張晶晶,李宏俊, 秦艷杰, 劉敏,葉晟
(1. 大連海洋大學(xué) 水產(chǎn)與生命學(xué)院,遼寧 大連 116023;2. 國(guó)家海洋環(huán)境監(jiān)測(cè)中心 海洋生態(tài)室,遼寧 大連 116023)
文蛤C型凝集素基因(Mm-Lec1)的克隆與表達(dá)分析
張晶晶1,2,李宏俊2*, 秦艷杰1, 劉敏1,2,葉晟1,2
(1. 大連海洋大學(xué) 水產(chǎn)與生命學(xué)院,遼寧 大連 116023;2. 國(guó)家海洋環(huán)境監(jiān)測(cè)中心 海洋生態(tài)室,遼寧 大連 116023)
摘要:文蛤(Meretrix meretrix)是我國(guó)重要的灘涂養(yǎng)殖貝類(lèi),病害嚴(yán)重影響文蛤增養(yǎng)殖業(yè),研究文蛤的免疫機(jī)制有助于解決文蛤的病害問(wèn)題。C型凝集素(C-type lectin)參與先天免疫,在識(shí)別病原相關(guān)分子模式和激活體液免疫因子等方面發(fā)揮重要作用。本研究檢索已構(gòu)建的文蛤全長(zhǎng)cDNA 文庫(kù),經(jīng)過(guò)Blast比對(duì)得到了文蛤C型凝集素1(Mm-Lec1)基因的全長(zhǎng)cDNA序列。Mm-Lec1序列全長(zhǎng)586 bp,5`和3`非翻譯區(qū)(UTR)的長(zhǎng)度分別為21 bp和79 bp,開(kāi)放閱讀框長(zhǎng)度為486 bp,編碼161個(gè)氨基酸,分子量為18.65 kD,理論等電點(diǎn)為4.98。預(yù)測(cè)的氨基酸序列中含有信號(hào)肽(Met1-Ser19)、糖識(shí)別結(jié)構(gòu)域(CRD)和糖結(jié)合位點(diǎn)(QPN)。Mm-Lec1的三級(jí)結(jié)構(gòu)是緊湊型,含有β片層結(jié)構(gòu)。同源性分析結(jié)果表明,Mm-Lec1與其他物種C型凝集素相似度在20%~32%;鄰接法(Neighbor-Joining, NJ)進(jìn)化樹(shù)分析結(jié)果表明,Mm-Lec1與紫貽貝CTL 6和櫛孔扇貝CTL A聚為一支。實(shí)時(shí)熒光定量分析結(jié)果顯示,Mm-Lec1在文蛤鰓、肝胰腺、閉殼肌、外套膜、性腺和血細(xì)胞中均表達(dá),其中鰓表達(dá)量最高,血細(xì)胞次之,性腺中表達(dá)量最少;在鰻弧菌(Vibrio anguillarum)刺激實(shí)驗(yàn)中,6 h時(shí)Mm-Lec1在血細(xì)胞中的表達(dá)量最低,48 h表達(dá)量最高,暗示Mm-Lec1參與文蛤抵御細(xì)菌入侵的免疫過(guò)程。
關(guān)鍵詞:文蛤;C型凝集素;表達(dá)序列標(biāo)簽;三級(jí)結(jié)構(gòu);實(shí)時(shí)熒光定量PCR
1引言
文蛤(Meretrixmeretrix)主要分布于廣西北部灣、江蘇南部、山東蓬萊灣及遼寧遼河口等海區(qū)[1],是我國(guó)重要的灘涂經(jīng)濟(jì)貝類(lèi),也是主要的出口鮮活水產(chǎn)品之一。近年來(lái),病害問(wèn)題嚴(yán)重制約我國(guó)文蛤增養(yǎng)殖業(yè)發(fā)展,文蛤病害暴發(fā)具有明顯的區(qū)域性、季節(jié)性和流行性[2],常常導(dǎo)致文蛤大規(guī)模死亡,成為文蛤養(yǎng)殖業(yè)遇到的最大難題[3—4]。導(dǎo)致貝類(lèi)病害暴發(fā)的原因是多方面的,是外界病原、環(huán)境和貝類(lèi)生物自身共同作用的結(jié)果。研究文蛤抵御病害機(jī)制,探討貝類(lèi)自身免疫防御機(jī)理,可以為文蛤抗病選育提供理論基礎(chǔ)。
C型凝集素(C-type lectin, CTL)代表一個(gè)依賴(lài)于鈣離子(Ca2+)參與的與糖原結(jié)合的蛋白家族,含有1個(gè)或多個(gè)一級(jí)結(jié)構(gòu)和二級(jí)結(jié)構(gòu)同源的碳水化合物識(shí)別結(jié)構(gòu)域。C型凝集素根據(jù)與其結(jié)合的配體不同可分為Man型配體和Gal型配體,前者與D-甘露糖、D-葡萄糖結(jié)合,在氨基酸序列中對(duì)應(yīng)的三氨基分別是EPN和EPD;后者與D-半乳糖及其衍生物結(jié)合,在氨基酸中對(duì)應(yīng)的三氨基分別是QPD和QPN[5—6]。在先天免疫應(yīng)答中,C型凝集素配體與外來(lái)病原菌糖原結(jié)合,中和病原菌的致病毒性,通過(guò)補(bǔ)體途徑或者細(xì)胞吞噬途徑消滅病原菌[7]。CTL在貝類(lèi)先天免疫中發(fā)揮重要作用,在櫛孔扇貝(Chlamysfarreri)[5],合浦珠母貝(Pinctadafucata)[8],海灣扇貝(Argopectenirradias)[9]和偏頂蛤(Modiolusmodiolus)[10]抵御細(xì)菌,海灣扇貝損傷愈合[9],凡納濱對(duì)蝦(Litopenaeusvannamei)[11]和斑節(jié)對(duì)蝦(Penaeusmonodon)[12]抵御病毒入侵和文蛤(M.meretrix)耐鹽和耐高溫[13]生理響應(yīng)中發(fā)揮作用。
目前,已報(bào)道CTL基因的軟體動(dòng)物包括紫貽貝(Mytilusgalloprovincialis)[14],櫛孔扇貝[15—16],海灣扇貝[9,17—18]和合浦珠母貝(P.fucata)[8,19],太平洋牡蠣(Crassostreagigas)[20—21]、美洲牡蠣(Crassostreavirginica)[22]、和皺紋盤(pán)鮑(Haliotisdiscus)[23—24]等。本研究克隆了文蛤Mm-Lec1基因的全長(zhǎng)cDNA序列,分析了Mm-Lec1基因mRNA在各組織分布情況和病原菌刺激下的表達(dá)規(guī)律,這將為進(jìn)一步研究CTL基因在軟體動(dòng)物中的免疫功能提供基礎(chǔ)資料。
2材料與方法
2.1材料
試驗(yàn)用文蛤采自遼寧省盤(pán)山縣遼河口,在室內(nèi)的60 L的塑料箱中暫養(yǎng)2周后,選取活力較好、殼長(zhǎng)均勻(4.0~5.0 cm)的文蛤進(jìn)行實(shí)驗(yàn)。對(duì)于組織表達(dá)實(shí)驗(yàn),選取3只閉殼肌活力強(qiáng)的文蛤分別取血細(xì)胞、鰓、閉殼肌、性腺、外套膜和肝胰腺組織,保存于液氮中備用。對(duì)于鰻弧菌(virbrioanguillarum)浸染實(shí)驗(yàn),設(shè)置對(duì)照組和實(shí)驗(yàn)組,實(shí)驗(yàn)組海水鰻弧菌終濃度為4×107cfu/mL,在刺激0 h、6 h、12 h、24 h、48 h、72 h和96 h用1 mL注射器采集閉殼肌的血細(xì)胞,每個(gè)時(shí)間點(diǎn)設(shè)置3個(gè)重復(fù),經(jīng)4℃,5 500 r/min離心10 min處理后,保存于液氮中備用。
2.2文蛤C 型凝集素基因序列的獲得
本課題組已構(gòu)建了文蛤3個(gè)組織的全長(zhǎng)cDNA文庫(kù),共得到3 129條高質(zhì)量的EST序列[25—26],在NCBI (http://www.ncbi.nlm.nih.gov/)網(wǎng)站利用tblastx進(jìn)行同源序列搜索比對(duì),獲得文蛤C型凝集素的全長(zhǎng)cDNA序列。
2.3文蛤C型凝集素基因序列的生物信息學(xué)分析
應(yīng)用ORF Finder(http://www.ncbi.nlm.nih.gov/gorf/gorf.html)程序確定正確的開(kāi)放閱讀框,并運(yùn)用BioEdit軟件翻譯成氨基酸序列;采用InterProScan 5(http://www.ebi.ac.uk/Tools/pfa/iprscan5/)預(yù)測(cè)氨基酸序列中的疏水區(qū);采用TMHMM在線(xiàn)服務(wù)器(http://www.cbs.dtu.dk/services/TMHMM/)預(yù)測(cè)蛋白跨膜區(qū);用SignalP4.1 Server軟件 (http://www.cbs.dtu.dk/services/SignalP/)預(yù)測(cè)信號(hào)肽;采用SMART(http://smart.embl-heidelberg.de/)在線(xiàn)服務(wù)軟件預(yù)測(cè)功能域;采用DiANNA(http://clavius.bc.edu/~clotelab/DiANNA/)預(yù)測(cè)二硫鍵的個(gè)數(shù);采用ExPASy SWISSMODEL軟件 (http://swissmodel.expasy.org/interactive)預(yù)測(cè)空間結(jié)構(gòu),采用RasTop軟件查看模型;運(yùn)用在線(xiàn)軟件TargetP 1.1(http://www.cbs.dtu.dk/services/TargetP/)對(duì)蛋白質(zhì)進(jìn)行定位;通過(guò)NCBI (http://www.ncbi.nlm.gov)中的tblastx工具進(jìn)行蛋白質(zhì)序列相似性檢索;用ClustalX 2.1軟件與GeneDoc軟件聯(lián)合進(jìn)行多序列比對(duì);應(yīng)用ClustalX 2.1軟件與MEGA 5.0軟件構(gòu)建NJ系統(tǒng)進(jìn)化樹(shù);用在線(xiàn)ClustalW 2服務(wù)器(http://www.ebi.ac.uk/Tools/msa/clustalw2/)分析蛋白質(zhì)序列的相似性。
2.4文蛤C型凝集素的組織分布表達(dá)與時(shí)序表達(dá)
按照天根的提取RNA的試劑盒說(shuō)明書(shū)提取RNA,采用生工的反轉(zhuǎn)錄試劑盒獲得cDNA。依照寶生物的SYBR Premix Ex Taq kit試劑盒說(shuō)明書(shū),以cDNA為模板,配置20 μL的擴(kuò)增體系,同時(shí)設(shè)置ABI7500系統(tǒng)的擴(kuò)增程序。為了確保引物的特異性,我們?cè)黾恿巳芙馇€(xiàn)的擴(kuò)增。為了減少實(shí)驗(yàn)的誤差,每個(gè)組織或時(shí)間點(diǎn)重復(fù)3次實(shí)驗(yàn)。利用Primer Premier 5.0設(shè)計(jì)C型凝集素和β-actin的特異性引物(表1)。采用2-△△Ct法計(jì)算Mm-Lec1基因的相對(duì)表達(dá)量,以β-actin為內(nèi)參基因,使用One way ANOVA分析實(shí)驗(yàn)組與對(duì)照組的Mm-Lec1基因的相對(duì)表達(dá)量的顯著性差異。
表1 β-actin和Mm-Lec1的特異性引物
3結(jié)果
3.1Mm-Lec1序列分析
Mm-Lec1基因的全長(zhǎng)cDNA序列為586 bp(GenBank注冊(cè)號(hào)KT276515),3′端有polyA尾巴,5′和3′非翻譯區(qū)(UTR)的長(zhǎng)度分別為21 bp和79 bp,開(kāi)放閱讀框長(zhǎng)度為486 bp,編碼161個(gè)氨基酸。Mm-Lec1氨基酸序列Met1-Ser19為信號(hào)肽序列,Ser19和Ala20之間存在剪切位點(diǎn)(圖1)。氨基酸序列包含1個(gè)糖識(shí)別結(jié)構(gòu)域(CRD),CRD包含6個(gè)保守的半胱氨酸(Cys21,Cys32,Cys49,Cys125,Cys141和Cyst150)和1個(gè)糖結(jié)合位點(diǎn)QPN(Gln115,Pro116,Asn117)(圖1)。按照標(biāo)準(zhǔn)密碼子翻譯后的蛋白質(zhì)推測(cè)分子式為C841H1227N217O245S11,分子量計(jì)算值為18.65 kD,理論等電點(diǎn)為4.98。極性與極性帶電氨基酸共99個(gè)(占61.5%),非極性氨基酸62個(gè)(占38.5%),極性氨基酸比較大,決定了Mm-Lec1氨基酸具有較好的水溶性。
圖1 Mm-Lec1基因的核苷酸序列和推測(cè)的氨基酸序列Fig.1 The full cDNA and predicted amino acid sequence of Mm-Lec1 gene雙下劃線(xiàn)代表起始密碼子和終止密碼子;帶有下劃線(xiàn)的氨基酸序列是C型凝集素家族糖識(shí)別結(jié)構(gòu)域(CRD)序列;帶有虛線(xiàn)下劃線(xiàn)的氨基酸是疏水氨基酸;黑色背景表示形成二硫鍵的半胱氨酸;灰色陰影代表糖結(jié)合位點(diǎn);↓代表信號(hào)肽剪切位點(diǎn)The start and stop codons are double line underlined; the carbohydrate recognition domain (CRD) is underlined; hydrophobic amino acids are dotted line underlined; cysteines constituting disulfide bonds are in black box; the sugar binding sites are in grey shadow re-gion; ↓ is the token of signal peptide splice site
3.2蛋白亞細(xì)胞定位分析
TMHMM預(yù)測(cè)前60個(gè)氨基酸含有疏水氨基酸,存在跨膜區(qū)氨基酸的預(yù)測(cè)值較高(14.5>10),跨膜螺旋結(jié)構(gòu)的預(yù)測(cè)值低(14.5<18)。InterProScan 5估測(cè)Leu3-Leu14為疏水區(qū)。TargetP 1.1在線(xiàn)服務(wù)器估算Mm-Lec1是分泌蛋白的概率是93.4%。
3.3同源比對(duì)、相似度和系統(tǒng)樹(shù)
從23條C型凝集素基因比對(duì)圖(圖2)發(fā)現(xiàn)6個(gè)位點(diǎn)的氨基酸是完全一樣的,其中5個(gè)是半胱氨酸。ClustalW 2在線(xiàn)服務(wù)器計(jì)算得出文蛤與紫貽貝C-type lectin 6的相似度最大(32%),其次是紫貽貝C-type lectin 4(31%),與斑節(jié)對(duì)蝦的相似度最小(20%)。利用MEGA 5.0軟件建立鄰接法(Neighbour-Joining,NJ)系統(tǒng)樹(shù)(圖3)。結(jié)果顯示Mm-Lec1先和紫貽貝(AJQ21497)聚為一支,然后和櫛孔扇貝(DQ209289)聚為一大支,和其他的軟體動(dòng)物的C型凝集素的進(jìn)化距離較遠(yuǎn)。
3.4蛋白高級(jí)結(jié)構(gòu)同源建模分析
運(yùn)用DiANNA在線(xiàn)軟件,得出CRD結(jié)構(gòu)域的6個(gè)半胱氨酸形成3個(gè)二硫鍵(分別是1-12:XXXXXCPSGWI-EFNQECFLFGA,29-130:DAEADCRRHSS-RYNYICEXXXX,104-122:NNSANCMSFYM-WRDDRCTARYN),連接方式是第1個(gè)和第2個(gè),第3個(gè)和第6個(gè),第4個(gè)和第5個(gè)半胱氨酸形成二硫鍵。將Mm-Lec1氨基酸序列提交到(http://swissmodel.expasy.org/)網(wǎng)站,在RCSB PCB數(shù)據(jù)庫(kù)(http://www.rcsb.org/pdb/home/home.do)中比對(duì),得到1個(gè)與之相似度(similarity:37.50%)比較高的氨基酸序列的高級(jí)結(jié)構(gòu)模板:小鼠清道夫受體C型凝集素Collectin placenta 1(2ox9.3.A)[27],其全局模型質(zhì)量評(píng)估(Global Model Quality Estimation,GMQE)值為0.63(GMQE值在0~1之間,值越大,模板與目標(biāo)基因的匹配度越高,得到的蛋白質(zhì)的三級(jí)結(jié)構(gòu)越可信)。根據(jù)此模板建立Mm-Lec1高級(jí)結(jié)構(gòu)模型(圖4A),結(jié)果顯示蛋白分子空間結(jié)構(gòu)是緊湊型,是由6個(gè)Helices,19個(gè)Strands,和11個(gè)Turns,其中3條β折疊形成1個(gè)β片層結(jié)構(gòu)(圖4C)。
3.5文蛤Mm-Lec1組織表達(dá)規(guī)律
3.5.1C型凝集素在文蛤各個(gè)組織中的分布情況
采用QRT-PCR,我們分析了Mm-Lec1基因在健康文蛤各個(gè)組織中的相對(duì)表達(dá)量(圖5),鰓中Mm-Lec1的mRNA表達(dá)量是血細(xì)胞的2.6倍(P>0.05),閉殼肌中的表達(dá)量是血細(xì)胞的0.8倍(P>0.05),外套膜中的表達(dá)量是血細(xì)胞的0.3倍(P>0.05),肝胰腺中的表達(dá)量是血細(xì)胞的0.2倍(P<0.05),性腺中的表達(dá)量是血細(xì)胞0.09倍(P<0.05),所以鰓中表達(dá)量最高,血細(xì)胞次之,性腺中表達(dá)量最低。
3.5.2菌刺激之后Mm-Lec1的時(shí)間表達(dá)分析
在細(xì)菌刺激試驗(yàn)中,我們分析了鰻弧菌(Vibrioanguillarum)刺激后0 h,6 h,12 h,24 h,48 h,72 h和96 h文蛤血細(xì)胞C型凝集素基因mRNA的相對(duì)表達(dá)量(圖6),6 h的表達(dá)量是0 h的0.4倍(P<0.05),12和24 h的表達(dá)量分別是0 h的1.1倍和1.9倍,48 h的相對(duì)表達(dá)量是0 h的3.3倍(P<0.05),72 h后Mm-Lec1的mRNA表達(dá)量恢復(fù)到0 h水平。C型凝集素的表達(dá)在時(shí)間上呈現(xiàn)先降低,再升高,在48 h時(shí)達(dá)到峰值,而后降低到基礎(chǔ)水平的趨勢(shì)。
4討論
文蛤是我國(guó)沿海常見(jiàn)的一種重要經(jīng)濟(jì)貝類(lèi),也是出口創(chuàng)匯的重要水產(chǎn)品之一,但是由于病害流行和養(yǎng)殖水域污染,文蛤養(yǎng)殖業(yè)受到極大損失,因此研究文蛤免疫機(jī)制顯得尤為重要。本研究報(bào)道了文蛤重要免疫基因C型凝集素Mm-Lec1的cDNA序列,運(yùn)用InterProScan 5推測(cè)Mm-Lec1氨基酸序列Leu3-Leu14為疏水區(qū),猜測(cè)這段氨基酸序列存在信號(hào)肽或者跨膜區(qū)。由TMHMM預(yù)測(cè)前60個(gè)氨基酸含有疏水氨基酸,存在跨膜區(qū)的氨基酸預(yù)測(cè)值相對(duì)比較高(14.5>10),跨膜螺旋結(jié)構(gòu)的預(yù)測(cè)值低(14.5<18),推測(cè)Mm-Lec1中不含有跨膜螺旋結(jié)構(gòu),可能含有1個(gè)N端信號(hào)肽序列[28]。利用軟件SignalP4.0發(fā)現(xiàn)文蛤Mm-Lec1氨基酸序列Met1-Ser19是信號(hào)肽序列,TargetP 1.1預(yù)測(cè)得出C型凝集素是分泌蛋白的概率是93.4%,猜測(cè)文蛤Mm-Lec1是分泌蛋白。Mm-Lec1氨基酸序列的糖結(jié)合位點(diǎn)是QPN,具有D-半乳糖結(jié)合特性,說(shuō)明Mm-Lec1是Gal型配體。從多序列比對(duì)圖中我們發(fā)現(xiàn),糖結(jié)合位點(diǎn)是EPN和QPD的物種數(shù)最多,EPD其次,QPN、VPN、YPD和EPS最少。在糖結(jié)合位點(diǎn)中,EPN和QPD是高度保守的,其他都是突變型,這種高度保守的堿基被替換說(shuō)明海洋生物C型凝集素序列的多樣性[16]。
用Swissmodel構(gòu)建的Mm-Lec1模型與小鼠清道夫受體C型凝集素Collectin placenta 1(2ox9.3.A)的同源性較高,序列的氨基酸組成分析得出Mm-Lec1是水溶性蛋白質(zhì),推測(cè)Mm-Lec1屬于Collectin家族中的一員。Mm-Lec1的高級(jí)結(jié)構(gòu)是緊湊型,運(yùn)用DiANNA預(yù)測(cè)合浦珠母貝[8,19]和海灣扇貝[9]的CRD結(jié)構(gòu)中的二硫鍵發(fā)現(xiàn),都含有3個(gè)二硫鍵,半胱氨酸的結(jié)合方式都是第1個(gè)和第2個(gè),第3個(gè)和第6個(gè),第4個(gè)和第5個(gè)結(jié)合,但是合浦珠母貝是球形而海灣扇貝是長(zhǎng)型(long-form),說(shuō)明蛋白質(zhì)的高級(jí)結(jié)構(gòu)不僅僅只與二硫鍵的數(shù)量有關(guān),但還需要更多的研究進(jìn)行佐證。
圖2 文蛤C型凝集素與其他已知的C型凝集素的多序列比對(duì)Fig.2 Multiple alignments of Mm-Lec1 with other known C-type lectin sequences黑色背景代表同源性,灰色陰影代表相似性;▲表示糖識(shí)別結(jié)構(gòu)域中形成二硫鍵的半胱氨酸。其中文蛤Mm-Lec1 (M. meretrix, KT276515);紫貽貝C-type lectin 8(M. galloprovincialis, AJQ21499);皺紋盤(pán)鮑putative perlucin 3 (H. discus discus, ABO26595);紫貽貝C-type lectin 6(M. galloprovincialis, AJQ21497);海灣扇貝 serum C-type lectin (A. irradians, ACE80702);日本鰻鱺 C-type lectin 2(A. japonica, BAC54021);虹鱒 C-type MBL-2 protein(O. mykiss, CAJ14130);長(zhǎng)牡蠣 C-type lectin-1(C. gigas, BAF75353);紫貽貝C-type lectin 4(M. galloprovincialis, AJQ21495);海灣扇貝 C-type lectin 4(A. irradians, ACS72239);紫貽貝C-type lectin 5(M. galloprovincialis, AJQ21496);海灣扇貝 C-type lectin 3(A. irradians, ACS72238);櫛孔扇貝C-type lectin A(C. farreri, DQ209289);爪蟾 Mrc1-prov protein(X. laevis, AAH77648);大西洋鮭 C type lectin receptor B(S. salar, AAT77221 );松江鱸 C-type lectin(T. fasciatus, AFW17073);紫貽貝C-type lectin 2(M. galloprovincialis, AJQ21493);海灣扇貝 C-type lectin(A. irradians, EU277646);海灣扇貝CLECT(A. irradians, ABZ89710);櫛孔扇貝 C-type lectin B(C. farreri, DQ209290);合浦珠母貝C-type lectin 2(P. fucata, ACO36046);大西洋鮭 serum lectin isoform 5 precursor(S. salar, AAO43604);斑節(jié)對(duì)蝦PmAV(P. monodon, AAQ75589)Homology are in the black region; similarity are in the grey region; the acids under ▲ are cysteines constituting disulfide bonds in the structure domain. There include hard clam Mm-Lec1 (M. meretrix, KT276515), blue mussel C-type lectin 8 (M. galloprovincialis, AJQ21499), disk abalone putative perlucin 3 (H. discus discus, ABO26595), blue mussel C-type lectin 6 (M. galloprovincialis, AJQ21497), bay scallop serum C-type lectin (A. irradians, ACE80702), Japanese eel C-type lectin 2 (A. japonica, BAC54021), rainbow trout C-type MBL-2 protein (O. mykiss, CAJ14130), Pacific oyster C-type lectin-1 (C. gigas, BAF75353), blue mussel C-type lectin 4 (M. galloprovincialis, AJQ21495), bay scallop C-type lectin 4 (A. irradians, ACS72239), blue mussel C-type lectin 5 (M. galloprovincialis, AJQ21496), bay scallop C-type lectin 3 (A. irradians, ACS72238), Zhikong scallop C-type lectin A (C. farreri, DQ209289), clawed toad Mrc1-prov protein (X. laevis, AAH77648), Atlantic salmon C type lectin receptor B (S. salar, AAT77221 ), roughskin sculpin C-type lectin (T. fasciatus, AFW17073), blue mussel C-type lectin 2 (M. galloprovincialis, AJQ21493), bay scallop C-type lectin (A. irradians, EU277646), bay scallop CLECT (A. irradians, ABZ89710 ), Zhikong scallop C-type lectin B (C. farreri, DQ209290), Peal oyster C-type lectin 2 (P. fucata, ACO36046), Atlantic salmon serum lectin isoform 5 precursor (S. salar, AAO43604), black tiger shrimp PmAV (P. monodon, AAQ75589)
圖3 23條C型凝集素基因構(gòu)建的NJ進(jìn)化樹(shù)以及Mm-Lec1與其他已知CTL基因的相似度Fig.3 The NJ tree of 23 CTL genes and the similarity between other known CTL and Mm-Lec1
圖4 文蛤C型凝集素蛋白的高級(jí)結(jié)構(gòu)不同角度觀測(cè)圖以及β片層結(jié)構(gòu)展示圖Fig.4 The tertiary structure in different views of Mm-Lec1 and the show of β lamellar structureA.正視圖;B.仰視圖; C.在B基礎(chǔ)上Z軸旋轉(zhuǎn)逆時(shí)針旋轉(zhuǎn)60°得到的側(cè)視圖。藍(lán)色部分是β轉(zhuǎn)角,綠色部分是無(wú)規(guī)卷曲,黃色部分是β折疊,紅色部分是α螺旋A. Front view; B. Vertical view; C. Side view generated after B rotates 60 degrees CCW on Z axis. The blue, green, yellow and red is the token of β-turn, random coil, β folding and α helix, respectively
圖5 文蛤C型凝集素在組織中的表達(dá)量Fig.5 Relative expression of the Mm-Lec1 mRNA in tissues. Bars display mean ± S. D.*代表顯著性差異(P<0.05),柱狀圖代表的是相對(duì)表達(dá)量的平均值±方差* is the token of significance difference (P<0.05)
圖6 菌刺激后文蛤血細(xì)胞中C型凝集素基因mRNA的表達(dá)量Fig.6 Relative expression of the Mm-Lec1 gene mRNA in haemocytes after bacteria exposure*代表顯著性差異(P<0.05),柱狀圖代表的是相對(duì)表達(dá)量的平均值±方差* indicates significance difference (P<0.05). Bars display mean ± S. D.
一般低等生物中的C型凝集素只含有1個(gè)CRD,其他物種的則有兩個(gè)或多個(gè)CRD[29]。文蛤Mm-Lec1氨基酸含有1個(gè)C型凝集素結(jié)構(gòu)域,這和海灣扇貝(A.irradias)[9,17—18,29]以及合浦珠母貝(P.fucata)[8,19]的C型凝集素結(jié)構(gòu)一致,但和櫛孔扇貝(C.farreri)[15—16,30—31]結(jié)構(gòu)不一致,其中Cflec-3[31]和Cflec-4[30]分別含有3個(gè)和4個(gè)CRD結(jié)構(gòu)域。從23條序列的比對(duì)圖發(fā)現(xiàn),比軟體動(dòng)物在進(jìn)化上高級(jí)很多的兩棲類(lèi)爪蟾和魚(yú)類(lèi),都含有1個(gè)CRD結(jié)構(gòu)域的情況。Mm-Lec1與其他物種的CTL的相似度在20%~32%之間(圖3),文蛤和紫貽貝 C-type lectin 6的相似度最高(32%),其次是紫貽貝C-type lectin 4(31%),與斑節(jié)對(duì)蝦PmAV的相似度最低(20%),與非同類(lèi)的日本鰻鱺(28%),松江鱸(27%),爪蟾(27%)和虹鱒C-type MBL-2 protein(27%)卻有相對(duì)較高的相似度;此外,Mm-Lec1基因和最近發(fā)表的Mm-CTL基因堿基組成有很大的差別,相似度僅是36.5%。同時(shí),NJ系統(tǒng)樹(shù)結(jié)果分析顯示不同物種及同一物種的CTL基因并沒(méi)有產(chǎn)生特別明顯的系統(tǒng)分化關(guān)系,比如,同屬于海灣扇貝的CTL基因和同屬紫貽貝的CTL基因并沒(méi)有各自獨(dú)立分為一支,甚至有一些基因的進(jìn)化距離相對(duì)較遠(yuǎn);屬于兩棲類(lèi)的爪蟾的C型凝集素基因卻與魚(yú)類(lèi)的聚為一支;與Mm-Lec1同源性相差不多的紫貽貝 C-type lectin 6和紫貽貝C-type lectin 4卻與Mm-Lec1有不同進(jìn)化距離。這些進(jìn)化關(guān)系可能是由于凝集素基因家族成員不同的進(jìn)化路徑和不同的功能造成的,也證實(shí)了C型凝集素是一個(gè)具有保守序列并且進(jìn)化較快的基因[8]。
文蛤Mm-Lec1 mRNA在所檢測(cè)組織中都有表達(dá),其中鰓中表達(dá)量最高,血細(xì)胞次之,性腺中表達(dá)量最少。胡鈺婷等[8]發(fā)現(xiàn)PoLEC1和PoLEC2在合浦珠母貝肝胰腺中表達(dá)量最高;Zhu等[9,29]發(fā)現(xiàn)AiCTL1和Ai Lec分別在海灣扇貝的血細(xì)胞和肝胰腺中表達(dá)量最高。鰓是軟體動(dòng)物免疫系統(tǒng)的“第一道防線(xiàn)”,在貝類(lèi)免疫方面起到重要的作用;血細(xì)胞和肝胰腺是無(wú)脊椎動(dòng)物重要的免疫器官。但是在相同物種或不同物種不同的組織中C型凝集素基因的表達(dá)量不同,說(shuō)明C型凝集素的種類(lèi)很多,推測(cè)是不同C型凝集素基因的具體功能不同造成的[9]。血細(xì)胞不僅可以直接隔離并且殺死病原菌而且可以合成和分泌一些在免疫中有作用的活性物質(zhì),所以我們選擇血細(xì)胞為在不同時(shí)間的鰻弧菌刺激下的C型凝集素的實(shí)驗(yàn)材料。6 h血細(xì)胞中的C型凝集素的表達(dá)量達(dá)到最低值,48 h達(dá)到最高值,72 h回到基礎(chǔ)水平,暗示C型凝集素在文蛤體內(nèi)存在誘導(dǎo)表達(dá)的恢復(fù)模式,這與櫛孔扇貝[5]和合浦珠母貝[8]的C型凝集素研究結(jié)果一致,說(shuō)明文蛤的C型凝集素有參與體內(nèi)免疫和機(jī)體防御。
參考文獻(xiàn):
[1]莊啟謙. 中國(guó)動(dòng)物志, 軟體動(dòng)物門(mén), 雙殼綱, 簾蛤科[M]. 北京: 科學(xué)出版社, 2001: 230.
Zhuang Qiqian. Fauna sinica, phylum mollusca, bivalvia, veneridae[M]. Beijing: Science Press, 2001: 230.
[2]王如才, 王昭萍. 海水貝類(lèi)養(yǎng)殖學(xué)[M]. 青島: 中國(guó)海洋大學(xué)出版社, 2008: 396-408.
Wang Rucai, Wang Zhaoping. Marine shellfish culture[M]. Qingdao: Ocean University of China Press, 2008: 396-408.
[3]劉連生, 閆茂倉(cāng), 林志華, 等. 引起文蛤暴發(fā)性死亡病原菌的分離和鑒定[J]. 微生物學(xué)通報(bào), 2009, 36(1): 71-77.
Liu Liansheng, Yan Maocang, Lin Zhihua, et al. Pathogens isolation and identification of eruptive epidemic disease inMeretrixmeretrix[J]. Microbiology, 2009, 36(1): 71-77.
[4]劉連生, 閆茂倉(cāng), 趙海泉, 等. 文蛤疾病學(xué)研究進(jìn)展[J]. 水產(chǎn)科學(xué), 2009, 28(4): 234-237.
Liu Liansheng, Yan Maocang, Zhao Haiquan, et al. Advancement of pathological researches on hard clamMeretrixmeretrix[J]. Fisheries Science, 2009, 28(4): 234-237.
[5]胥煒, 王昊, 宋林生, 等. 櫛孔扇貝C型凝集素基因的克隆與表達(dá)研究[J]. 高技術(shù)通訊, 2005, 15(1): 83-88.
Xu Wei, Wang Hao, Song Linsheng, et al. cDNA cloning and mRNA expression of C-type lectin from scallopChlamysFarreri[J]. Chinese High Technology Letters, 2005, 15(1): 83-88.
[6]Drickamer K. Engineering galactose-binding activity into a C-type mannose-binding protein[J]. Nature, 1992, 360(6400): 183-186.
[7]Weis W I, Taylor M E, Drickamer K. The C-type lectin superfamily in the immune system[J]. Immunological Reviews, 1998, 163(1): 19-34.
[8]胡鈺婷, 張殿昌, 崔淑歌, 等. 合浦珠母貝C-型凝集素基因的序列特征和功能分析[J]. 水產(chǎn)學(xué)報(bào), 2011, 35(9): 1327-1336.
Hu Yuting, Zhang Dianchang, Cui Shuge, et al. Sequence features and functional analysis of the C-type lectin gene (PoLEC1) from pearl oysterPinctadafucata[J]. Journal of Fisheries of China, 2011, 35(9): 1327-1336.
[9]Zhu Ling, Song Linsheng, Xu Wei, et al. Molecular cloning and immune responsive expression of a novel C-type lectin gene from bay scallopArgopectenirradians[J]. Fish Shellfish Immunol, 2008, 25(3): 231-238.
[10]Tunkijjanukij S, Olafsen J A. Sialic acid-binding lectin with antibacterial activity from the horse mussel: further characterization and immunolocalization[J]. Dev Comp Immunol, 1998, 22(2): 139-150.
[11]Zhao Zhiying, Yin Zhixin, Xu Xiaopeng, et al. A novel C-type lectin from the shrimpLitopenaeusvannameipossesses anti-white spot syndrome virus activity[J]. J Virol, 2009, 83(1): 347-356.
[12]Luo Tian, Zhang Xiaobo, Shao Zongze, et al.PmAV, a novel gene involved in virus resistance of shrimpPenaeusmonodon[J]. Febs Letters, 2003, 551(1/3): 53-57.
[13]李猛, 周素明, 劉璐, 等. 文蛤(Meretrixmeretrix)C型凝集素基因的分子克隆及表達(dá)分析[J]. 海洋與湖沼, 2015, 46(5): 1186-1192.
Li Meng, Zhou Suming, Liu Lu, et al. Molecular clone and expression and expression of C-type lectin inMeretrixmeretrix[J]. Oceanlogia et Limnologia Sinica, 2015, 46(5): 1186-1192.
[14]Gerdol M, Venier P. An updated molecular basis for mussel immunity[J]. Fish Shellfish Immunol, 2015, 46(1): 17-38.
[15]黃海寧. 櫛孔扇貝C型凝集素基因的cDNA克隆和序列分析[J]. 福建水產(chǎn), 2007(4): 6-10.
Huang Haining. cDNA cloning and sequence analysis on C-type lectin gene ofChlamysfarreri[J]. Journal of Fujian Fisheries, 2007(4): 6-10.
[16]Wang Hao, Song Linsheng, Li Chenghua, et al. Cloning and characterization of a novel C-type lectin from Zhikong scallopChlamysfarreri[J]. Mol Immunol, 2007, 44(5): 722-731.
[17]Zhang Huan, Song Xiaoyan, Wang Lingling, et al. AiCTL-6, a novel C-type lectin from bay scallopArgopectenirradianswith a long C-type lectin-like domain[J]. Fish Shellfish Immunol, 2011, 30(1): 17-26.
[18]宋小燕. 海灣扇貝凝集素基因和櫛孔扇貝親環(huán)素A基因的克隆與表達(dá)[D]. 咸陽(yáng): 西北農(nóng)林科技大學(xué), 2009.
Song Xiaoyan. Molecular cloning, characterization and expression of Lectins fromArgopectenirradiansand cyclophilin a fromChlamysfarreri[D]. Xianyang: Northwest A & F University, 2009.
[19]胡鈺婷, 張殿昌, 江世貴, 等. 合浦珠母貝C型凝集素2的序列特征和表達(dá)分析[J]. 湖北農(nóng)業(yè)科學(xué), 2011, 50(19): 4026-4030.
Hu Yuting, Zhang Dianchang, Jiang Shigui, et al. Sequence and expression analysis of a novel C-type lectin gene from pearl oysterPinctadafucata[J]. Hubei Agricultural Sciences, 2011, 50(19): 4026-4030.
[20]Yamaura K, Takahashi K G, Suzuki T. Identification and tissue expression analysis of C-type lectin and galectin in the Pacific oyster,Crassostreagigas[J]. Comp Biochem Phys B, 2008, 149(1): 168-175.
[21]Li Hui, Zhang Huan, Jiang Shuai, et al. A single-CRD C-type lectin from oysterCrassostreagigasmediates immune recognition and pathogen elimination with a potential role in the activation of complement system[J]. Fish Shellfish Immunol, 2015, 44(2): 566-575.
[22]Jing Xing, Espinosa E P, Perrigault M, et al. Identification, molecular characterization and expression analysis of a mucosal C-type lectin in the eastern oyster,Crassostreavirginica[J]. Fish Shellfish Immunol, 2011, 30(3): 851-858.
[23]Wang Ning, Whang I, Lee J. A novel C-type lectin from abalone,Haliotisdiscusdiscus, agglutinatesVibrioalginolyticus[J]. Dev Comp Immunol, 2008, 32(9): 1034-1040.
[24]Zhang Jian, Qiu Reng, Hu Yonghua. HdhCTL1 is a novel C-type lectin of abaloneHaliotisdiscushannaithat agglutinates Gram-negative bacterial pathogens[J]. Fish Shellfish Immunol, 2014, 41(2): 466-472.
[25]高祥剛, 李云峰, 宋文濤, 等. 文蛤腸、外套膜和肝胰臟組織CDNA文庫(kù)構(gòu)建及其ESTs序列分析[J]. 中國(guó)水產(chǎn)科學(xué), 2010, 17(2): 344-350.
Gao Xianggang, Li Yunfeng, Song Wentao, et al. Construction of cDNA libraries from intestine, mantle and hepatopancreas of hard clam (Meretrixmeretrix) and ESTs analysis[J]. Journal of Fishery Sciences of China, 2010, 17(2): 344-350.
[26]Li Hongjun, Liu Weidong, Gao Xianggang, et al. Identification of host-defense genes and development of microsatellite markers from ESTs of hard clamMeretrixmeretrix[J]. Mol Biol Rep, 2011, 38(2): 769-775.
[27]Feinberg H, Taylor M E, Weis W I. Scavenger receptor C-type lectin binds to the leukocyte cell surface glycan Lewisx by a novel mechanism[J]. J Biol Chem, 2007, 282(23): 17250-17258.
[28]Sonnhammer E L L, Von Heijne G, Krogh A. A hidden Markov model for predicting transmembrane helices in protein sequences[C]//Ismb. 1998, 6: 175-182.
[29]Zhu Ling, Song Linsheng, Xu Wei, et al. Identification of a C-type lectin from the bay scallopArgopectenirradians[J]. Mol Biol Rep, 2009, 36(5): 1167-1173.
[30]Zhang Huan, Wang Hao, Wang Lingling et al. Cflec-4, a multidomain C-type lectin involved in immune defense of Zhikong scallopChlamysfarreri[J]. Deve Comp immunol, 2008, 149(1): 168-175.
[31]Zhang Huan, Wang Hao, Wang Lingling, et al. A novel C-type lectin (Cflec-3) fromChlamysfarreriwith three carbohydrate-recognition domains[J]. Fish Shellfish Immunol, 2009, 26(5): 707-715.
Cloning and expression analysis of a C-type lectin gene (Mm-Lec1) in hard clam Meretrix meretrix
Zhang Jingjing1,2, Li Hongjun2, Qin Yanjie1, Liu Min1,2, Ye Sheng1,2
(1.CollegeofFisheriesandLifeScience,DalianOceanUniversity,Dalian116023,China; 2.MarineEcologyDepartment,NationalMarineEnvironmentalMonitoringCenter,Dalian116023,China)
Abstract:The hard clam (Meretrix meretrix) is an economically important bivalve species in China. Aquaculture of M. meretrix is seriously affected by the epidemic diseases. The study of the immune system of M. meretrix is an important approach to solve disease problems. C-type lectins (CTLs) play important roles in the identification of pathogen associated molecular patterns and activation of humoral immunity. In the present study, a C-type lectin gene of M. meretrix(denoted as Mm-Lec1) was obtained through sequencing full-length cDNA library. The full-length cDNA of Mm-Lec1 was 586 bp with a 486 bp open reading frame, encoding 161 amino acids. The length of 5′ and 3′ untranslated region was 21 and 79 bp, respectively. The molecular weight of predicted protein was 18.65 kD, and the theoretical isoelectric point was 4.98. The predicted amino acid sequence had a signal peptide (Met1-Ser19), a sugar-binding site (QPN) and a carbohydrate recognition domain (CRD). The tertiary structure of Mm-Lec1 was predicted as a compact type and had a β sheet structure with three beta sheet layers. The similarity between Mm-Lec1 and the other species mentioned in this study were 20%-32%. Mm-Lec1, Mytilus galloprovincialis CTL 6 and Chlamys farreri CTL A were clustered in one branch in the neighbor-joining (NJ) tree. Mm-Lec1 mRNA was expressed in all tested tissues, including gill, haemocytes, hepatopancreas, mantle, adductor muscle and gonad, with the highest expression level in gill, the second in haemocytes, and the least in gonad. In the bacteria exposure test, the mRNA expression level was lowest at 6 h, and highest at 48 h, suggesting that Mm-Lec1 play a role in defensing against bacterial invasion in M. meretrix.
Key words:Meretrix meretrix; C-type lectin; EST; tertiary structure; real-time PCR
收稿日期:2015-10-15;
修訂日期:2016-01-05。
基金項(xiàng)目:國(guó)家自然科學(xué)基金(31101899,31572595);國(guó)家海洋局近岸海域生態(tài)環(huán)境重點(diǎn)實(shí)驗(yàn)室開(kāi)放基金(201511)。
作者簡(jiǎn)介:張晶晶(1989—),女,河南省周口市人,研究方向?yàn)榉肿由鷳B(tài)學(xué)。E-mail:liutian.3090@163.com *通信作者:李宏俊,博士,副研究員,研究方向?yàn)榉肿由鷳B(tài)學(xué)。E-mail:hjli@nmemc.org.cn
中圖分類(lèi)號(hào):S917.4
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):0253-4193(2016)06-0110-09
張晶晶, 李宏俊, 秦艷杰, 等. 文蛤C型凝集素基因(Mm-Lec1)的克隆與表達(dá)分析[J]. 海洋學(xué)報(bào), 2016, 38(6): 110—118, doi:10.3969/j.issn.0253-4193.2016.06.012
Zhang Jingjing, Li Hongjun, Qin Yanjie, et al. Cloning and expression analysis of a C-type lectin gene (Mm-Lec1) in hard clamMeretrixmeretrix[J]. Haiyang Xuebao, 2016, 38(6): 110—118, doi:10.3969/j.issn.0253-4193.2016.06.012