李 東,湯貝貝,王穎潔,紀艷芹,王 飛,路鎮(zhèn)宇,王 曼,張亞妮,李碧春
(揚州大學動物科學與技術學院/江蘇省動物繁育與分子設計重點實驗室,江蘇揚州225009)
蛋白質代謝通路對雞雄性生殖細胞分化的調控
李 東,湯貝貝,王穎潔,紀艷芹,王 飛,路鎮(zhèn)宇,王 曼,張亞妮,李碧春
(揚州大學動物科學與技術學院/江蘇省動物繁育與分子設計重點實驗室,江蘇揚州225009)
【目的】探究蛋白質代謝在雞雄性生殖細胞分化過程中的作用機制,為完善雞胚胎干細胞(embryonic stem cell,ESC)體外向雄性生殖細胞誘導分化體系研究提供依據?!痉椒ā坎捎昧魇椒诌x的方法獲取高純度的ESC、原始生殖細胞(primordial germ cells,PGCs)和精原干細胞(spermatogonia stem cell,SSCs),分別提取細胞的總 RNA,采用 RNA-Seq方法對 3種細胞的轉錄本進行深度測序,然后進行 WEGO(web gene ontology)和KEGG(kyoto encyclopedia of genes and genomes)通路富集分析,篩選出雞雄性生殖細胞分化過程中參與蛋白質代謝的關鍵通路及其關鍵基因,RT-qPCR (Real time Quantitative PCR) 檢測部分關鍵差異基因的表達變化,并與RNA-Seq(RNA sequencing)結果進行比較分析,同時分別從體內和體外水平對關鍵基因NOS2進行抑制,觀察各分組不同天數(shù)的細胞形態(tài)變化及檢測NOS2和C-kit、Cvh、Stra8、Dazl、integrin α6和integrin β1等生殖標記基因表達變化情況。【結果】在雄性生殖細胞分化的整個階段,有697個差異基因參與生物代謝,顯著富集于精氨酸-脯氨酸代謝通路、酪氨酸代謝通路以及色氨酸代謝通路,在這3條通路上篩選出NOS2、FAH和IDO等關鍵性基因,這些基因的在ESCs向SSCs分化過程中表達變化趨勢與其在RNA-Seq中的結果一致。體內抑制NOS2基因后,NOS2及C-kit、Cvh、Stra8、Dazl、integrin α6和integrin β1等生殖標記基因在空白組和對照組之間無顯著性的差異,而在抑制劑組中,NOS2及C-kit、Cvh、Stra8、Dazl、integrin α6和integrin β1等生殖標記基因的mRNA表達量均出現(xiàn)了降低;而體外抑制NOS2基因后,對照組中的ESCs在2、4、6、8和10d內細胞不斷增殖,但是未出現(xiàn)類胚體;RA誘導組中,2d出現(xiàn)小的類胚體,4d類胚體增大,且數(shù)量增多,6d類胚體邊緣開始出現(xiàn)破裂,8d類胚體解體,10d出現(xiàn)類精原樣細胞;抑制劑組中,ESCs在 2、4、6、8和 10d內無類胚體出現(xiàn),且相較于對照組細胞增殖緩慢;RA+抑制劑組中,2和4d內無類胚體出現(xiàn),細胞增殖緩慢,6d出現(xiàn)小的類胚體,8d類胚體數(shù)量少量增多,且體積稍顯增大,10d類胚體開始裂解。并且經過抑制劑的抑制后,NOS2及C-kit、Cvh、Stra8、Dazl、integrin α6和integrin β 1等生殖標記基因的表達量在RA誘導組、抑制劑組和RA+抑制劑組中相對于對照組均呈顯著性或極顯著性的下調趨勢?!窘Y論】基于RNA-Seq技術及生物信息學方法篩選出ESCs向雄性生殖細胞分化過程中精氨酸-脯氨酸代謝通路及關鍵基因NOS2的基礎上,通過對NOS2基因在雞體內和體外的抑制,發(fā)現(xiàn)NOS2在被抑制后,ESCs向雄性生殖細胞分化的過程受到抑制。說明了精氨酸-脯氨酸代謝通路及關鍵基因NOS2對ESCs向雄性生殖細胞分化過程中起到重要的調節(jié)作用。
RNA-Seq;雞胚胎干細胞;原始生殖細胞;精原干細胞;雄性生殖細胞;一氧化氮合成酶2;抑制劑;分化
【研究意義】生殖細胞在生命循環(huán)和傳承中有著不可替代的作用,因為其可以將遺傳信息傳遞至下一代,這一特性使其迅速成為生命科學研究的重要課題之一。多年來,科研工作者一直致力于將ESC體外誘導分化為生殖細胞,以解決不孕不育的問題,并通過生殖細胞的研究來探索細胞增殖、分化和發(fā)育的調控機制[1]?!厩叭搜芯窟M展】細胞增殖、分化和發(fā)育與細胞內代謝水平息息相關,蛋白質代謝在細胞分化過程中具有重要的作用。韓明權[2]等在研究藥物對腫瘤細胞的抑制效應時發(fā)現(xiàn),腫瘤細胞的蛋白質代謝失常,S+G2/M 期細胞比例降低,從而影響了腫瘤細胞的分化和增殖情況;Fei等[3-6]分別發(fā)現(xiàn)Smad 蛋白家族是細胞內重要的信號轉導蛋白,在多種細胞分化和轉分化過程具有重要的調控作用。TAN等[7]在研究精氨酸對新生仔豬小腸細胞的影響時發(fā)現(xiàn),外源添加精氨酸能夠調節(jié)新生仔豬體內精氨酸代謝,從而影響小腸細胞的增殖、分化和功能。這些研究都充分說明蛋白質代謝在細胞的增殖、分化和發(fā)育過程中扮演非常重要的作用?!颈狙芯壳腥朦c】因此,本研究基于前期RNA-Seq深度測序的基礎上,通過WEGO分析(http://wego.genomics.org.cn/cgi-bin/wego/index.pl)和KEGG(http://www.funnet.ws/)通路顯著富集分析篩選與蛋白質代謝相關的通路和關鍵性差異基因,并對關鍵基因進行體內和體外抑制,旨在初步探究蛋白質代謝及其關鍵基因對雄性生殖細胞分化的調節(jié)機制,為建立固定、規(guī)范、有效的體外細胞誘導體系打下良好的基礎?!緮M解決的關鍵問題】本試驗初步探究蛋白質代謝通路對雄性生殖細胞分化的影響,還需要通過 RNA干擾、基因敲除或敲入、免疫共沉淀等一系列的方法進一步探究其具體的作用機制。
1.1 實驗材料和試劑
試驗于2012年8月24日分離細胞起至2014年12月20日完成稿件,于揚州大學推廣樓320課題組完成。試驗受精蛋來自中國農業(yè)科學院家禽研究所實驗禽場如皋黃雞群,共使用18 340枚,分3個重復組,在37.5°C,相對濕度為60%的條件下孵化。孵化分期采用文獻[12]和[13]建立的方法。
DMEM培養(yǎng)液(Gibco)、小牛血清(Gibco)、絲裂霉素-C(Roche)、β-琉基乙醇(BBI)、雞血清、L-谷氨酰胺、丙酮酸鈉、胰蛋白酶、膠原酶I、堿性成纖維生長因子(bFGF)、人胰島素樣生長因子(hIGF)、人干細胞因子(hSCF)、小鼠白血病抑制因子(mUF)均源自Sigma公司、NOS2抑制劑S-Methylisothiourea sulfate(Santa Cruz)、維甲酸(RA)(Sigma)。
1.2 試驗方法
1.2.1 雞ESCs的分離、培養(yǎng)、傳代及分選 ESCs的分離、培養(yǎng)及傳代方法參見文獻[13, 14]的方法。采用PCR方法對其進行雌雄鑒定,以排除雌性樣本的干擾。
采用流式細胞分選技術,對運用抗體標記的ESC、PGC和SSC進行分選,確保獲得高純度的細胞。其中選擇SSEA-1、SOX2干細胞表面特異抗原及分子標記物標記ESC,酪氨酸激酶受體C-kit及SSEA-1標記PGC,精原干細胞重要表面標志 integrin α6及integrinβ1雙重標記SSC。
1.2.2 RNA-Seq 參照Illumina公司mRNA-Seq步驟進行 RNA建庫,在上海歐易生物醫(yī)學科技有限公司公司使用Illumina公司HisSeq2000進行測序,上樣量為50ng。測序結果同數(shù)據庫進行比對注釋后,進行后續(xù)試驗分析。RNA標準為RIN≥7,28S/18S>0.7。
1.2.3 QRT-PCR檢測 利用RNeasy kit試劑盒提取細胞總 RNA,并反轉錄成 cDNA,以此為模版進行RT-qPCR。按照熒光定量PCR試劑盒說明,使用SYBR熒光試劑和7900 System熒光定量儀器進行Real-time PCR試驗,最后在Microsoft Excel軟件內用2-ΔΔCt相對定量法分析試驗數(shù)據。引物具體信息見表1。 Table 1 Primers of related genes in RT-qPCR
表1 RT-QPCR相關基因的引物
1.2.4 NOS2體內、外抑制試驗
1.2.4.1 NOS2體內抑制試驗 取剛受精的雞胚,注射方法參考文獻[15],分組情況為:①空白組:不經任何處理,直接孵化;②對照組:中端注射100 μL ddH2O;③ 抑制組:中端注射100 μL 1μmol·L-1的NOS2抑制劑。分別取各組第0天的雞胚、第5.5天的生殖脊、第18天的睪丸組織,提取RNA,反轉錄為cDNA,RT-qPCR檢測NOS2、C-kit、Cvh、Stra8、Dazl、integrinα6和integrin β1等基因的mRNA表達情況。
1.2.4.2 NOS2體外抑制試驗 取培養(yǎng)至 2代雞ESCs,分組情況為:①對照組:添加普通培養(yǎng)基;②RA誘導組:采用RA誘導;③抑制劑組:對照組的基礎上添加1μmol·L-1的:④RA+抑制劑組:在RA誘導的基礎上添加工作液濃度1μmol·L-1的抑制劑。觀察各組第2、4、6、8和10天的細胞的形態(tài)變化,并分別取各組第2、4、6、8和10天的細胞,提取RNA,反轉錄為cDNA,RT-qPCR檢測NOS2、C-kit、Cvh、Stra8、Dazl、integrin α6和integrin β1等基因的mRNA表達情況。
1.2.5 數(shù)據處理 所有數(shù)據以均數(shù)±標準誤(X± SEM)表示,應用GraphPad Prism5 統(tǒng)計學軟件,采用兩樣本均數(shù)間t檢驗的方法,P<0.05表示差異顯著;P<0.01表示差異極顯著。
2.1 RNA-Seq分析
在ESC vs PGC和PGC vs SSC兩組中分別存在7 967和6 496個差異基因,通過VENNY(http:// bioinfogp. cnb.csic.es/tools/venny/)分析發(fā)現(xiàn),有3 580個差異基因同參與了雄性生殖細胞分化的整個過程,并通過DAVID(http://david.abcc.ncifcrf.gov/)數(shù)據庫對其進行GO功能注釋分類,發(fā)現(xiàn)有697個差異基因參與到生物代謝過程。
針對這697個差異基因,再通過KEGG富集通路分析發(fā)現(xiàn),參與雄性生殖細胞整個分化過程的代謝差異基因主要富集于精氨酸-脯氨酸代謝通路、酪氨酸代謝通路和色氨酸代謝通路。3條代謝通路中,在雄性生殖細胞分化的全過程中均差異顯著的基因分別有 5個(LOC777369、LOC776984、P4Hα3、P5CSL和NOS2)、2個(HGD和FAH)和1個(IDO)(表2)。
表2 雄性生殖細胞分化過程相關調控差異基因Table 2 Related regulatory genes in differentiation process of male germ cells
2.2 RT-qPCR驗證通路基因
針對部分關鍵基因進行 RT-qPCR驗證,以其在ESC中表達量為對照,檢測出其在PGC和SSC中的相對表達量(圖1)。
根據RT-qPCR結果顯示,在ESC分化為SSC的整個階段中,LOC776984、P4Hα3、P5CSL、HGD、FAH和IDO均先上調后下調,LOC777369和NOS2為先下調后上調。這些基因表達趨勢與其在RNA-Seq中的表達趨勢基本一致。
圖1 相關差異基因相對表達量Fig. 1 Relative expression of related differentiation genes
2.3 NOS2體內、外抑制
2.3.1 NOS2體內抑制 體內抑制后,針對NOS2及C-kit、Cvh、Stra8、Dazl、integrin α6和integrin β1等生殖標記基因進行RT-qPCR檢測,以其在第0天雞胚的表達量為對照,檢測其第5.5天生殖脊、第18天睪丸組織的mRNA表達量,結果顯示,NOS2及C-kit、 Cvh、Stra8、Dazl、integrin α6和integrin β1等生殖標記基因在空白組和對照組之間無顯著性的差異,而在抑制劑組中,NOS2及C-kit、Cvh、Stra8、Dazl、integrin α6和integrin β1等生殖標記基因的mRNA表達量均出現(xiàn)了不同程度的降低,說明NOS2在被抑制后,ESCs向雄性生殖細胞分化過程也受到了抑制(圖2)。
圖2 體內抑制中NOS2及相關生殖標記基因相對表達變化Fig. 2 Relative expression of NOS2 and related reproductive marker genes in inhibitory experitment in vivo
2.3.2 NOS2體外抑制 取傳至2代的ESCs進行不同分組處理,每隔2 d進行觀察細胞形態(tài)變化發(fā)現(xiàn),對照組中,ESCs在2、4、6、8和10 d內細胞不斷增殖,但是未出現(xiàn)類胚體;RA誘導組中,2 d出現(xiàn)小的類胚體,4 d類胚體增大,且數(shù)量增多,6 d類胚體邊緣開始出現(xiàn)破裂,8 d類胚體解體,10 d出現(xiàn)類精原樣細胞;抑制劑組中,ESCs在2、4、6、8和10d內無類胚體出現(xiàn),且相較于對照組細胞增殖緩慢;RA+抑制劑組中,2和4 d內無類胚體出現(xiàn),細胞增殖緩慢,6d出現(xiàn)小的類胚體,8d類胚體數(shù)量少量增多,且體積稍顯增大,10d類胚體開始裂解。說明NOS2在被抑制后,ESCs向雄性生殖細胞分化過程受到阻礙(圖3)。
圖3 不同處理組不同天數(shù)的ESCs形態(tài)變化Fig. 3 Morphological observation of chicken ESCs on different days among different groups (400×)
每隔2 d分別取以上不同分組的細胞,提取細胞RNA,對NOS2及C-kit、Cvh、Stra8、Dazl、integrin α6和integrin β1等生殖標記基因進行RT-qPCR檢測,結果發(fā)現(xiàn),經過抑制劑的抑制后,NOS2及C-kit、Cvh、Stra8、Dazl、integrin α6和integrin β1等生殖標記基因的表達量在 RA誘導組、抑制劑組和 RA+抑制劑組中相對于對照組均呈顯著性或極顯著性的下調趨勢,這說明 NOS2在受到抑制劑抑制后,ESCs向雄性生殖細胞的分化受到抑制(圖4)。
圖4 體外抑制中NOS2及相關生殖標記基因相對表達變化Fig. 4 Relative expression of NOS2 and related reproductive marker genes in inhibitory experitment in vitro
雞雄性生殖細胞的增殖、分化和發(fā)育與其各類代謝過程密切相關,目前已有報道稱 BMP4/Smad蛋白通路[16-17]、RA代謝[18]等通路對雄性生殖細胞的增殖、分化、遷移、凋亡具有重要的作用。在這些代謝過程中,蛋白質是生物細胞賴以生存的各種代謝和調控途徑的主要執(zhí)行者,因此蛋白質的代謝對于雄性生殖細胞的增殖、分化和發(fā)育至關重要。一氧化氮合成酶2(nitric oxide synthase 2,NOS2)與PGCs的發(fā)育和正常生殖細胞的分化密切相關。作為Nanos的同系物,NOS2是在秀麗隱桿線蟲(C. Elegans)中首次發(fā)現(xiàn),其結構與Nanos結構類似,都包含一個鋅指結構域[19-20]。早期的研究發(fā)現(xiàn),NOS2能夠在生物體內催化生成NO,低濃度的NO對生殖細胞的的功能具有保護作用,而高濃度的NO反而具有損壞效應,這說明NOS2通過催化生成NO,在生殖細胞的各種活動中可能起重要的作用[21-24]。YUMIKO[25]等發(fā)現(xiàn)NOS2能夠啟動小鼠雄性生殖細胞的分化,而抑制雌性生殖細胞分化;該研究還發(fā)現(xiàn)NOS2表達于SSCs中,是精子形成時維持干細胞數(shù)量的一個內因;BARRIOS等[26]發(fā)現(xiàn)敲除NOS2的雄性小鼠表現(xiàn)不育,原因是由于在胚胎期缺乏生殖細胞,說明NOS2具有維持生殖細胞數(shù)量的作用,然而RA可以下調NOS2的表達,進而促進有絲分裂;CHILDS[27]等發(fā)現(xiàn) Cyp26b1基因敲除,小鼠胚胎生殖細胞中Stra8的表達急劇上調,從而誘導雄性生殖細胞啟動減數(shù)分裂,這與TSUDA[28]等在NOS2基因敲除小鼠模型中發(fā)生的現(xiàn)象一致;NAKAMURA等[29]在以成年青鳉魚為動物模型,獲得NOS2-eGFP標記的卵源干細胞后發(fā)現(xiàn)卵源干細胞能夠連續(xù)產生具備受精能力的干細胞,說明NOS2對生殖細胞的增殖、分化起到重要作用;K?PRUNNER等[30]以斑馬魚為試驗對象,發(fā)現(xiàn)缺少NOS1和NOS2時導致PGCs無法維持其功能,并大量死亡;K?PRUNNER還發(fā)現(xiàn)NOS2在PGCs與性腺有效結合過程中也起到重要作用。這些都說明NOS2在生殖細胞自我增殖及其向SSCs分化中的重要作用。
本研究探索出在ESCs向SSCs分化的整個過程中,蛋白質代謝的主要信號通路是精氨酸-脯氨酸代謝通路、酪氨酸代謝通路以及色氨酸代謝通路,其中有大量的研究表明精氨酸-脯氨酸代謝通路上的關鍵基因NOS2參與了生殖細胞的各種活動,在此理論基礎上,以NOS2特異性抑制劑分別在體內和體外對NOS2進行抑制,結果表明NOS2在被抑制后,引起C-kit、Cvh、Stra8、Dazl、integrin α6和integrin β1等生殖標記基因表達量的顯著下降,使得ESCs向SSCs方向的分化明顯受到抑制。然而,NOS2對ESCs向生殖方向分化的具體調節(jié)機制、以及精氨酸-脯氨酸代謝通路與其他的信號通路是否有互作等問題還需要進一步的探究。
另外,亦有多項研究[31-34]表明,F(xiàn)AH和IDO等基因也參與細胞的增殖、分化及其發(fā)育,但尚未有其關于影響雄性生殖細胞生成、分化的報道,因此,關于這些基因的具體調節(jié)機理還需進一步探索。
本研究基于前期探究出NOS2及其所在的精氨酸-脯氨酸代謝通路在雞雄性生殖細胞分化過程中起到重要調節(jié)作用的基礎上,以抑制劑對NOS2進行體內、外的抑制,發(fā)現(xiàn)NOS2在被抑制后,ESCs向雄性生殖細胞分化的過程受到抑制。說明了精氨酸-脯氨酸代謝通路及關鍵基因NOS2對ESCs向雄性生殖細胞分化過程中起到重要的調節(jié)作用。
[1] 孫敏, 施青青, 李碧春. 胚胎干細胞誘導分化為雄性生殖細胞的研究進展. 生命科學,2012, 24(1):37-42.
SUN M, SHI Q Q, LI B C. Research progress on differentiation of embryonic stem cells into male germ cells. Chinese Bulletin of Life Sciences, 2012, 24(1): 37-42. (in Chinese)
[2] 韓明權, 劉嘉湘, 高虹, 陳善香, 朱晏偉, 許玲. 益肺抗瘤飲對實驗性肺癌細胞周期及核酸和蛋白質合成的影響. 中西醫(yī)結合學報,2003, 1(3):205-208.
HAN M Q, LIU J X, GAO H, CHEN S X, ZHU Y W, XU L. Effects of Yifei Kangliu Qral Liquid on cell cycle and protein-nucleic acid synthesis of experimental lung cancer. Journal China of Integrative Medicine, 2003, 1(3):205-208. (in Chinese)
[3] FEI T, XIA K, LI Z W, ZHOU B, ZHU S S, CHEN H, ZHANG J P, CHEN Z, XIAO H S, HAN J D J, CHEN Y G. Genome-wide mapping of SMAD target genes reveals the role of BMP signaling in embryonic stemcell fate determination. Genome Research, 2010, 20( 1) : 36-44.
[4] CHEN W, JIA W W, WANG K, ZHOU Q, LENG Y, DUAN T, KANG J H. Retinoic acid regulates germ cell differentiation in mouse embryonic stem cells through a Smad-dependent pathway. Biochemical and Biophysical Research Communications, 2012, 418(3): 571-577.
[5] NISHIMURA Y, KURISAKI A, NAKANISHI M, OHNUMA K, NINOMIYA N, KOMAZAKI S, ISHIURA S, ASASHIMA M. Inhibitory Smad proteins promote the differentiation of mouse embryonic stem cells into ependymal-like ciliated cells. Biochemical and Biophysical Research Communications, 2010, 401(1): 1-6.
[6] HELLINGMAN C A, DAVIDSON E N, KOEVOET W, VITTERS E L, VAN DEN BERG W B, VAN OSCH G J V M, VAN DER KRAAN P M. Smad signaling determines chondrogenic differentiation of bonemarrow-derived mesenchymal stem cells: inhibition of Smad1/5/8Pprevents terminal differentiation and calcification. Tissue Engineering: Part A, 2011, 17(7-8): 1157-1167.
[7] TAN B, YIN Y L, KONG X F, LI P, LI X L, GAO H J, LI X G, HUANG R L, WU G Y. L-Arginine stimulates proliferation and prevents endotoxin-induced death of intestinal cells. Amino Acids, 2009, 38(4): 1227-1235.
[8] SULTAN M, SCHULZ M H, RICHARD H, MAGEN A, KLINGENHOFF A, SCHERF M, SEIFERT M, BORODINA T, SOLDATOV A, PARKHOMCHUK D, SCHMIDT D, O'KEEFFE S, HAAS S, VINGRON M, LEHRACH H, YASPO M L. A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science, 2008, 321(5891): 956-960.
[9] TANG F C, BARBACIORU C, BAO S Q, LEE C, NORDMAN E, WANG X H, LAO K Q, SURANI M A. Tracing the derivation of embryonic stem cells from the inner cell mass by single-cell RNA-Seq analysis. Cell Stem Cell, 2010, 5(6): 397-398.
[10] TRAPNELL C, WILLIAMS B A, PERTEA G, MORTAZAVI A, KWAN G, VAN BAREN M J, SAIZBERG S L,WOLD B J, PACHTER L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnology, 2010, 28: 511-515.
[11] TANG F C, BARBACIORU C, NORDMAN E, LI B, XU N L, BASHKIROV V I, LAO K Q, SURANI M A. RNA-Seq analysis to capture the transcriptome landscape of a single cell. Nature Protocols, 2010, 5: 516-535.
[12] HAMBURGER V, HAMILTON H L. A series of normal stages in the development of the chicken. Morphology, 1951, 88(1): 49-92.
[13] 李碧春, 陳國宏, 趙東偉, 王克華, 錢菊芬. 雞胚 PGCs遷移與性腺發(fā)育關系的研究. 揚州大學學報, 2002, 23(1): 18-26.
LI B C, CHEN G H, ZHAO D W, WANG K H, QIAN J F. Relationship between PGCs migration and gonad development in the earlu chicken embryo. Journal of Yangzhou University (Agricultural and Life Science Edition), 2002, 23(1): 18-26. (in Chinese)
[14] 孫敏, 施青青, 傅德智, 陰彥輝, 張亞妮, 李碧春. 雞胚 ESCs 和
SSCs 特定基因表達差異的研究. 生物技術, 2011, 21(3): 16-19. SUN M, SHI Q Q, FU D Z, YIN Y H, ZHANG Y N, LI B C. Study of the expression of gene cell differentiation associated gene on chicken ESC and SSCs. Biotechnology, 2011, 21(3): 16-19. (in Chinese)
[15] 汪怡臨, 靳鍇, 蔣舒穎, 趙瑞豐, 左其生, 李東, 王穎潔, 張蕾, 張亞妮, 李碧春. 不同注射部位和劑量對雞胚發(fā)育的影響. 中國家禽, 2014, 36(17): 7-10.
WANG Y L, JIN K, JIANG S Y, ZHAO R F, ZUO Q S, LI D, WANG Y J, ZHANG L, ZHANG Y N, LI B C. Effects of different injection location and dose on chicken embryos. China Poultry, 2014, 36(17): 7-10. (in Chinese)
[16] 陳兵, 易斌, 魯開智. Smad 蛋白家族調控細胞分化的研究進展.醫(yī)學研究生學報, 2013, 26 (5): 544-547.
CHEN B, YI B, LU K Z. Advances in researches on Smad proteins in cell differentiation. Journal of Medical Postgraduates, 2013, 26 (5): 544-547. (in Chinese)
[17] ANDREA V C, DIANA J L. Wnt and Bmp fit germ cells to a T. Developmental Cell. 2013, 27(5): 485-487.
[18] SUGIMOTO R, NABESHIMAB Y, YOSHIDA S. Retinoic acid metabolism links the periodical differentiation of germ cells with the cycle of Sertoli cells in mouse seminiferous epithelium. Mechanisms of Development, 2012, 128(11-12): 610-624.
[19] SUBRAMANIAM K, SEYDOUX G. nos-1 and nos-2, two genes related to Drosophilananos, regulate primordial germ cell development and survival in Caenorhabditis elegans. Development, 1999, 126: 4861-4871.
[20] GALLO C M, WANG J T, MOTEGI F, SEYDOUX G. Cytoplasmic partitioning of P granule components is not required to specify the germline in C. elegans. Science, 2010, 330(6011): 1685-1689.
[21] ZINI A, DE LAMIRANDE E. Low levels of nitric oxide promote human sperm capacitation in vitro. Journal of Andrology, 1995, 16 (5): 424-431.
[22] ZINI A, O’BRYAN M K, SCHLEGEL P N. Nitric oxide synthase activity in human seminal plasma. Urology, 2001, 58 (1) :85-89.
[23] HERRERO M B, DE LAMIRANDE E, GAGNON C. Nitric oxide regulates human sperm capacitation and protein-tyrosine phosphorylation in vitro. Biology of Reproduction, 1999, 61(3): 575-581.
[24] MITROPOULOS D, DELICONSTANTINOS G. Nitric oxide synthase and xanthine oxidase activities in the spermatic vein of patients with varicocele: apotential role for nitric oxide and peroxynitrite in sperm dysfunction. The Journal of Urology, 1996, 156(6): 1952-1958.
[25] YUMIKO S. Function of Nanos2 in the male germ cell lineage in mice. Cellular and Molecular Life Sciences, 2010, 67(22): 3815-3822.
[26] BARRIOS F, FILIPPONI D, PELLEGRINI M, PARONETTO M P, SIEN S D, GEREMIA R, ROSSI P, DE FELICI M, JANNINI E A, DOLCI S. Opposing effects of retinoic acid and FGF9 on Nanos2 expression and meiotic entry of mouse germ cells. Journal of Cell Science, 2010, 123: 871-880.
[27] CHILDS A J, COWAN G, KINNELL H L, ANDERSON R A, SAUNDERS P T K. Retinoic acid signalling and the control of meiotic entry in the human fetal gonad. PLoS One, 2011, 6(6): e20249.
[28] TSUDA M, SASAOKA Y, KISO M, ABE K, HARAGUCHI S, KOBAYASHI S, SAGA Y. Conserved role of nanos proteins in germ cell development. Science, 2003, 301(5637): 1239-1241.
[29] NAKAMURA S, KOBAYASHI K, NISHIMURA T, HIGASHIJIMA S, TANAKA M. Identification of germline stem cells in the ovary of the teleost medaka. Science, 2010, 328: 1561-1563.
[30] K?PRUNNER M, THISSE C, THISSE B, RAZ E. A zebrafish nanos-related gene is essential for the development of primordial germ cells. Genes & Development, 2001, 15: 2877-2885.
[31] 劉秀紅, 李寧. 肝病與肝癌的新療法:干細胞研究的最新進展. 北京醫(yī)學, 2013, 35(9): 813-814.
LIU X H, LI N. New therapy of Liver disease and liver cancer: the latest progress in the study of stem cells. Beijing Medical Journal, 2013, 35(9): 813-814. (in Chinese)
[32] JANG Y Y, Collector M I, Baylin S B, Deihl A M, Sharkis S J. Hematopoietic stem cells convert into liver cells within days without fusion. Nature Cell Biology, 2004; 6: 532-539.
[33] TAKIKAWA O, KUROIWA T, YAMAZAKI F, KIDO R. Mechanism of interferon-gamma action. Characterization of indoleamine 2,3-dioxygenase in cultured human cells induced by interferon-gamma and evaluation of the enzyme-mediated tryptophan degradation in its anticellular activity. Journal of Biological Chemistry, 1988, 263(4): 2041-2048.
[34] Viola A, Bronte V. Metabolic mechanisms of cancer inducedinhibition of immune responses. Seminars in Cancer Biology, 2007, 17(4): 309-316.
(責任編輯 林鑒非)
Regulatory Study of Protein Metabolism During the Differentiation Process of Chicken Male Germ Cells
LI Dong, TANG Bei-bei, WANG Ying-jie, JI Yan-qin, WANG Fei, LU Zhen-yu, WANG Man, ZHANG Ya-ni, LI Bi-chun
(Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu)
【Objective】 The aim of this study was to explore the regulatory mechanism of protein metabolism during the differentiation process of chicken male germ cells and provide a basis for improving the induction system of chicken embryonic stem cells (ESCs) differentiation to male germ cells in vitro. 【Method】RNA sequencing was performed using FACS-sorted cells from ESCs, PGCs(primordial germ cells) and SSCs(spermatogonial stem cells), and enrichment analysis, WEGO (Web Gene ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes), were carried out to find out the relevant pathways and the key genes, the expression level of which was analyzed by qRT-PCR. Moreover, NOS2 both in vitro and in vivo with NOS2 inhibitor was inhibited, and the morphologic changes of ESCs were observed and the mRNA expressions of NOS2 and other germ genes, C-kit, Cvh, Stra8, Dazl, integrin α6 and integrin β1 were detected in different groups and in different days with RT-qPCR. 【Result】 Final results showed that 697 differentially expressed genes were involved in biological metabolism and significantly enriched in arginine-proline metabolic pathway, tyrosine metabolic pathway and tryptophan metabolic pathway and screened some key genes, like NOS2, FAH and IDO. It was found that the expression trends of NOS2, FAH and IDO were the same as that of RNA-Seq. In inhibitory experiment in vivo, the mRNA expression of NOS2, C-kit, Cvh, Stra8, Dazl, integrin α6 and integrin β1 between blank group and control group showed no significant difference. However, in inhibited group, NOS2, C-kit, Cvh, Stra8, Dazl, integrin α6 and integrin β1 expressions were down-regulated inordinately. Moreover, in inhibitory experiment in vitro, ESCs always proliferated on the 2, 4, 6, 8 and 10d, but disappeared the embryonic bodies in the control group. In induced group, small embryonic bodies appeared on the 2d and became bigger and increased on the 4d. Embryonic bodies started to burst in edges on the 6d, break up on the 8d and appeared spermatogonia-like cells. In inhibited group, no embryonic body appeared in the whole process and ESCs proliferated more slow than the control group. In induced-inhibited group, no embryonic body appeared on the 2d and 4d and ESCs proliferated slowly. Small embryonic bodies appeared on the 6d and the number and volume increased slightly on the 8d. On the 10d, the embryonic bodies started to break up. In vitro, NOS2, C-kit, Cvh, Stra8, Dazl, integrin α6 and integrin β1 expressions in induced group, inhibited group and induced-inhibited group were significantly down-regulated compared with the control group. 【Conclusion】In this study, based on the screening of arginine-proline metabolic pathway and NOS2 with RNA-Seq and Bioinformatics, it was found that the process of ESCs differentiation to male germ cell was inhibited after the inhibition of NOS2,which suggested that arginine-proline metabolic pathway and NOS2 has an important regulatory effect on differentiation of ESCs to male germ cells.
RNA-Seq; ESCs; PGCs; SSCs; male germ cells; NOS2; inhibitor; differentiation
2015-08-03;接受日期:2016-11-02
國家自然科學基金(31272429)、高等學校博士學科點專項科研基金資助課題(20103250110006)、江蘇省“六大人才高峰”、江蘇省優(yōu)勢學科
聯(lián)系方式:李東,E-mail:lidongyzu@hotmail.com。通信作者李碧春,E-mail:yubcli@yzu.edu.cn。通信作者張亞妮,E-mail:ynzhang@yzu.edu.cn