趙偉潔,李 翠,周 達,周 瑜 ,楊清華,高小麗,馮佰利
(1 西北農(nóng)林科技大學 農(nóng)學院,陜西 楊凌 712100;2 四川省宜賓市宜賓縣農(nóng)業(yè)局,四川 宜賓 644600)
?
水分脅迫后復水對糜子根冠功能的補償效應
趙偉潔1,2,李翠1,周達1,周瑜1,楊清華1,高小麗1,馮佰利1
(1 西北農(nóng)林科技大學 農(nóng)學院,陜西 楊凌 712100;2 四川省宜賓市宜賓縣農(nóng)業(yè)局,四川 宜賓 644600)
[摘要]【目的】 研究水分脅迫后復水對糜子根、冠生長和光合作用的補償規(guī)律及補償條件的影響,為糜子抗旱節(jié)水栽培和補償效應研究提供理論依據(jù)?!痉椒ā?采用盆栽控水方式,以全生育期正常供水為對照,分別在糜子不同生育時期水分脅迫后復水,對復水后糜子根、冠功能的恢復以及復水前后新老葉片凈光合速率等指標進行分析?!窘Y(jié)果】 (1)水分脅迫后復水,根冠功能和光合作用的補償效應與脅迫持續(xù)時間、脅迫程度及復水時期有關(guān)。(2)三葉一心期水分脅迫復水后,重度脅迫拔節(jié)期復水處理的根冠比、根系傷流量和葉面積的恢復最快,分別高于對照和中度脅迫拔節(jié)期復水處理;同時,拔節(jié)期復水處理各指標的補償效應高于抽穗期復水的2個處理。拔節(jié)期水分脅迫復水后,中度脅迫抽穗期復水處理的根冠比、根系傷流量和葉面積高于對照和重度脅迫復水處理。(3)與對照相比,無論是三葉一心期還是拔節(jié)期開始水分脅迫,脅迫前生長出的葉片復水后其凈光合速率低,脅迫程度越重凈光合速率越??;而復水后長出的新葉,三葉一心期重度水分脅迫拔節(jié)期復水處理新葉凈光合速率最高,復水20 d時比對照高出14.5%,中度水分脅迫拔節(jié)期復水后新葉凈光合速率與對照無顯著差異?!窘Y(jié)論】 三葉一心期重度水分脅迫拔節(jié)期復水有利于新生器官生理活性的提高,對糜子根冠功能和凈光合速率的補償效應最佳。
[關(guān)鍵詞]糜子;水分脅迫;復水;根冠功能;凈光合速率;補償效應
糜子(PanicummiliaceumL.)是我國重要的糧食作物和經(jīng)濟作物[1],年播種面積70~80萬hm2,主要分布在陜西、山西、甘肅、寧夏、內(nèi)蒙古等長城沿線風沙區(qū),干旱是對糜子生產(chǎn)影響最大的限制因素[2]。因此,加強糜子抗旱生理機制的研究具有重要意義[3]。
不同生育時期作物對水分的需求不同,受到不同程度水分脅迫復水后其反應也不盡相同[4]。根系作為植物水分、養(yǎng)分的吸收器官,其數(shù)量、大小、干質(zhì)量和生理狀況等直接影響作物抗旱性的強弱[5]。Ilknur等[6]研究指出,作物生長過程中生殖生長對水分脅迫的敏感程度大于營養(yǎng)生長。高志紅等[7]研究指出,水分脅迫抑制小麥根、冠功能的發(fā)揮,脅迫愈強影響程度越重,但是開花期復水后可以迅速提高干物質(zhì)的積累速度。郝樹榮等[8-9]研究認為,水稻旱后復水的補償效果明顯,特別是分蘗末期短歷時重旱復水后有利于根質(zhì)量、根冠比以及根系活力的增加,而且旱后復水新生器官活性的提高是水稻產(chǎn)生補償效應的主要貢獻者。Singh等[10]認為,水分脅迫條件下葉片凈光合速率顯著降低。薛慧云等[11]研究指出,凈光合速率能在干旱脅迫初期和持續(xù)干旱的過程中反映葉片的水分狀況,復水后凈光合速率未能恢復到初始狀態(tài)。而蒙祖慶等[12]研究指出,在復水后1~2周作物凈光合速率恢復迅速,在第2周時凈光合速率高于對照。目前有關(guān)水分脅迫及復水的研究主要集中在小麥[13]、水稻[8]、玉米[14]的生理生態(tài)響應、抗旱遺傳資源等方面,而有關(guān)水分脅迫后復水對糜子根、冠生長影響的研究尚未見報道,尤其是對糜子復水前后新老葉片光合作用的補償規(guī)律、產(chǎn)生補償?shù)臈l件、補償形式更缺乏深層次的研究。因此,本研究通過盆栽試驗,對糜子復水后根、冠功能的恢復和復水前后新老葉片凈光合速率的影響進行探討,旨在為糜子抗旱節(jié)水栽培和補償效應研究提供理論依據(jù)。
1材料與方法
1.1試驗設(shè)計
試驗于2012-2013年在西北農(nóng)林科技大學干旱棚進行,采用直徑30 cm、高35 cm的聚乙烯塑料桶進行盆栽試驗。試驗土壤類型為壚土,養(yǎng)分含量為有機質(zhì)2.4 g/kg,全氮0.03 g/kg,速效磷4.6 mg/kg,速效鉀102 mg/kg,田間最大持水量26.20%。土壤經(jīng)風干、打碎、過篩后與基肥充分混合,每盆裝干土12 kg,基肥用量為每千克干土施P2O50.2 g、N素0.25 g,每盆另施尿素6.0 g,磷酸二氫鉀4 g。供試糜子品種為榆糜2號,2012-07-05播種,09-24收獲;2013-06-18播種,09-08收獲;每盆播種30粒,三葉一心期定苗,每盆留苗12株。
試驗共設(shè)置3個水分梯度:分別為充足供水(占田間最大持水量的75%±5%,對照)、中度水分虧缺(占田間最大持水量的60%±5%)、重度水分虧缺(占田間最大持水量的40%±5%);并結(jié)合不同生育期共設(shè)置了7個處理:全生育期充足供水(CK)、三葉一心期-拔節(jié)期中度水分脅迫后復水(SMB)、三葉一心期-拔節(jié)期重度水分脅迫后復水(SSB)、三葉一心期-抽穗期中度水分脅迫后復水(SMC)、三葉一心期-抽穗期重度水分脅迫后復水(SSC)、拔節(jié)期-抽穗期中度水分脅迫后復水(BMC)、拔節(jié)期-抽穗期重度水分脅迫后復水(BSC)。每個處理重復15盆,各盆隨機擺放,每10 d隨機調(diào)換1次位置排除邊際效應。每天早晨用感量2 g 的TCS-A1-30型計重臺秤稱各盆質(zhì)量,低于控水下限時補充所失水分。
1.2測定項目及方法
糜子根冠獲取:各處理脅迫結(jié)束時以及復水后每隔7 d取樣,先從莖基部剪下,獲得完整的冠,然后將盆栽用桶放在尼龍網(wǎng)篩上,用水沖去泥土,獲取完整根系,再根據(jù)需要從不同部位取樣。
根、冠干質(zhì)量的測定:在105 ℃下殺青15 min后,置于70 ℃恒溫下烘干至恒質(zhì)量,用1/10 000電子天平稱質(zhì)量。
根系傷流量測定:抽穗期后每隔7 d,采用邱全勝等[15]的改進重量法測定根系傷流強度,以單位時間內(nèi)單株傷流量的大小計算。
葉面積測定:葉片取樣時間為開花期和成熟期,量取每片綠色葉片的長度和最大寬度,按馮冬霞等[16]的葉面積擬合公式計算。
凈光合速率(Pn)測定:用LI-6400型便攜式光合儀測定,2012年凈光合速率在抽穗至成熟期間每隔7 d測定1次,共測定6次;2013年在脅迫結(jié)束時及復水后7 d、14 d各測量1次,共測定3次。每次測量保證在相同時間段測定相同葉片的相同部位,測量時新生葉片為復水后長出的葉片,老葉片為脅迫結(jié)束時的最上部葉片。
1.3數(shù)據(jù)處理
采用 Excel 2003,DPS 統(tǒng)計軟件進行相關(guān)試驗數(shù)據(jù)的處理和分析。
2結(jié)果與分析
2.1復水對糜子根、冠功能的補償效應
2.1.1復水對糜子根冠比的影響由表1可見,與CK比較,短歷時水分脅迫復水后有利于糜子根系的生長,根冠比增長速度快;長歷時水分脅迫抑制糜子根冠的生長,根冠比降低,且脅迫程度越重,根冠比越小。拔節(jié)期復水后7 d,重度水分脅迫處理的根冠比大于中度水分脅迫處理,到復水后14 d,中度水分脅迫處理的根冠比則大于重度水分脅迫處理。復水初期根對水分的反應更敏感,但隨著時間的推移復水對冠的生長促進作用更大。與拔節(jié)期復水不同,抽穗期復水時,三葉一心期開始脅迫處理表現(xiàn)為中度水分脅迫處理根冠比大于重度水分脅迫處理;而拔節(jié)期開始脅迫處理復水后則是重度水分脅迫處理根冠比大于中度水分脅迫;三葉一心期中度、重度水分脅迫處理復水后根冠比較拔節(jié)期中度、重度水分脅迫處理復水后低。
表 1 復水后糜子根、冠干質(zhì)量及根冠比的變化(2013年)
續(xù)表 1 Continued table 1
注:同列不同大寫字母表示同一復水期不同處理間差異極顯著(P<0.01) 。下表同。
Note:Capital letters in each column show significant difference between treatments atP<0.01 level.The same below.
2.1.2復水對糜子根系活力的影響從圖1可以看出,拔節(jié)期復水后糜子根系活力有明顯提高,在抽穗后14 d根系傷流量分別比對照高15.6%和 5.1%,表現(xiàn)出超補償效應,具有較高的根系活力,有利于植株吸收水分和無機礦物質(zhì),為糜子的生長提供了充分的后效補償。而抽穗期復水SMC、SSC 2個處理的根系傷流量則低于對照,對作物的補償效果不明顯。
如圖2所示,拔節(jié)期水分脅迫使糜子根系活力降低,脅迫程度越重活力越低。抽穗期復水時,中度水分脅迫復水后14 d根系傷流量比對照高9.26%,而重度脅迫復水后根系傷流量比對照低16.29%。這可能是由于拔節(jié)期后,糜子的生長重心由地下轉(zhuǎn)向地上,根系抗旱能力低,重度水分脅迫對根系的抑制作用大,因此復水后根系活力的補償效應較中度水分脅迫差。從圖1和圖2可以看出,水分脅迫復水后糜子根系活力不僅取決于脅迫歷時,還取決于脅迫的時期,三葉一心期重度水分脅迫拔節(jié)期復水處理的補償效果最佳。
圖 1 三葉一心期脅迫后復水對糜子根系
2.2復水對糜子葉片及葉面積的補償效應
從圖3可以看出,從開花期到成熟期,糜子綠葉數(shù)在不斷減少,與對照相比,三葉一心期重度水分脅迫拔節(jié)期復水處理和拔節(jié)期中度水分脅迫抽穗期復水處理在整個生育期保持更多的綠葉數(shù),提高了“源”的強度,有利于光合產(chǎn)物的積累,為糜子產(chǎn)量的提高提供了良好的冠層條件。拔節(jié)期復水,重度水分脅迫復水處理對保持后期葉片數(shù)的后效性大于中度水分脅迫處理,而抽穗期復水時則是中度水分脅迫后復水對保持后期葉片數(shù)的后效性大于重度水分脅迫處理,同時拔節(jié)期脅迫抽穗期復水處理對保持后期葉片數(shù)的后效性大于三葉一心期脅迫抽穗期復水處理。
由圖4可見,與對照相比,三葉一心期重度水分脅迫拔節(jié)期復水處理在開花期和成熟期均保持了更大的葉面積,分別比對照增加了6.22%和15.69%,而三葉一心期中度水分脅迫拔節(jié)期復水處理補償效果不明顯,表明三葉一心期重度水分脅迫拔節(jié)期復水處理延緩了后期葉片的衰老、延長了葉片的光合時間,有利于穗生長和灌漿。抽穗期復水時,拔節(jié)期中度水分脅迫處理的復水效果最佳,其葉面積在開花期、成熟期比對照分別增加了2.46%和13.92%,而拔節(jié)期重度水分脅迫和三葉一心期中度、重度水分脅迫處理的后效補償效果不佳,葉面積均低于對照。
圖 3 不同水分脅迫處理下糜子葉片數(shù)的變化(2013年)
圖 4 不同水分脅迫處理下糜子葉面積的變化(2013年)
2.3復水對糜子光合補償發(fā)生規(guī)律的影響
由表2可見,三葉一心期水分脅迫拔節(jié)期復水時,重度水分脅迫處理葉片的凈光合速率比對照和中度水分脅迫復水處理恢復得更快、恢復程度也更高,到開花期時其凈光合速率分別比對照、中度水分脅迫高10.3%和9.4%;三葉一心期水分脅迫抽穗期復水時,則是中度水分脅迫開花期葉片的凈光合速率恢復程度高于重度水分脅迫處理,但其恢復程度均低于對照。拔節(jié)期水分脅迫抽穗期復水時,與對照相比,開花期時中度水分脅迫復水后葉片凈光合速率恢復較快,其凈光合速率比對照高5.1%;而重度水分脅迫復水后葉片的凈光合速率則低于對照。
表 2 脅迫后復水對糜子葉片凈光合速率的影響(2012年)
如表3所示,三葉一心期重度水分脅迫拔節(jié)期復水和拔節(jié)期中度水分脅迫抽穗期復水處理的糜子葉片凈光合速率恢復迅速,復水后14 d分別比對照增加11.2%和15.08%,表現(xiàn)出超補償效應,與2012年結(jié)論一致。
表 3 脅迫后復水對糜子葉片凈光合速率的影響(2013年)
2.4復水對糜子新老葉片凈光合速率補償效應的影響
由表4可見,與CK相比,無論是三葉一心期還是拔節(jié)期開始水分脅迫,脅迫前生長出的葉片復水后其凈光合速率低,脅迫程度越重凈光合速率越小。說明受到脅迫抑制生長的葉片復水后不能恢復到原有的光合生產(chǎn)能力。
表 4 脅迫后復水對糜子老葉片凈光合速率的影響(2013年)
從圖5可以看出,三葉一心期重度水分脅迫拔節(jié)期復水處理糜子葉片的凈光合速率均大于對照,復水后20 d時凈光合速率達到最大,比對照高出14.5%,產(chǎn)生了超補償效應。同時,三葉一心期中度水分脅迫拔節(jié)期復水后糜子葉片的凈光合速率則與對照差異不顯著。
由圖6可見,拔節(jié)期中度水分脅迫抽穗期復水后10 d時,新生葉片的凈光合速率最大,比對照高10.8%,表現(xiàn)出超補償效應,但與三葉一心期脅迫拔節(jié)期復水不同的是隨著復水時間的延長,其補償作用不斷下降。說明抽穗期復水的補償能力不如拔節(jié)期,拔節(jié)期脅迫抽穗期復水時,只在復水初期補償效果表現(xiàn)明顯,后期補償效果有限。同時,拔節(jié)期中度水分脅迫抽穗期復水后光合補償能力大于重度水分脅迫。由此可見,糜子葉片光合補償效應是受多因素影響的,它不僅與水分脅迫程度有關(guān),還與脅迫的生育階段以及脅迫時間有關(guān)。
圖 5 三葉一心期脅迫拔節(jié)期復水后對糜子
3討論
作物對水分脅迫的響應有一個從“傷害”到“適應”的過程,一定程度的水分脅迫后復水往往會產(chǎn)生生長、生理和產(chǎn)量上的補償[17]。根冠比是作物根冠所具備的吸收、合成、分配等基本功能的結(jié)構(gòu)體現(xiàn)[18]。Magnani等[19]指出,根冠結(jié)構(gòu)與功能處于均衡狀態(tài)時,其資源利用效率最高,但環(huán)境改變時平衡即被打破。前人研究表明,旱長根水長冠,水分脅迫使根冠比增大[20],而本研究結(jié)果顯示,水分脅迫抑制糜子根冠的生長,且對根的抑制作用大于冠,脅迫使根冠比降低,且脅迫程度越重,根冠比越小。從生育時期看,拔節(jié)期復水根較冠對水分的反應更敏感,但隨著時間的推移復水對冠的生長促進作用更大,使復水后根冠比處于減小趨勢。由此可見,根冠比的大小,不僅與水分脅迫程度,還與脅迫時期和脅迫歷時都有著緊密的聯(lián)系。
根系是糜子吸收水分的主要器官,并能迅速產(chǎn)生化學信號向上傳遞以促使氣孔關(guān)閉,減少水分散失[21];根系還可以通過自身形態(tài)和生理生化特征的調(diào)整來適應變化后的水分環(huán)境。本研究發(fā)現(xiàn),不同程度水分脅迫復水后對根系吸水恢復能力的影響依不同脅迫時期而有所變化,起始于三葉一心期的水分脅迫,重度水分脅迫拔節(jié)期復水的吸水效果反而比中度水分脅迫拔節(jié)期復水好,這可能是因為三葉一心期重度水分脅迫后復水產(chǎn)生的根系活性大于中度水分脅迫,但拔節(jié)期或三葉一心期長歷時水分脅迫對根系吸水的不利影響則隨脅迫程度加重而加大。同時,不同程度水分脅迫下根系吸收水分的方式也有差異,重度水分脅迫復水后根系吸水恢復主要取決于新生根的增加,對于失活根系的激發(fā)占次要地位;而中度水分脅迫復水后根系吸水功能的恢復主要依賴于對原有失活根系活性的激發(fā),新根的生長占次要地位。這與劉曉英等[22]對冬小麥的研究結(jié)果一致,但有關(guān)新生根和原有根系復水后的功能還有待進一步研究。
干旱脅迫通過氣孔限制和非氣孔限制來抑制植物的光合作用,使得凈光合速率、光合產(chǎn)物的量下降[23],但復水后,在一定范圍內(nèi)能解除干旱脅迫對光合作用的抑制,產(chǎn)生相應的后效補償[24]。本研究發(fā)現(xiàn),水分脅迫復水后糜子凈光合速率的增加,是由復水后新生器官生理活性的提高而產(chǎn)生的補償效應,并不是受到脅迫的老葉光合機能的恢復,直接遭受脅迫的老葉凈光合速率無論在脅迫期間還是復水后均呈降低趨勢。
4結(jié)論
復水對水分脅迫條件下糜子根、冠生長的補償效應明顯,尤以三葉一心期重度脅迫拔節(jié)期復水的補償效應最佳。復水后糜子根、冠生物量的積累快,新生器官生理活性高,有利于作物的生長,能夠準確地反映作物旱后復水對水分的需求狀況。因此,糜子生產(chǎn)過程中,三葉一心期水分脅迫后復水可作為節(jié)水高產(chǎn)栽培技術(shù)措施的理論參考。
[參考文獻]
[1]張雄,王立祥.小雜糧在黃土高原旱作農(nóng)業(yè)中的地位和作用 [J].西北農(nóng)業(yè)學報,2008,17(5):333-336.
Zhang X,Wang L X.The status and role of minor food crops in dry farming of the Loess Plateau [J].Acta Agriculturae Boreali-Occidentalis Sinica,2008,17(5):333-336.(in Chinese)
[2]Chai Y,F(xiàn)eng B L.Advances in broomcorn billet research:Proceedings of the 1st international symosium on broomcorn millet [M].Yangling,Shaanxi:Northwest A&F University Press,2012.
[3]林汝法,柴巖.中國小雜糧 [M].北京:中國農(nóng)業(yè)科技出版社,2002:68-77.
Lin R F,Chai Y.Minor grain crops in China [M].Beijing:China Agricultural Science and Technology Press,2002:68-77.(in Chinese)
[4]趙長星,程曦,王月福,等.不同生育時期干旱脅迫對花生生長發(fā)育和復水后補償效應的影響 [J].中國油料作物學報,2012,34(6):627-632.
Zhao C X,Cheng X,Wang Y F,et al.Effects of drought stress on peanut growth during different growth stages and compensatory effect after water recovery [J].Chinese Journal of Oil Crop Sciences,2012,34(6):627-632.(in Chinese)
[5]Yousfi N,Slama I,Ghnaya T,et al.Effects of water deficit str-ess on growth,water relations and osmolyte accumulation inMedicagotruncatulaandM.laciniatapopulations [J].Comptes Rendus Biologies,2010,333:205-213.
[6]Ilknur K,Elman B,Alain C.Growth and yield responses of cv.Merlot(VitisviniferaL.) to early water stress [J].African Journal of Agricultural Research,2011,29(6):6281-6288.
[7]高志紅,陳曉遠,羅遠培.不同土壤水分條件下冬小麥根、冠平衡與生長穩(wěn)定性研究 [J].中國農(nóng)業(yè)科學,2007,40(3):540-548.
Gao Z H,Chen X Y,Luo Y P.Winter wheat root and shoot:Equilibrium and growth stability under different soil and water conditions [J].Scientia Agricultura Sinica,2007,40(3):540-548.(in Chinese)
[8]郝樹榮,郭相平,張展羽.水分脅迫及復水對水稻冠層結(jié)構(gòu)的補償效應 [J].農(nóng)業(yè)機械學報,2010,41(3):52-55,61.
Hao S R,Guo X P,Zhang Z Y.After effects of rewatering after water stress on the rice growth [J].Transactions of the Chinese Society for Agricultural Machinery,2010,41(3):52-55,61.(in Chinese)
[9]郝樹榮,郭相平,張展羽.水稻根冠功能對水分脅迫及復水的補償響應 [J].農(nóng)業(yè)機械學報,2010,41(5):52-55.
Hao S R,Guo X P,Zhang Z Y.Compensation effects of water stress and re-watering on the function of root shoot [J].Transactions of the Chinese Society for Agricultural Machinery,2010,41(5):52-55.(in Chinese)
[10]Singh S K,Reddy K R.Regulation of photosynthesis,fluorescence,stomatal conductance and water-use efficiency of cowpea under drought [J].Journal of Photochemistry and Photobiology B:Biology,2011,105(1):40-50.
[11]薛慧云,張永江,劉連濤,等.干旱脅迫與復水對棉花葉片光譜、光合和熒光參數(shù)的影響 [J].中國農(nóng)業(yè)科學,2013,46(11):2386-2393.
Xue H Y,Zhang Y J,Liu L T,et al.Responses of spectral reflectance,photosynthesis and chlorophyll fluorescence in cotton during drought stress and re-watering [J].Scientia Agricutural Sinica,2013,46(11):2386-2393.(in Chinese)
[12]蒙祖慶,宋豐萍,劉振興,等.干旱及復水對油菜苗期光合及葉綠素熒光特性的影響 [J].中國油料作物學報,2012,34(1):40-47.
Meng Z Q,Song F P,Liu Z X,et al.Effects of drought and rewatering at seedling stage on photosynthesis and chlorophyll fluorescence characteristics in rapeseed [J].Chinese Journal of Oil Crop Sciences,2012,34(1):40-47.(in Chinese)
[13]馬富舉,李丹丹,蔡劍,等.干旱脅迫對小麥幼苗根系生長和葉片光合作用的影響 [J].應用生態(tài)學報,2012,23(3):724-730.
Ma F J,Li D D,Cai J,et al.Responses of wheat seedlings root growth and leaf photosynthesis to drought stress [J].Chinese Journal of Applied Ecology,2012,23(3):724-730.(in Chinese)
[14]劉洪展,鄭偉,鄭風榮,等.復水對海水澆灌的玉米幼苗根系補償效應的影響 [J].農(nóng)業(yè)工程學報,2012,28(3):101-106.
Liu H Z,Zheng W,Zheng F R,et al.Influence of rewatering on compensatory effect of maize seedling roots with diluted seawater irrigation [J].Chinese Society of Agricutural Engineering,2012,28(3):101-106.(in Chinese)
[15]邱全勝,李琳,梁厚果,等.水分脅迫對小麥根細胞質(zhì)膜氧化還原系統(tǒng)的影響 [J].植物生理學報,1994,20(2):145-151.
Qiu Q S,Li L,Liang H G,et al.Effect of water stress on the redox system of the plasma membrane of wheat roots [J].Acta Phytophysiol Sin,1994,20(2):145-151.(in Chinese)
[16]馮冬霞,施生錦.葉面積測定方法的研究效果初報 [J].中國農(nóng)學通報,2005,21(6):150-155.
Feng D X,Shi S J.Research on night measurement methods of leaf area [J].China Agricultural Science Bulletin,2005,21(6):150-155.(in Chinese)
[17]丁紅,張智猛,戴良香,等.干旱脅迫對花生根系生長發(fā)育和生理特性的影響 [J].應用生態(tài)學報,2013,24(6):1586-1592.
Ding H,Zhang Z M,Dai L X,et al.Effects of drought stress on the root growth and development and physiological characteristics of peanut [J].Chinese Journal of Applied Ecology,2013,24(6):1586-1592.(in Chinese)
[18]馮燁,郭峰,李寶龍,等.單粒精播對花生根系生長、根冠比和產(chǎn)量的影響 [J].作物學報,2013,39(12):2228-2237.
Feng Y,Guo F,Li B L,et al.Effects of single-seed sowing on root growth,root-shoot ratio,and yield in peanut [J].Acta Agronomica Sinica,2013,39(12):2228-2237.(in Chinese)
[19]Magnani F,Mencuccini M,Grace J.Age-related decline in sta-nd productivity:The role of structural acclimation under hydraulic constraints [J].Plant,Cell and Environment,2000,23:251-263.
[20]劉水,李伏生,韋翔華,等.分根區(qū)交替灌溉對玉米水分利用和土壤微生物量碳的影響 [J].農(nóng)業(yè)工程學報,2012,28(8):71-76.
Liu S,Li F S,Wei X H,et al.Effects of alternate partial root-zone irrigation on maize water use and soil microbial biomass carbon [J].Chinese Society of Agricultural Engineering,2012,28(8):71-76.(in Chinese)
[21]Jia W S,Zhang J H.Stomatal movements and long distance signaling in plants [J].Plant Signaling and Behavior,2008,3:772-777.
[22]劉曉英,羅遠培.水分脅迫后復水冬小麥根系吸收的恢復 [J].中國生態(tài)農(nóng)業(yè)學報,2002,10(4):16-23.
Liu X Y,Luo Y P.Recovery of root water uptake of winter wheat after water stress [J].Chinese Journal of Eco-Agriculture,2002,10(4):16-23.(in Chinese)
[23]Lawlor D W,Cornic G.Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants [J].Plant,Cell and Environment,2002,25:275-294.
[24]楊文權(quán),顧沐宇,寇建村,等.干旱及復水對小冠花光合及葉綠素熒光參數(shù)的影響 [J].草地學報,2013,21(6):1130-1135.
Yang W Q,Gu M Y,Kou J C,et al.Effects of drought and rewatering on the photosynthesis and chlorophyll fluorescence ofCoronillavaria[J].Acta Agrestia Sinica,2013,21(6):1130-1135.(in Chinese)
Compensation effects of rewatering on root and shoot functions of broomcorn millet after water stress
ZHAO Wei-jie1,2,LI Cui1,ZHOU Da1,ZHOU Yu1,YANG Qing-hua1,GAO Xiao-li1,FENG Bai-li1
(1CollegeofAgronomy,NorthwestA&FUniversity,Yangling,Shaanxi712100,China;2BureauofAgricultureinYibinCountyYibinCitySichuan,Yibin,Sichuan644600,China)
Abstract:【Objective】 Effects of rewatering on compensation mechanism and condition of root and shoot growth as well as shoot photosynthesis rate (Pn) of broomcorn millet were studied to provide basis for water saving cultivation of broomcorn millet.【Method】 Taking adequate water supply as CK,pot experiment was conducted to rewater after water stress at different growth periods.The root and shoot characteristics and Pn of new and old leaves before and after rewatering were measured and analyzed.【Result】 (1)Compensation effects of root and shoot functions as well as Pn correlated with the duration and intensity of water stress and rewatering time.(2)When water control was conducted from 3-leaf stage and rewatering was implemented from jointing stage,root to shoot ratio,root extrudes volume and leaf area of broomcorn millet under severe water stress increased faster than that of the CK and the treatment under moderate water stress.Besides,compensation effects of tested items were stronger compared with the two treatments when rewatering was conducted from heading stage.When water control was implemented from jointing stage and rewatering was conducted from heading stage,root to shoot ratio,root extrudes volume and leaf area of broomcorn millet under moderate water stress were larger than that of the CK and the treatment under severe water stress.(3)When water control was conducted from 3-leaf stage or from jointing stage,Pn of original leaves before water control was lower than that of the CK,and fiercer stress led to lower Pn.While for the new leaves after rewatering,Pn after rewatering from jointing stage under severe water stress from 3-leaf stage was the highest,14.5% higher than that of the CK 20 days after rewatering.When water stress was moderate,no significant difference was found between Pn of new leaves and that of the CK.【Conclusion】 Rewatering after early stage severe water stress was beneficial for the enhancement of physiological activities of the new organs,and the compensation effects for root and shoot growth as well as shoot photosynthesis were optimum.
Key words:broomcorn millet;water stress;rewatering;root and shoot functions;Pn;compensation
[文章編號]1671-9387(2016)01-0045-08
[中圖分類號]S516.01
[文獻標志碼]A
[作者簡介]趙偉潔(1989-),男,四川宜賓人,碩士,主要從事作物栽培生理研究。E-mail: jieweizhao1989@163.com[通信作者]馮佰利(1966-),男,陜西耀縣人,教授,博士生導師,主要從事作物高產(chǎn)生態(tài)生理技術(shù)及小雜糧栽培、育種研究。
[基金項目]國家自然科學基金項目(31371529);國家谷子糜子產(chǎn)業(yè)技術(shù)體系項目(CARS-07-12.5-A9)
[收稿日期]2014-04-18
DOI:網(wǎng)絡(luò)出版時間:2015-12-0214:2510.13207/j.cnki.jnwafu.2016.01.008
網(wǎng)絡(luò)出版地址:http://www.cnki.net/kcms/detail/61.1390.S.20151202.1425.016.html
E-mail:7012766@163.com