国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

不同配伍酶制劑處理玉米秸稈對肉用綿羊生長性能和營養(yǎng)物質(zhì)消化率的影響

2017-01-13 10:12:03王紅梅司丙文聶明非刁其玉
中國農(nóng)業(yè)科學(xué) 2016年24期
關(guān)鍵詞:酶制劑營養(yǎng)物質(zhì)消化率

王紅梅,屠 焰,司丙文,聶明非,刁其玉

(中國農(nóng)業(yè)科學(xué)院飼料研究所/農(nóng)業(yè)部飼料生物技術(shù)重點開放實驗室,北京 100081)

不同配伍酶制劑處理玉米秸稈對肉用綿羊生長性能和營養(yǎng)物質(zhì)消化率的影響

王紅梅,屠 焰,司丙文,聶明非,刁其玉

(中國農(nóng)業(yè)科學(xué)院飼料研究所/農(nóng)業(yè)部飼料生物技術(shù)重點開放實驗室,北京 100081)

【目的】在以玉米秸稈為粗飼料的飼糧中添加不同配伍酶制劑,研究其對杜寒雜交肉羊生長性能和營養(yǎng)物質(zhì)表觀消化率的影響?!痉椒ā窟x擇400只月齡(3月齡)和體重(26.95±0.91kg)相近的杜寒雜交公羔羊,分為4組(每組100只、5個重復(fù),每個重復(fù)20只),即對照組(基礎(chǔ)飼糧無添加酶制劑),處理組Ⅰ(基礎(chǔ)飼糧+纖維素酶、β-葡聚糖酶和木聚糖酶復(fù)合酶制劑)、處理組Ⅱ(基礎(chǔ)飼糧+纖維素酶、β-葡聚糖酶、木聚糖酶和果膠酶復(fù)合酶制劑)和處理組Ⅲ(基礎(chǔ)飼糧+纖維素酶、β-葡聚糖酶、木聚糖酶、果膠酶和漆酶復(fù)合酶制劑);基礎(chǔ)日糧為依據(jù) NRC(2007)配制精粗比4∶6(第一期)和5∶5(第二期)(DM基礎(chǔ))的TMR飼糧;將復(fù)合酶制劑干粉用清水稀釋成4%的溶液,噴灑于秸稈表面與精料補充料,用TMR機充分混勻后直接飼喂,復(fù)合酶制劑添加量為1kg·t-1基礎(chǔ)飼糧(風(fēng)干基礎(chǔ));試驗期為76d(預(yù)試期為10d,正試期為66d)?!窘Y(jié)果】不同配伍酶制劑對平均日增重(ADG)和料重比具有顯著的影響(P<0.05),而對干物質(zhì)采食量(DMI)沒有顯著的影響(P=0.107)。處理組Ⅲ和處理組Ⅱ的ADG顯著高于對照組和處理組Ⅰ(P<0.05),處理組Ⅲ和處理組Ⅱ的料重比顯著低于對照組(P<0.05),而處理組Ⅲ與處理組Ⅱ或?qū)φ战M與處理組Ⅰ之間ADG和料重比均沒有顯著差異(P>0.05)。另外,不同配伍酶制劑對日糧DM、OM、GE、NDF和ADF的表觀消化率具有顯著的影響(P<0.05),但對CP表觀消化率沒有顯著影響(P>0.05)。處理組Ⅲ和處理組Ⅱ的 DM、OM、GE、NDF消化率顯著高于對照組和處理組Ⅰ(P<0.05),處理組Ⅲ的ADF消化率顯著高于對照組(P<0.05)。而處理組Ⅲ與處理組Ⅱ或?qū)φ战M與處理組Ⅰ之間各營養(yǎng)物質(zhì)表觀消化率沒有顯著差異(P>0.05),此外,4個組間CP表觀消化率沒有顯著差異(P=0.166)。處理組Ⅲ的各營養(yǎng)物質(zhì)(除CP外)表觀消化率最高,與處理組Ⅱ相比,數(shù)值上占絕對優(yōu)勢,其中,DM和ADF消化率的提高幅度最大,與對照組相比分別提高11%和19%,同時,也具有較好的經(jīng)濟效益?!窘Y(jié)論】不同配伍酶制劑處理秸稈型飼糧對育肥羊生長性能和營養(yǎng)物質(zhì)消化率產(chǎn)生積極效應(yīng),處理組Ⅲ和處理組Ⅱ效果均顯著,相比之下,處理組Ⅲ的效果更好,與對照相比,營養(yǎng)物質(zhì)消化率提高11%,增重提高23.51%,飼料轉(zhuǎn)化率提高26.36%,1kg增重飼料成本降低18.42%。

育肥羊;復(fù)合酶制劑;秸稈;增重;消化率

0 引言

【研究意義】中國粗飼料中最常見的就是農(nóng)作物秸稈,其資源豐富,富含粗纖維,在反芻動物營養(yǎng)中具有不可忽視的作用。秸稈作為飼料具有粗纖維含量高、粗蛋白粗脂肪含量低、容積大、適口性差和消化率低等營養(yǎng)特性[1-2]。秸稈細胞壁較厚,富含纖維素、半纖維素和木質(zhì)素等物質(zhì),是影響動物對秸稈利用的主要因素[3-4]。反芻動物主要依賴于其瘤胃中大量的細菌、纖毛蟲、真菌等微生物消化粗纖維[5],需要微生物所分泌的酶來水解植物細胞壁,然而,在理想的飼喂條件下,植物細胞壁的消化道降解率仍低于65%,且粗飼料干物質(zhì)中通常含有 40%—70%的細胞壁成分[6]。因此,添加外源酶制劑,能夠補充動物內(nèi)源酶,提高內(nèi)源酶的活性,促進飼料營養(yǎng)物質(zhì)消化吸收,進而提高動物對粗飼料的利用率,并可消除抗?fàn)I養(yǎng)因子,還能減少腸道微生物的數(shù)量,減少疾病,有利于家畜健康。【前人研究進展】迄今為止,國內(nèi)外很多學(xué)者對應(yīng)用外源酶來提高反芻動物秸稈消化利用方面進行了大量的研究,在反芻動物飼糧中添加外源酶可提高動物增重[7-8],提高產(chǎn)奶量[9-10],這些動物生產(chǎn)性能的提高主要歸因于飼料消化率的提高[7,11]。很多研究表明,不僅在體外[12-13],半體內(nèi)[14],還是在體內(nèi)[7,15-16],外源酶處理均能夠提高飼料的干物質(zhì)和纖維降解率。然而,也有研究認為,添加外源酶并不影響動物生產(chǎn)性能[17]。由于酶產(chǎn)品及其作用條件的差異性,外源酶在反芻動物生產(chǎn)中的作用效果也存在差異。酶的作用效果很大程度上取決于酶制劑的性質(zhì)(包括來源、種類和活性)[18]、添加水平[19]、添加方式[20]、飼糧營養(yǎng)水平[21]和動物生長性能[9,22]等因素。隨著非常規(guī)飼料原料的開發(fā)和非常規(guī)飼糧的使用,非淀粉多糖(non-starch polysaccharides, NSP)酶制劑的應(yīng)用越來越普遍,在基礎(chǔ)研究和生產(chǎn)應(yīng)用中都取得了可喜的進展?!颈狙芯壳腥朦c】目前,有關(guān)采用NSP酶制劑來提高農(nóng)作物秸稈可利用率在反芻動物生產(chǎn)中的應(yīng)用研究主要集中于肉牛和奶牛上,肉羊上的研究較少,尤其是NSP酶與木質(zhì)素降解酶的結(jié)合使用在肉羊飼喂上的效果研究還尚未報到。【擬解決的關(guān)鍵問題】本研究通過纖維素酶、木聚糖酶、β-葡聚糖酶、果膠酶和漆酶的不同配比處理以玉米秸稈為粗飼料的TMR進行肉羊飼喂試驗,并測定分析肉羊采食量,增重,飼料轉(zhuǎn)化率及營養(yǎng)物質(zhì)消化率,并篩選飼喂效果最佳的酶制劑組合。旨在探索更方便、經(jīng)濟和實用的秸稈生物轉(zhuǎn)化技術(shù),充分利用這一豐富飼料資源,對發(fā)展節(jié)糧型畜牧業(yè)具有重要意義。

1 材料與方法

1.1 試驗時間和地點

試驗于2014年7月16日至9月30日在內(nèi)蒙古巴彥淖爾市草原宏寶狼山肉羊養(yǎng)殖場進行,歷時76 d,預(yù)試期10 d,正試期66 d。

1.2 試驗材料

1.2.1 實驗動物 選擇400只體重為(26.95±0.91)kg、月齡(3月齡,已斷奶)相近,體況良好的杜泊×小尾寒羊雜交F1代公羔羊(未去勢)為實驗動物。

1.2.2 試驗飼糧 試驗飼糧自行配制,預(yù)混料由北京精準(zhǔn)動物營養(yǎng)研究中心提供。依據(jù) NRC(2007)中肉羊營養(yǎng)需要,配制精粗比4∶6和5∶5的TMR飼糧。

預(yù)試期飼糧組成為精料補充料加玉米秸稈,從第1天精粗比2∶8逐步緩慢過渡到正式試驗期精粗比4∶6的飼糧組成。正式試驗期為66 d,分為2等期,過渡期為4d,第一期(31d)精粗比為4∶6,第二期(31d)精粗比為 5∶5,具體飼糧組成及營養(yǎng)水平見表 1,表中日糧常規(guī)營養(yǎng)成分的測定方法均按照文獻[23]描述進行。

1.2.3 試驗復(fù)合酶制劑配伍 試驗各處理組復(fù)合酶制劑由酶制劑和載體組成,具體配伍及添加水平見表2,同種酶制劑在不同組別中添加量相同。將復(fù)合酶制劑干粉用清水稀釋成4%的溶液,噴灑于秸稈(切成2—3cm的長度)表面與精料補充料用TMR機混勻后進行直接飼喂,復(fù)合酶制劑添加量為1kg·t-1TMR(風(fēng)干基礎(chǔ))。酶活(實測值):纖維素酶≥10 000 U·g-1,木聚糖酶≥120 000 U·g-1,β-葡聚糖酶≥40 000 U·g-1,果膠酶≥10 000 U·g-1,漆酶≥10 000 U·g-1。試驗所用酶制劑均由上海白銀賽諾生物科技有限公司提供。

1.3 試驗設(shè)計

1.3.1 飼養(yǎng)管理 采用單因素完全隨機試驗設(shè)計,將400只羊隨機分為4組,每組5個重復(fù),每個重復(fù)(每圈)20只羊。Ⅰ為對照組,Ⅱ、Ⅲ、Ⅳ為試驗組。試驗羊圈每圈面積為36 m×13m,其中1/4為戶內(nèi),3/4為戶外。預(yù)試前打好耳號,免疫注射三聯(lián)四防疫苗并進行驅(qū)蟲處理。飼養(yǎng)期羊圈戶外最高溫度30℃,最低13℃,平均溫度 20.5℃。試驗羊每日分別在 5:00和17:00飼喂,自由飲水。飼喂量根據(jù)前一天羊只的進食量進行調(diào)整,確保飼槽內(nèi)有10%左右的剩料。每天準(zhǔn)確稱取并詳細記錄每圈投料量和剩料量。每隔7 d采集1次飼糧和剩料樣品,測定其常規(guī)營養(yǎng)成分。預(yù)試期開始、正試期開始和正試期結(jié)束時分別進行單只過秤,均為晨飼前空腹體重(稱重時間為5:00—6:00)。

表1 試驗飼糧組成及營養(yǎng)水平(干物質(zhì)基礎(chǔ))Table 1 Compositions and nutrient levels of basal diets (DM basis)(%)

1.3.2 試驗復(fù)合酶制劑配伍 試驗各處理組復(fù)合酶制劑由酶制劑和載體組成,具體配伍及添加水平見表2,同種酶制劑在不同組別中添加量相同。將復(fù)合酶制劑干粉用清水稀釋成4%的溶液,噴灑于秸稈(切成2—3cm的長度)表面與精料補充料用TMR機混勻后進行直接飼喂,復(fù)合酶制劑添加量為1kg·t-1TMR(風(fēng)干基礎(chǔ))。酶活(實測值):纖維素酶≥10 000 U·g-1,木聚糖酶≥120 000 U·g-1,β-葡聚糖酶≥40 000 U·g-1,果膠酶≥10 000 U·g-1,漆酶≥10 000 U·g-1。試驗所用酶制劑均由上海白銀賽諾生物科技有限公司提供。

消化試驗分為2期,分別在正試期的第20天和第55天開始進行,每組選體重一致的10只羊,套收糞袋,開始消化試驗(試驗期為7 d),預(yù)試期為3 d,正試期為4 d,每天記錄每只羊的采食量,并采用全收糞法收集糞。每天采集每只羊飼料和剩料樣品,每天稱取并記錄每只羊排糞量,將每只羊4 d的糞樣混合按10%取樣并冷凍-20℃保存,以備分析測定其總能、DM、OM、CP、NDF、ADF。消化試驗結(jié)束后稱重。糞樣品的處理和營養(yǎng)物質(zhì)表觀消化率計算方法參考文獻[24]和[25]描述方法進行。

表2 復(fù)合酶制劑配伍及添加水平Table 2 Compatibility and addition level of compound enzymes (g)

1.3.3 測定指標(biāo)與方法 測定指標(biāo):初始體重,結(jié)束體重,日增重,投料量,剩料量,飼糧和剩料干物質(zhì),干物質(zhì)采食量,飼糧和糞樣總能、DM、OM、CP、NDF、ADF等。

營養(yǎng)物質(zhì)表觀消化率=(食入營養(yǎng)物質(zhì)量 - 糞中營養(yǎng)物質(zhì)排出量)/(食入營養(yǎng)物質(zhì)量)×100%

初始體重和結(jié)束體重:預(yù)試期開始和正試期結(jié)束當(dāng)天晨飼前稱每只羊的空腹體重。根據(jù)正式期始末體重數(shù)值計算ADG。

常規(guī)營養(yǎng)成分總能、DM、OM、CP、NDF、ADF的測定方法均按照文獻[23]描述方法進行。

營養(yǎng)物質(zhì)消化率數(shù)據(jù)(表 4)為正式試驗兩個期的平均值。

1.4 數(shù)據(jù)處理

試驗數(shù)據(jù)采用 Excel 2007進行初步整理,采用SAS 8.1統(tǒng)計軟件ANOVA進行方差分析,差異顯著則用Duncan氏法進行多重比較。P<0.05作為差異顯著的判斷標(biāo)準(zhǔn)。

2 結(jié)果

2.1 對杜寒雜交羔羊生長性能及飼料轉(zhuǎn)化率的影響

由表3可以看出,試驗羊只初始體重差異不顯著(P>0.05),符合隨機分組的原則。結(jié)束體重,平均日增重(ADG)和料重比組間差異顯著(P<0.05),而干物質(zhì)采食量(DMI)組間差異不顯著(P=0.107)。ADG變化規(guī)律為處理組Ⅲ>處理組Ⅱ>處理組Ⅰ>對照組,料重比對照組DMI最高,其次為處理組Ⅱ和處理組Ⅲ,處理組Ⅰ最低。對照組結(jié)束體重顯著低于3個處理組(P<0.05),而3個處理組間差異不顯著(P>0.05)。處理組ⅢADG最高,顯著高于處理組Ⅰ和對照組(P<0.05),但其料重比最低,顯著低于對照組和處理組Ⅰ(P<0.05)。處理組Ⅱ料重比顯著低于對照組(P<0.05),而其ADG顯著高于處理組Ⅰ和對照組(P<0.05)。針對ADG和料重比等3個指標(biāo)而言,對照組與處理組Ⅰ,處理組Ⅲ與處理組Ⅱ等2組間差異不顯著(P>0.05)。

表3 不同配比酶制劑處理對杜寒雜交羔羊生長性能的影響Table 3 Effects of different proportions of enzyme preparation on growth performance of Dorper and thin-tailed Han crossbred lambs

2.2 對杜寒雜交羔羊飼糧營養(yǎng)物質(zhì)消化率的影響

如表4所示,各試驗組間各營養(yǎng)物質(zhì)表觀消化率均存在不同程度的差異,其中,粗蛋白消化率差異不顯著(P>0.05),其余指標(biāo)差異均達到顯著水平(P<0.05)。DM、OM、GE、NDF及ADF表觀消化率表現(xiàn)出相同的變化規(guī)律,即處理組Ⅲ>處理組Ⅱ>處理組Ⅰ>對照組。處理組Ⅲ和處理組Ⅱ的DM、OM、 GE和NDF消化率顯著高于處理組Ⅰ和對照組(P<0.05),但處理組Ⅲ和處理組Ⅱ或處理組Ⅰ和對照組之間沒有顯著差異(P>0.05)。處理組Ⅲ的ADF消化率顯著高于對照組(P<0.05),提高 19.08%,而其余3個組間沒有顯著差異(P>0.05)。

2.3 飼喂成本與經(jīng)濟效益分析

從表5可以看出,每組100只羊飼喂66d時所需飼糧總量范圍在7.43—7.97 t之間,飼料成本為11 654.80—12 503.89元,對照組的飼喂量最高。在整個試驗期間,每組添加劑的成本分別為0.00元(對照組)、70.43元(處理組Ⅰ)、87.63元(處理組Ⅱ)和152.52元(處理組Ⅲ)。與對照組相比,處理組Ⅲ增重效果最好,平均總增重能達到12.70kg/只。各組每只羊每kg增重所需飼料消耗量均存在較大差異,即每組每只羊每kg增重時的飼料成本也不相同,其中,對照組最高(13.52元),其次是處理組Ⅰ(12.26元),處理組Ⅱ和處理組Ⅲ的較低,分別為11.78元和11.03元。飼料成本最低的為處理組Ⅲ,與對照相比,降低18.42%。也就是說,添加酶制劑能夠提高增重,同時也能夠降低飼料成本,具有較好的經(jīng)濟效益。

表4 不同配比酶制劑處理對杜寒雜交羔羊營養(yǎng)成分表觀消化率的影響Table 4 Effects of different proportions of enzyme preparation on nutrient digestibility of Dorper and thin-tailed Han crossbred lambs(%)

表5 飼料成本與經(jīng)濟效益比較分析Table 5 Comparison of feed cost and economic benefits

3 討論

3.1 營養(yǎng)物質(zhì)利用率和飼料轉(zhuǎn)化率

本試驗所用纖維素酶、木聚糖酶、β-葡聚糖酶、果膠酶和漆酶等5種酶制劑,分別起到了降解纖維素、半纖維素、果膠和木質(zhì)素等植物細胞壁成分的作用,提高了飼料中可利用營養(yǎng)物質(zhì),從而提高了秸稈利用率。不同酶制劑配伍處理效果存在一定的差異,表現(xiàn)出隨著酶制劑種類的增添而提高。處理組Ⅲ與處理組Ⅱ在增重和提高營養(yǎng)物質(zhì)消化率方面效果均顯著,雖然這兩組間差異不顯著,但處理組Ⅲ在數(shù)值上占了絕對優(yōu)勢,尤其是針對ADF消化率,處理組Ⅲ的效果最為顯著。從添加酶制劑對肉羊飼糧營養(yǎng)物質(zhì)消化率的影響來看,處理組Ⅲ的效果最佳,包括了5種酶制劑,比處理組Ⅱ多個漆酶,可以降解木質(zhì)素;而處理組Ⅱ包括4種酶制劑,比處理組Ⅰ多個果膠酶,可以降果膠質(zhì);處理組Ⅰ包括3種酶制劑,在對照組基礎(chǔ)上添加了纖維素酶,木聚糖酶,β-葡聚糖酶,可以降解纖維素和半纖維素。與對照相比,通過不同酶制劑配伍處理秸稈,破解其木質(zhì)纖維素結(jié)構(gòu),提高了利用率,從而改善了肉羊的飼料轉(zhuǎn)化率。

本試驗與相關(guān)研究結(jié)果比較既有相似點也有不同點。本試驗結(jié)果表明,處理組Ⅲ和處理組Ⅱ復(fù)合酶制劑顯著提高秸稈飼糧DM,OM,GE,NDF和ADF的消化率,以處理組Ⅲ為最高。能使DM和OM消化率分別提高約11%和10%,而干物質(zhì)和有機物的消化率是動物對飼糧消化特性的綜合反映[26]。TITI等[27]和GADO等[8]也曾報道,酶制劑能夠提高DM消化率,特別是NDF。而NDF消化的不同與飼糧成分,NDF難以消化分?jǐn)?shù)的大小,潛在可消化NDF的降解率以及瘤胃外流速有關(guān)[28]。外源酶可能是通過增加潛在可消化 NDF含量而提高纖維利用率[29],然而,纖維消化率的提高,在某種程度上,也有可能是由于食糜粘度的減少[30],瘤胃發(fā)酵的變化[31],瘤胃微生物在植物細胞壁表面附著與繁殖力的提高[31-32],或外源酶與瘤胃液的協(xié)同作用[33]。MORGAVI等[33]報道,外源酶和瘤胃液的協(xié)同作用如瘤胃凈復(fù)合水解作用遠大于單獨的酶制劑活性。COLOMBATTO等[34]和WANG等[32]研究表明,通過分批培養(yǎng)系統(tǒng),添加酶制劑可增加非纖維分解菌和纖維分解菌的數(shù)量。通過外源酶的刺激作用增加瘤胃微生物數(shù)量,從而分泌更多的酶活性消化飼糧。

另外,本研究結(jié)果表明添加外源酶對飼糧CP表觀消化率沒有顯著影響(P>0.05)。與TITI等[27]的研究報道一致,添加外源酶能夠有效提高肉羊飼糧纖維降解,但對CP消化率沒有影響。這可能是因為飼糧中的精料部分能夠易被吸收消化,畢竟飼糧中的CP成分主要來源于精料。YANG等[9]表明,添加外源纖維降解酶只有在飼糧降解不完全條件下才能起到促進降解作用,飼糧降解率高時酶作用效果不明顯,因此將纖維降解酶添加于肉羊高粗料飼糧中才能夠發(fā)揮其最佳作用效果。

3.2 杜寒雜交肉羊增重效果

羊只進食了相同的飼糧干物質(zhì),因為酶制劑的原因,營養(yǎng)素得到了改善,吸收了較多的營養(yǎng)物質(zhì)。由于酶制劑的配伍特點,含有多種酶制劑的增重效果最好。本試驗結(jié)果顯示,肉羊平均日增重隨著酶制劑種類的增加而提高,而干物質(zhì)采食量沒有差異(P=0.11),這與大多數(shù)報道一致[7,35-37],表明秸稈的處理主要是增加秸稈飼糧可利用營養(yǎng)物質(zhì),提高營養(yǎng)物質(zhì)的消化率,從而提高了動物生產(chǎn)性能。而與 LEWIS等[38]報道的酶制劑提高干物質(zhì)采食量不一致。這可能也與動物生理階段或者飼糧組成以及酶的應(yīng)用水平有關(guān)。本試驗中,處理組Ⅲ的效果最佳,增重提高23.51%,料重比較對照組顯著降低,說明酶制劑顯著提高了對照組的能量利用率和飼料轉(zhuǎn)化率。

因此,在秸稈飼糧中添加非淀粉多糖酶和漆酶,可降解木質(zhì)纖維素,進而破解碳鏈結(jié)構(gòu),打破植物細胞壁的屏障作用,有利于釋放細胞內(nèi)容物中的營養(yǎng)物質(zhì),可更好地被內(nèi)源酶消化,從而提高秸稈飼糧的營養(yǎng)物質(zhì)的消化率,減少羊糞中營養(yǎng)物質(zhì)的排泄量,綿羊日增重提高,減少料重比。

4 結(jié)論

通過不同酶制劑配伍處理玉米秸稈飼糧對杜寒雜交羔羊的飼喂效果試驗,篩選出了飼喂效果最佳組合,即為處理組Ⅲ(纖維素酶+木聚糖酶+β-葡聚糖酶+果膠酶+漆酶):達到173.01 g·d-1,提高增重23.51%,降低料重比20.77%;提高干物質(zhì),中性洗滌纖維和酸性洗滌纖維消化率約依次為11%,10%和19%;明顯提高增重和飼料報酬,在相同的飼喂條件下可獲得較高的產(chǎn)肉量,經(jīng)濟效益顯著。

[1] SUMMERS M D, JENKINS B M, HYDE P R, WILLIAMS J F, MUTTERS R G, SCARDACCI S C, HAIR M W. Biomass production and allocation in rice with implications for straw harvesting and utilization. Biomass and Bioenergy, 2003, 24(3):163-173.

[2] 王亞靜,畢于運,高春雨.中國秸稈資源可收集利用量及其適宜性評價. 中國農(nóng)業(yè)科學(xué), 2010, 43(9): 1852-1859.

WANG Y J, BI Y Y, GAO C Y. Collectable Amounts and Suitability Evaluation of Straw Resource in China. Scientia Agricultura Sinica, 2010, 43(9):1852-1859. (in Chinese)

[3] 刁其玉, 屠焰, 陳群. 農(nóng)作物秸稈養(yǎng)牛手冊. 北京:化學(xué)工業(yè)出版社, 2013: 57-60.

DIAO Q Y, TU Y, CHEN Q. Manual of Feeding Cattle on Crop Straw. Beijing: Chemical Industry Press, 2013: 57-60. (in Chinese)

[4] 刁其玉, 李艷玲, 鄧凱東. 農(nóng)作物秸稈養(yǎng)羊手冊. 北京:化學(xué)工業(yè)出版社, 2013: 44-49.

DIAO Q Y, LI Y L, DENG K D. Manual of Feeding Sheep on Crop Straw. Beijing: Chemical Industry Press, 2013: 44-49. (in Chinese)

[5] White B A, Mackie R I, Doerner K C. Enzymatic-hydrolysis of forage cell-walls[A]. In: international symp on forage cell wall structure and digestibility. American Society of Agronomics, Crop Science Society of America, Soil Science Society of America, Madison, WI, USA, 1991: 455-484.

[6] VAN SOEST P J. Nutritional Ecology of the Ruminant. 2nd. Ithaca: Cornell University Press, 1994.

[7] SALEM A Z M, GADO H M, COLOMBATTO D, Elghandour M M Y. Effects of exogenous enzymes on nutrient digestibility,ruminal fermentation and growth performance in beef steers. Livestock Science, 2013, 154(1):69-73.

[8] GADO H M, SALEM A Z M, ODONGO N E, BORHAMI B E. Influence of exogenous enzymes ensiled with orange pulp on digestion and growth performance in lambs. Animal Feed Science and Technology, 2011, 165(1-2): 131-136.

[9] YANG W Z, BEAUCHEMIN K A, RODE L M. A comparison of methods of adding fibrolytic enzymes to lactating cow diets. Journal of Dairy Science, 2000, 83(11): 2512-2520.

[10] 辛總秀. 纖維素復(fù)合酶處理粗飼料飼喂反芻動物的效果研究[D].西寧: 青海大學(xué), 2007.

XIN Z X. Effects of cellulose-preparation enzyme on treatment of crude feed in ruminant[D]. Xining: Qinghai University, 2007. (in Chinese)

[11] BEAUCHEMIN K A, RODE L M, KARREN D. Use of feed enzymes in feedlot finishing diets. Canadian Journal of Animal Science, 1999, 79(2): 243-246.

[12] EUN J S, BEAUCHEMIN K A. Enhancing in vitro degradation of alfalfa hay and corn silage using feed enzymes. Journal of Dairy Science, 2007, 90(6): 2839-2851.

[13] 楊紅建, 黎大洪, 謝春元, 岳群. 阿魏酸酯酶處理對羊草, 玉米秸,稻秸及麥秸瘤胃體外發(fā)酵特性的影響. 動物營養(yǎng)學(xué)報, 2010, 22(1): 207-211.

1.3.9 早期經(jīng)口進食及下床活動 傳統(tǒng)組病人術(shù)后待肛門排氣后才可經(jīng)口少量飲水、進流食、半流食等,對術(shù)后肛門排氣前要求禁食禁飲。ERAS組術(shù)后第1 d根據(jù)病人意愿,開始咀嚼口香糖,并開始飲少量平衡液等,飲液量按照病人耐受程度而定;第2 d如無特殊不適,可增加飲液量,逐漸過渡至流質(zhì)或半流質(zhì)飲食。傳統(tǒng)組病人術(shù)后早期下床活動無特殊要求,既不鼓勵,也不反對。ERAS組鼓勵病人早期下床活動,即使不下床走動,也鼓勵病人在床上由家屬輔助下進行活動肢體訓(xùn)練。

YANG H J, LI D H, XIE C Y, YUE Q. Effects of ferulic acid esterase supplementation on rumen fermentation characteristics of Chinese wildrye, corn stalk, rice straw and wheat straw by in vitro batch culture. Chinese Journal of Animal Nutrition, 2010, 22(1): 207-211. (in Chinese)

[14] FENG P, HUNT C W, PRITCHARD G T, JULIEN W E. Effect of enzyme preparations on in situ and in vitro degradation and in vivo digestive characteristics of mature cool-season grass forage in beef steers. Journal of Animal Science,1996,74(6):1349-1357.

[15] KRUEGER N A, ADESOGAN A T, STAPLES C R, KRUEGER W K, KIM S, LITTELL R C, SOLLENBERGER L E. Effect of method of applying fibrolytic enzymes or ammonia to Bermudagrass hay on feed intake,digestion,and growth of beef steers. Journal of Animal Science, 2008, 86(4): 882-889.

[16] GADO H M, SALEM A Z M, ROBINSON P H, HASSAN M. Influence of exogenous enzymes on nutrient digestibility, extent of ruminal fermentation as well as milk production and composition in dairy cows. Animal Feed Science and Technology, 2009, 154(1-2): 36-46.

[17] ZOBELL D R, WEIDMEIER R D, OLSON K C, TREACHER R. The effect of an exogenous enzyme treatment on production and carcass characteristics of growing and finishing steers. Animal Feed Science and Technology, 2000, 87(3): 279-285.

[18] COLOMBATTO D, MORGAVI D P, FURTADO A F, BEAUCHEMIN K A. Screening of exogenous enzymes for ruminant diets:Relationship between biochemical characteristics and in vitro ruminal degradation. Journal of Animal Science, 2003, 81(10): 2628-2638.

[19] CRUYWAGEN C W, GOOSEN L. Effect of an exogenous fibrolytic enzyme on growth rate,feed intake and feed conversion ratio in growing lambs. South African Journal of Animal Science, 2004, 34(6): 71-73.

[20] BOWMAN G R, BEAUCHEMIN K A, SHELFORD J A. Theproportion of the diet to which fibrolytic enzymes are added affects nutrient digestion by lactating dairy cows. Journal of Dairy Science, 2002, 85(12): 3420-3429.

[21] CRUYWAGEN C W, VAN ZYL W H. Effects of a fungal enzyme cocktail treatment of high and low forage diets on lamb growth. Animal Feed Science and Technology, 2008, 145(1-4): 151-158.

[23] 張麗英. 飼料分析及飼料質(zhì)量檢測技術(shù). 北京: 中國農(nóng)業(yè)大學(xué)出版社, 2010:32-116.

ZHANG L Y. Feed analysis and feed quality detection technology. Beijing: China Agricultural University press, 2010:32-116. (in Chinese)

[24] 許貴善, 刁其玉, 紀(jì)守坤, 鄧凱東, 姜成鋼, 屠焰, 劉潔, 趙一廣,馬濤, 樓燦. 20—35kg杜寒雜交公羔羊能量需要參數(shù). 中國農(nóng)業(yè)科學(xué), 2012, 45(24): 5082-5090.

XU G S, DIAO Q Y, JI S K, DENG K D, JIANG C G, TU Y, LIU J, ZHAO Y G, MA T, LOU C. Energy requirement parameters of 20-35 kg Dorper and Thin-Tailed Han sheep crossbred male lambs. Scientia Agricultura Sinica, 2012, 45(24): 5082-5090. (in Chinese)

[25] 趙一廣, 刁其玉, 劉潔, 姜成鋼, 鄧凱東, 屠焰. 肉羊甲烷排放測定與模型估測. 中國農(nóng)業(yè)科學(xué), 2012, 45(13): 2718-2727.

ZHAO Y G, DIAO Q Y, LIU J, JIANG C G, DENG K D, TU Y. Estimation and regression models of methane emissions from sheep. Scientia Agricultura Sinica, 2012, 45(13): 2718-2727. (in Chinese)

[26] SMOLDERS E A A, STEG A, HINDLE V A. Organic matter digestibility in horses and its prediction. Netherlands Journal of Agricultural Science, 1990, 38(3): 435-447.

[27] TITI H H, TABBAA M J. Efficacy of exogenous cellulase on digestibility in lambs and growth of dairy calves. Livestock Production Science, 2004, 87(2-3): 207-214.

[28] FIRKINS J L, ALLEN M S, OLDICK B S. Modeling ruminal digestibility of carbohydrates and microbial protein flow to the duodenum. Journal of Dairy Science, 1998, 81(12): 3350-3369.

[29] YANG W Z, BEAUCHEMIN K A, RODE L M. Effects of an enzyme feed additives on extent of digestion and milk production of lactating dairy cows. Journal of Dairy Science, 1999, 82(2): 391-403.

[30] HRISTOV A N, MCALLISTER T A, CHENG K J. Intraruminal supplementation with increasing ruminal levels of polysaccharide degrading enzymes: effect on nutrient digestion in cattle fed a barley grain diet. Journal of Animal Science, 2000, 78(2): 477-487.

[31] NSEREKO V L, BEAUCHEMIN K A, MORGAVI D P. Effect of a fibrolytic enzyme preparation from Trichoderma longibrachiatum on the rumen microbial population of dairy cows. Canadian Journal of Microbiology, 2002, 48(1): 14-20.

[32] WANG Y, MCALLISTER T A, RODE L M. Effects of an exogenous enzyme preparation on microbial protein synthesis, enzyme activity and attachment to feed in the Rumen simulation technique (Rusitec). British Journal of Nutrition, 2001, 85(3): 325-332.

[33] MORGAVI D P, BEAUCHMIN K A, NSEREKO V L. Trichoderma enzymes promote Fibrobacter succinogenes S85 adhesion to, and degradation of, complex substrates but not pure cellulose. Journal of the Science of Food and Agriculture, 2004, 84(10): 1083-1090.

[34] COLOMBATTO D, MOULD F L, BHAT M K. Influence of fibrolytic enzymes on the hydrolysis and fermentation of pure cellulose and xylan by mixed ruminal microorganisms in vitro. Journal of Animal Science, 2003, 81(4): 1040-1050.

[35] MCALLISTER T A, STANFORD K, BAE H D. Effect of a surfactant and exogenous enzymes on digestibility of feed and on growth performance and carcass traits of lambs. Canadian Journal of Animal Science, 2000, 80(1): 35-44.

[36] PRITCHARD G T, HUNT C W, ALLEN A. Effect of direct-fed fibrolytic enzymes on digestion and growth performance in beef cattle. Journal of Animal Science, 1996, 74(Suppl. 1): 296-308.

[37] 蘇麗萍, 馬雙青, 韓增祥, 何長芳, 辛總秀, 海存秀. 復(fù)合纖維素酶制劑對育肥羊的增重效果. 飼料工業(yè), 2012, 33(12): 43-45.

SU L P, MA S Q, HAN Z X, HE C F, XIN Z X, HAI C X. Composite cellulase preparation on growth performance of fattening sheep. Feed industry, 2012, 33(12): 43-45. (in Chinese)

[38] LEWIS G E, SANCHEZ W K, HUNT C W. Effect of direct-fed fibrolytic enzymes on the lactational performance of dairy cows. Journal of Dairy Science, 1999, 82(3): 611-617.

(責(zé)任編輯 林鑒非)

Effects of Corn Straw Treated with Different Compatibility Enzymes on Growth Performance and Nutrient Digestibility of Mutton Sheep

WANG Hong-mei, TU Yan, SI Bing-wen, NIE Ming-fei, DIAO Qi-yu
(Feed Research Institute, Key Laboratory of Feed Biotechnology/The Ministry of Agriculture of The People's Republic of China, Chinese Academy of Agricultural Sciences, Beijing 100081)

【Objective】This experiment was conducted to investigate the effects of different compatibility enzymes on growth performance and nutrient digestibility of Dorper × Small Tail Han sheep crossbred male lambs fed with corn straw-based diets.【Method】Lambs were assigned to one of four groups of 100 animals per group with five replicates in a randomized complete blockdesign being: control (basal diet without any supplementation), treatment groups (TG): TGⅠ (basal diet with enzymes preparation of Cellulase + β-glucanase + Xylanase), TGⅡ (basal diet with enzymes preparation of Cellulase + β-glucanase + Xylanase + Pectase), or TGⅢ (basal diet with enzymes preparation of Cellulase + β-glucanase + Xylanase + Pectase + Laccase) in a 76-day experiment including a 10-day preliminary test period and a 66-day formal trial period. The basal diets as TMR was fulfilled the growth requirements of lambs according to NRC (2007) with a concentrate: forage ratio of 4:6(at first phase) and 5:5(at second phase) (DM basis). The compound enzyme preparation for treatment diets was dissolved in water to form a 4% solution containing a mix of carrier and enzymes, which was sprayed directly onto the corn straw at a rate of 1.0 kg/t of TMR (Air dry basis), just prior to feeding.【Result】The results showed as follows: different compatibility enzymes had significant effects on ADG and ratio of feed to gain (F/G) (P<0.05), but no significant differences were found in dry matter intake (P=0.107). ADG of TGⅢ and TGⅡwas significantly higher than those in Control and TGⅠ(P<0.05), and F/G of TG Ⅲ was significantly lower than that in Control (P<0.05), but there was no difference between TGⅢ and TGⅡ or Control and TGⅠ(P>0.05), respectively. Addition of enzymes preparation also increased (P<0.05) apparent digestibility of all nutrients, except for CP(P=0.166). TGⅢ was the highest in nutrient digestibility. Apparent digestibility of DM, OM, GE, NDF, ADF in TGⅢ was significantly higher than that in Control (P<0.05), but there was no difference between TGⅢ and TGⅡ or Control and TGⅠ(P>0.05). The magnitude of improvement in digestibility varied among nutrients, with the highest improvement occurred in digestibility of DM and ADF (about 11% and 19%, respectively). The addition of enzyme preparation in TGⅢ also achieved good economic benefits. 【Conclusion】 It was concluded that there are positive responses to growth performance and nutrient digestibility of fattening sheep for corn stalk diet treated with different compatibility enzymes. The effect of TGⅢ was significantly better than that of TGⅡ, although the effects of TG III and TG II were both significantly. Compared with the control, average daily gain of TG III was increased by 23.51%, nutrient digestibility was increased by 11%, feed conversion ratio was increased by 26.36%, and diet cost for 1kg weight gain was reduced by 18.42%.

fattening sheep; different compatibility enzymes; corn straw; live-weight gain; digestibility

2016-01-26;接受日期:2016-09-28

公益性行業(yè)(農(nóng)業(yè))科研專項經(jīng)費項目(20120304202)、內(nèi)蒙古自治區(qū)科技重大專項

聯(lián)系方式:王紅梅,E-mail:chasu927@163.com。通信作者刁其玉,E-mail:diaoqiyu@caas.cn

猜你喜歡
酶制劑營養(yǎng)物質(zhì)消化率
茶樹吸收營養(yǎng)物質(zhì)的特性
茶道(2022年3期)2022-04-27 00:15:46
不同復(fù)合酶制劑對育肥豬生長性能和營養(yǎng)物質(zhì)表觀消化率的影響
湖南飼料(2019年5期)2019-10-15 08:59:10
酶制劑在養(yǎng)豬生產(chǎn)中的應(yīng)用
生鮮乳中營養(yǎng)物質(zhì)的調(diào)控技術(shù)
試分析高中生物三大營養(yǎng)物質(zhì)的代謝關(guān)系
我國飼料酶制劑研發(fā)與應(yīng)用實踐
廣東飼料(2016年2期)2016-12-01 03:43:05
不同鋅源及鋅水平對冬毛生長期水貂營養(yǎng)物質(zhì)消化率影響的研究
半胱胺對育成期雄性水貂生長性能、營養(yǎng)物質(zhì)消化率及氮代謝的影響
酶制劑濃縮方法研究進展
化工進展(2015年6期)2015-11-13 00:27:42
生物酶制劑推動洗滌用品行業(yè)可持續(xù)發(fā)展
广平县| 清流县| 和政县| 凤山市| 南阳市| 吉林市| 桑日县| 博兴县| 曲水县| 陵川县| 禹州市| 伊宁县| 运城市| 莒南县| 内江市| 莎车县| 乌海市| 珲春市| 兴国县| 濮阳县| 建湖县| 平阳县| 青阳县| 呼伦贝尔市| 松溪县| 舞阳县| 临江市| 罗城| 武穴市| 平定县| 汝阳县| 榆社县| 上思县| 霍林郭勒市| 阜平县| 洛宁县| 冕宁县| 宁强县| 杂多县| 浠水县| 胶南市|