materials & Design, 2016, 95: 188-197.
[12]? Choy S Y, Sun C N, Leong K F, et al. Compressive properties of Ti-6Al-4V lattice structures fabricated by selective laser melting: design, orientation and density[J]. Additive Manufacturing, 2017, 16: 213-224.
[13]? Khogalia E H, Choo H L, Yap W H. Performance of triply periodic minimal surface lattice structures under compressive loading for tissue engineering applications[J]. AIP Conference Proceedings, 2020, 2233(1): 020012.
[14]? Al-Ketan O, Lee D W, Rowshan R, et al. Functionally graded and multi-morphology sheet TPMS lattices: design, manufacturing, and mechanical properties[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 102: 103520.
[15]? 朱健峰. 點(diǎn)陣結(jié)構(gòu)機(jī)械性能分析與應(yīng)用[D]. 南京: 南京航空航天大學(xué), 2019.
Zhu J F. Mechanical performance analysis and application of lattice structures[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019. (in Chinese)
[16]? Lu Y T, Zhao W Y, Cui Z T, et al. The anisotropic elastic behavior of the widely-used triply-periodic minimal surface based scaffolds[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 99: 56-65.
[17]? Kim H W, Kim Y S, Lim J Y. Design of a double-optimized lattice structure using the solid isotropic material with penalization method and material extrusion additive manufacturing[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2020, 234(17): 3447-3458.
(編輯? 羅敏)