安鋒利
(蘭州大學(xué)藥學(xué)院,甘肅 蘭州 730000)
?
綜述
多因素作用下的抑郁癥機(jī)制研究進(jìn)展*
安鋒利
(蘭州大學(xué)藥學(xué)院,甘肅 蘭州730000)
摘要抑郁癥是由多種因素引起的情感障礙性疾病,嚴(yán)重危害人類健康。本文從眶額葉參與抑郁癥的結(jié)構(gòu)基礎(chǔ)出發(fā),對(duì)下丘腦-垂體軸、細(xì)胞因子、神經(jīng)遞質(zhì)代謝、維生素D調(diào)節(jié)等因素作用下的抑郁癥發(fā)病機(jī)理進(jìn)行總結(jié),為進(jìn)一步揭示其病理機(jī)制提供參考。
關(guān)鍵詞:抑郁癥;眶額葉;下丘腦-垂體軸;炎癥因子;神經(jīng)遞質(zhì)
抑郁癥是危害人類健康的進(jìn)行性疾病,它通過(guò)影響人類情感性行為而導(dǎo)致持續(xù)數(shù)年的能力喪失或衰退。據(jù)世界衛(wèi)生組織統(tǒng)計(jì),全球約有3.5億人正在遭受抑郁癥折磨,且其發(fā)病率還逐年攀升[1]。由于缺乏有效的治療方法和有限的心理健康治療資源,目前抑郁癥還是全球未確診的,對(duì)抑郁癥的病因和機(jī)制的探討是預(yù)防和治療抑郁障礙的必要途徑。隨著現(xiàn)代生活節(jié)奏的加快,持續(xù)的緊張和壓力成為抑郁癥的誘因之一,應(yīng)激反應(yīng)是一種高度保守的行為,它能提高機(jī)體在不可控制及無(wú)法預(yù)料的環(huán)境變化中的存活,但過(guò)度的應(yīng)激會(huì)對(duì)機(jī)體產(chǎn)生傷害,可通過(guò)影響腦結(jié)構(gòu)、神經(jīng)遞質(zhì)調(diào)節(jié)、興奮性毒性、代謝紊亂等方式參與機(jī)體神經(jīng)內(nèi)分泌系統(tǒng),進(jìn)而參與抑郁癥的發(fā)病。目前關(guān)于抑郁癥的發(fā)病機(jī)制有以下幾種假說(shuō):腦結(jié)構(gòu)異常:眶額葉皮層(Orbitofrontal cortex,OFC)是前額葉皮層的一部分,與海馬、杏仁核、下丘腦、尾狀核等腦區(qū)有直接或間接神經(jīng)聯(lián)系,受到中間神經(jīng)元環(huán)路的緊密調(diào)節(jié)[2],具有協(xié)調(diào)中樞神經(jīng)系統(tǒng)內(nèi)廣泛活動(dòng)的能力,在情緒加工、獎(jiǎng)賞編碼、目標(biāo)性導(dǎo)向?qū)W習(xí)中發(fā)揮關(guān)鍵作用,早期應(yīng)激性的體驗(yàn)經(jīng)歷不僅與OFC區(qū)結(jié)構(gòu)變化相關(guān),還能增加患抑郁癥的風(fēng)險(xiǎn)[3];下丘腦-垂體軸(Hypothalamic-pituitary axis,HPA):在抑郁癥病人中HPA軸過(guò)度活躍,這種過(guò)度活躍可能是通過(guò)糖皮質(zhì)激素受體對(duì)HPA軸的負(fù)反饋環(huán)路障礙所引起。在抑郁癥患者,皮質(zhì)醇水平可能會(huì)決定抑郁癥發(fā)作的風(fēng)險(xiǎn)[4]和時(shí)間[5]。這表明,HPA軸功能障礙與抑郁癥發(fā)病進(jìn)程相關(guān);炎癥假說(shuō):抑郁癥患者促炎性細(xì)胞因子白細(xì)胞介素和急性期C-反應(yīng)蛋白水平顯著增加[6]。炎癥的上調(diào)可能通過(guò)降低單胺類神經(jīng)遞質(zhì)如五羥色胺水平,并增加對(duì)大腦產(chǎn)生毒性作用的色氨酸代謝產(chǎn)物,進(jìn)而參與抑郁癥的發(fā)生發(fā)展;神經(jīng)遞質(zhì)假說(shuō)[7]:降壓藥利血平降低腦內(nèi)單胺類神經(jīng)遞質(zhì)的濃度,導(dǎo)致了約15%的患者抑郁;抗結(jié)核藥能抑制腦內(nèi)單胺氧化酶對(duì)單胺類神經(jīng)遞質(zhì)的破壞,具有改善抑郁癥患者情緒的作用, 對(duì)此人們提出了抑郁癥的神經(jīng)遞質(zhì)假說(shuō);維生素D假說(shuō)[8]:維生素D主要來(lái)源于機(jī)體自身合成,抑郁癥患者血漿中維生素D水平偏低,還出現(xiàn)認(rèn)知障礙,維生素D可能涉及抑郁癥發(fā)病的病因。本文結(jié)合抑郁癥的發(fā)病機(jī)制假說(shuō),從OFC區(qū)參與抑郁癥的結(jié)構(gòu)基礎(chǔ)出發(fā),對(duì)下丘腦-垂體軸、細(xì)胞因子、神經(jīng)生化代謝、維生素D等因素作用下的抑郁癥發(fā)病機(jī)制進(jìn)行綜述。
1額葉皮質(zhì)區(qū)參與抑郁癥的形態(tài)學(xué)基礎(chǔ)
眶額葉是人類大腦皮質(zhì)中很重要的連接區(qū),在靈長(zhǎng)類包括人的大腦中表現(xiàn)出重要作用。在解剖學(xué)上,OFC位于Brodmann’s分區(qū)的第10-14區(qū),25和47區(qū),分為內(nèi)側(cè)OFC區(qū)和外側(cè)OFC區(qū)。內(nèi)側(cè)OFC區(qū)與邊緣系統(tǒng)聯(lián)系密切,接受前額葉背外側(cè)區(qū)、海馬、杏仁外側(cè)核、丘腦中間背外側(cè)核、前扣帶皮質(zhì)區(qū)纖維投射,并發(fā)出投射至下丘腦;外側(cè)OFC區(qū)包含眶皮質(zhì)的中央?yún)^(qū)、外側(cè)區(qū)和尾區(qū),主要接受感覺(jué)皮層如嗅皮層、視皮層的神經(jīng)投射[9],這兩個(gè)亞區(qū)在結(jié)構(gòu)和行為功能調(diào)節(jié)中形成兩條網(wǎng)絡(luò),接受不同的纖維投入,并投射到不同的皮層區(qū)。功能影像學(xué)研究暗示內(nèi)側(cè)OFC區(qū)參與純粹的情緒加工,尤其是負(fù)性情緒,而外側(cè)OFC區(qū)參與情緒尤其是正性情緒與認(rèn)知聯(lián)系的加工。不同的研究證據(jù)都認(rèn)同OFC特定區(qū)域的特定功能。藥物濫用后,偏頭痛病人眶額葉區(qū)任務(wù)執(zhí)行能力顯著受損,具有很高的抑郁癥狀得分[10]。核磁共振成像研究發(fā)現(xiàn)精神分裂癥患者、情緒障礙、創(chuàng)傷后應(yīng)激障礙、恐慌癥、人格障礙和藥物成癮患者中OFC體積減小[11],抑郁癥患者眶額葉皮層體積縮小,小腦體積增大[12]。神經(jīng)影像、神經(jīng)病理學(xué)、損傷分析等技術(shù)發(fā)現(xiàn)抑郁癥與OFC區(qū)細(xì)胞結(jié)構(gòu)特異性相關(guān),抑郁癥的嚴(yán)重程度與OFC后側(cè)與中間生理活動(dòng)負(fù)相關(guān)[13]。抑郁癥患者OFC區(qū)與杏仁核的連接異常,精神分裂癥患者OFC區(qū)多巴胺受體、5-羥色胺1A受體結(jié)合、NMDA受體、mGlu受體都有變化。此外,OFC區(qū)神經(jīng)元還是抗精神疾病藥的作用靶點(diǎn),這些都說(shuō)明OFC區(qū)在抑郁癥中的關(guān)鍵作用?;厩榫w依賴于邊緣系統(tǒng)、杏仁核和前扣帶回,但是基本情緒的機(jī)制并不能包含情緒行為的全部,它還需要以前額葉和身體感覺(jué)介質(zhì)為中介,情緒環(huán)路賦予情緒刺激的意義,要通過(guò)前額葉的加工來(lái)實(shí)現(xiàn),眶額葉也成為對(duì)刺激意義包括情緒意義理解和解釋的高級(jí)機(jī)構(gòu)。
2下丘腦-垂體軸與抑郁癥
在應(yīng)激反應(yīng)中,前額葉扮演著應(yīng)激適應(yīng)的規(guī)劃、成熟以及整合,是自主神經(jīng)和神經(jīng)內(nèi)分泌的調(diào)節(jié)者,行為活動(dòng)及適應(yīng)需要能量代謝的支持者。下丘腦-垂體軸(Hypothalamic-pituitary axis,HPA)在機(jī)體應(yīng)激反應(yīng)中處于核心地位,HPA軸過(guò)度活躍在抑郁癥病人中的致病因素已被廣泛研究。損傷前額葉皮層會(huì)降低HPA軸的負(fù)反饋環(huán)路,當(dāng)將皮質(zhì)酮注射入同一損傷區(qū)域后降低了皮質(zhì)酮水平,說(shuō)明前額葉調(diào)節(jié)HPA的負(fù)反饋環(huán)路[14]。在前額葉區(qū),糖皮質(zhì)激素作用于糖皮質(zhì)激素受體調(diào)節(jié)負(fù)反饋環(huán)路,但同時(shí)也降低皮質(zhì)酮的分泌[15]。急性應(yīng)激中,糖皮質(zhì)激素通過(guò)前額葉區(qū)域的糖皮質(zhì)激素受體去抑制HPA軸,前額葉沒(méi)有直接投射到PVN區(qū),它是通過(guò)投射到中間區(qū),而中間區(qū)可以投射至PVN,進(jìn)而調(diào)節(jié)HPA軸,前額葉區(qū)發(fā)出谷氨酸能神經(jīng)投射到aBST,后者再發(fā)出GABA能神經(jīng)投射到PVN,降低急性應(yīng)激引起的皮質(zhì)酮反應(yīng)[16]。急性應(yīng)激時(shí),腦可以將供應(yīng)執(zhí)行系統(tǒng)如前額葉的能量轉(zhuǎn)移向包括杏仁核和紋狀的神經(jīng)網(wǎng)絡(luò)[17]。前額葉區(qū)能量資源的再分配或者是受抑制能夠影響前額葉應(yīng)激反應(yīng)或者是相關(guān)的精神疾病如抑郁癥。糖皮質(zhì)激素最主要的功能是能量動(dòng)員,腦內(nèi)高水平的糖皮質(zhì)激素通過(guò)抑制神經(jīng)膠質(zhì)葡萄糖轉(zhuǎn)運(yùn)進(jìn)而阻礙葡萄糖的動(dòng)員,損害神經(jīng)元活力,細(xì)胞因子可通過(guò)激活炎癥分子NF-κB、MAPK和STAT5等降低糖皮質(zhì)激素受體功能,阻斷糖皮質(zhì)激素受體從胞質(zhì)到胞核的轉(zhuǎn)位,糖皮質(zhì)激素受體與DNA的結(jié)合。中樞5-羥色胺水平對(duì)HPA軸也存在反饋控制,在長(zhǎng)期慢性應(yīng)激時(shí)主要表現(xiàn)為正反饋,使中樞的單胺神經(jīng)遞質(zhì)分泌越來(lái)越少。糖皮質(zhì)激素還能抑制神經(jīng)營(yíng)養(yǎng)分子如腦源性神經(jīng)營(yíng)養(yǎng)因子,后者在慢性應(yīng)激時(shí)能影響前額葉區(qū)谷氨酸能神經(jīng)元可塑性。線粒體為神經(jīng)遞質(zhì)合成、離子轉(zhuǎn)運(yùn)、細(xì)胞吞噬等活動(dòng)提供功能ATP,它的功能也受到糖皮質(zhì)激素影響,因?yàn)樘瞧べ|(zhì)激素受體GR能進(jìn)入線粒體,劑量依賴性的影響鈣的攝取和活性氧的產(chǎn)生[18]。糖皮質(zhì)激素水平高時(shí),鈣的攝取和活性氧的產(chǎn)生增強(qiáng),線粒體受損,神經(jīng)元活力降低[19]。此外,糖皮質(zhì)激素下調(diào)前額葉糖皮質(zhì)激素受體,減少系統(tǒng)抑制糖皮質(zhì)激素分泌的能力[20]。HPA軸功能變化和糖皮質(zhì)激素受體功能下降可能會(huì)引發(fā)神經(jīng)內(nèi)分泌和免疫系統(tǒng)之間相互調(diào)節(jié),共同影響疾病進(jìn)程。
3細(xì)胞因子與抑郁癥
細(xì)胞因子是免疫系統(tǒng)活化時(shí)分泌的生物活性小蛋白,外周的細(xì)胞因子信號(hào)一旦進(jìn)入腦內(nèi),與腦內(nèi)表達(dá)的細(xì)胞因子及其受體一起影響神經(jīng)生化,神經(jīng)內(nèi)分泌和行為,發(fā)揮細(xì)胞因子的中樞效應(yīng)[21],因而產(chǎn)生了抑郁癥的細(xì)胞因子假說(shuō),強(qiáng)調(diào)抑郁癥是一種神經(jīng)心理免疫紊亂性障礙。在一些精神性疾病的病理生理研究中,免疫系統(tǒng)失調(diào)影響細(xì)胞因子調(diào)節(jié)、生長(zhǎng)因子表達(dá)以及調(diào)控多巴胺的代謝通路,導(dǎo)致神經(jīng)抑制、退化等癥。有證據(jù)顯示,細(xì)胞因子可引起單胺遞質(zhì)減少,腦室內(nèi)注射細(xì)胞因子降低大鼠額葉皮質(zhì)5-羥色胺含量,中腦和紋狀體內(nèi)5-羥色胺及其代謝產(chǎn)物5-HIAA都減少。與對(duì)照組相比,抑郁癥患者促炎性細(xì)胞因子白細(xì)胞介素IL-6和急性期反應(yīng)蛋白CRP水平顯著增加[22]。動(dòng)物實(shí)驗(yàn)中,細(xì)胞因子可引發(fā)抑郁樣行為,抗抑郁藥能逆轉(zhuǎn)此效應(yīng),細(xì)胞因子或其受體的缺失也表現(xiàn)出抗抑郁效果。抑制OFC區(qū)IL-6或者其下游JAK/STAT信號(hào)通路,可損害逆轉(zhuǎn)學(xué)習(xí),說(shuō)明基礎(chǔ)IL-6和JAK/STAT信號(hào)促進(jìn)認(rèn)知靈活性[23]。死后尸檢發(fā)現(xiàn)炎癥反應(yīng)尤其是細(xì)胞因子和抑郁自殺有關(guān)。INF-α可用來(lái)治療慢性病毒性感染和惡性疾病,長(zhǎng)期使用后能誘發(fā)30-50%的病人產(chǎn)生抑郁癥癥狀,這種相關(guān)的癥狀可以導(dǎo)致自殺性行為,IFN-α治療的病人血液色氨酸水平仍降低,但腦脊液中色氨酸保持穩(wěn)定,IFN-α能促進(jìn)血液前炎癥反應(yīng)因子IL-1、IL-6、TNF-α、IFN-α的濃度,這些因子在抑郁癥及自殺行為患者中水平升高[24]。抑郁癥患者和抑郁癥模型動(dòng)物額葉-邊緣腦區(qū)尤其是額前皮質(zhì)區(qū)星形膠質(zhì)細(xì)胞數(shù)目減少,形態(tài)改變,G蛋白家族q蛋白是只在星形膠質(zhì)細(xì)胞表達(dá)的一種耦聯(lián)受體,可以選擇性激活星形膠質(zhì)細(xì)胞內(nèi)Ca2+,利用表達(dá)G蛋白家族q蛋白的轉(zhuǎn)基因小鼠,研究人員發(fā)現(xiàn)刺激星形膠質(zhì)細(xì)胞釋放內(nèi)源性ATP可產(chǎn)生抗抑郁樣效應(yīng)。當(dāng)中樞神經(jīng)系統(tǒng)受到各種應(yīng)激性刺激時(shí),小膠質(zhì)細(xì)胞被激活,合成并釋放IL-1、IL-6、TNF-α、單核細(xì)胞趨化蛋白等,多種抗抑郁藥可通過(guò)腺苷酸環(huán)化酶-蛋白激酶A信號(hào)通路抑制此效應(yīng)[25]。腦組織中小膠質(zhì)細(xì)胞的缺乏會(huì)引起IL-1、IL-6、TNF-α、MCP-1水平升高,腦損害加重。抑郁癥患者血清中IL-1β、IL-6、TNF-α水平升高,阻斷IL-1β后能逆轉(zhuǎn)動(dòng)物的抑郁樣行為,促進(jìn)海馬發(fā)生[26]。急性注射細(xì)胞因子后,可引起促腎上腺皮CRH、ACTH和皮質(zhì)醇的合成與釋放增加,在臨床抑郁患者也可觀察到此現(xiàn)象。這與臨床上抑郁癥患者多有HPA軸功能亢進(jìn)的表現(xiàn)相一致。HPA軸功能變化可能會(huì)引發(fā)過(guò)度的炎癥反應(yīng),形成復(fù)雜的致病網(wǎng)絡(luò)系統(tǒng),促炎癥細(xì)胞因子通過(guò)降低酶活性影響五羥色胺代謝,減少血液色氨酸和5-羥色胺水平,并通過(guò)糖皮質(zhì)激素受體易位和糖皮質(zhì)激素受體-DNA結(jié)合來(lái)抑制糖皮質(zhì)激素受體功能,導(dǎo)致高皮質(zhì)酮血癥,炎癥反應(yīng)增強(qiáng),對(duì)中樞神經(jīng)系統(tǒng)造成損害。
4神經(jīng)遞質(zhì)與抑郁癥
4.1單胺類神經(jīng)遞質(zhì)
在嚙齒類和靈長(zhǎng)類,眶額葉皮層都廣泛接受5-羥色胺(Serotonin,5-HT),多巴胺(Dopamine,DA)等神經(jīng)遞質(zhì)的調(diào)節(jié)[27]。放射自顯影、受體結(jié)合、5-羥色胺免疫組織化學(xué)技術(shù)顯示均顯示靈長(zhǎng)類OFC區(qū)有一定密度的5-HT神經(jīng)支配及其受體存在。OFC區(qū)不僅接受一定密度的5-HT神經(jīng)投入,它還發(fā)出直接神經(jīng)投射到中縫核,為前腦5-HT能通路下行控制提供了底物。目前最常用的抗抑郁劑是選擇性五羥色胺再攝取抑制劑,它能通過(guò)增加5-HT水平而發(fā)揮抗抑郁作用,因而5-HT系統(tǒng)功能低下被認(rèn)為是抑郁癥發(fā)病的重要機(jī)制之一。眶額葉內(nèi)注射5-HT1BR激動(dòng)劑能引起情緒障礙樣行為,注射5-HT1BR拮抗劑阻止了此種效應(yīng),SSRI藥物療法減弱了眶額葉5-HT1BRs失敏所引起的情緒障礙行為[28]。鼠暴露于5周間歇性的冷應(yīng)激,在應(yīng)激后三周持續(xù)注射SSRI,改善了冷應(yīng)激造成的學(xué)習(xí)記憶受損,OFC雙側(cè)注射5-HT2AR拮抗劑后又再次產(chǎn)生不利影響,暗示OFC區(qū)5-HT2AR能協(xié)同SSRI的治療效應(yīng)[29]。正常與抑郁患者5-HT合成存在特定腦區(qū)的差異,抗抑郁藥只產(chǎn)生局部腦區(qū)5-HT合成的特定變化,但在有自殺傾向的患者前額葉眶部、腹側(cè)部5-HT合成顯著減少,說(shuō)明邊緣皮層環(huán)路中不同腦區(qū)5-HT合成水平以及傳遞水平發(fā)生改變是抑郁發(fā)病的主要因素。在人體色氨酸耗竭后腦內(nèi)5-HT合成減少,腦內(nèi)5-HT神經(jīng)傳遞減弱。抑郁患者死后尸檢發(fā)現(xiàn)5-HT神經(jīng)元、神經(jīng)末梢缺失,5-HT、5-HIAA濃度降低,5-HT受體密度減少,5-HT耗竭明顯減少mPFC區(qū)Fos表達(dá),藥理性升高5-HT水平使得許多腦區(qū)Fos表達(dá)升高,說(shuō)明5-HT在維持這些區(qū)域神經(jīng)元活動(dòng)中具有重要作用[30]。促炎癥細(xì)胞因子通過(guò)降低酶活性影響五羥色胺代謝,產(chǎn)生有神經(jīng)毒性的色氨酸樣副產(chǎn)物3-HK和QA。多巴胺環(huán)路參與情緒障礙和藥物成癮疾病。DA釋放劑D-安非他明[28]和DA再攝取抑制劑可卡因[31]能影響OFC區(qū)錐體細(xì)胞的激活。藥理學(xué)實(shí)驗(yàn)促進(jìn)單胺類釋放或減弱單胺類神經(jīng)毒性也能影響OFC區(qū)相關(guān)的行為功能[32]。慢性溫和應(yīng)激刺激建立抑郁動(dòng)物模型后發(fā)現(xiàn),激活腹側(cè)背蓋區(qū)多巴胺能神經(jīng)元可以逆轉(zhuǎn)應(yīng)激所產(chǎn)生的抑郁表型,產(chǎn)生抗抑郁的作用,并且當(dāng)在正常的大鼠中,抑制腹側(cè)背蓋區(qū)中多巴胺能神經(jīng)元的活性,則可以誘導(dǎo)出行為絕望、快感缺乏的核心抑郁癥狀[33]。
4.2氨基酸類神經(jīng)遞質(zhì)
谷氨酸是腦內(nèi)重要的興奮性神經(jīng)遞質(zhì),前額葉的谷氨酸能錐體神經(jīng)元可分泌parvalbumin,調(diào)節(jié)谷氨酸能神經(jīng)輸出,使得它在抑郁癥發(fā)生中的作用引起研究者的廣泛關(guān)注。精神分裂癥患者OFC區(qū)連續(xù)腦切片,海人藻酸受體亞單位GlurR5/6/7免疫組化研究發(fā)現(xiàn)陽(yáng)性細(xì)胞數(shù)量減少,說(shuō)明谷氨酸能神經(jīng)支配在OFC區(qū)降低。急性應(yīng)激促進(jìn)谷氨酸能神經(jīng)輸出興奮性,通過(guò)GR-依賴性機(jī)制促進(jìn)谷氨酸釋放,增加細(xì)胞外谷氨酸濃度[34]。在幼鼠中,急性應(yīng)激促進(jìn)NMDA和AMPA介導(dǎo)的興奮性電流;慢性應(yīng)激狀態(tài)下的幼鼠NMDA和AMPA介導(dǎo)的電流減弱[35]。成年鼠長(zhǎng)期皮質(zhì)酮注射后,前額葉NMDA受體亞型NR2B和AMPA受體亞型減少[36],說(shuō)明急性應(yīng)激促進(jìn)興奮性神經(jīng)傳遞,慢性應(yīng)激適應(yīng)后可能會(huì)降低谷氨酸能神經(jīng)輸出興奮性。糖皮質(zhì)激素能通過(guò)內(nèi)源性大麻依賴機(jī)制減弱抑制性神經(jīng)傳遞,使得前額葉谷氨酸能神經(jīng)元去抑制[37],重復(fù)束縛應(yīng)激增加前額葉GABA能中間神經(jīng)元的復(fù)雜性[38],通過(guò)調(diào)節(jié)興奮性與抑制性神經(jīng)傳遞的平衡,糖皮質(zhì)激素能夠引發(fā)急性興奮與慢性抑制間的轉(zhuǎn)換,獲得前額葉對(duì)下游靶目標(biāo)的影響。在海馬、杏仁核、下丘腦,糖皮質(zhì)激素通過(guò)MR快速增加興奮性神經(jīng)傳遞,通過(guò)GR對(duì)快速增加的興奮性神經(jīng)傳遞進(jìn)行短暫抑制,后者可能是保護(hù)應(yīng)激中獲取的信息,促進(jìn)對(duì)未知應(yīng)激源的提前防御[39]。但在前額葉,糖皮質(zhì)激素的時(shí)間性與空間性作用很獨(dú)特。在前額葉GR/MR比很高,可能GR的抗應(yīng)激反應(yīng)更強(qiáng)。連接應(yīng)激、五羥色胺、神經(jīng)營(yíng)養(yǎng)因子的共同要素就是它們對(duì)興奮性突觸傳遞的作用。在OFC區(qū),電刺激V層時(shí)出現(xiàn)持續(xù)形狀的場(chǎng)電位,為電壓依賴性,有明顯的閾值。當(dāng)刺激或者記錄電極放錯(cuò)位置時(shí),沒(méi)有電位產(chǎn)生。20 mM的AMPA/kainate受體拮抗劑DNQX顯著降低OFC區(qū)場(chǎng)電位的振幅,NMDA受體拮抗劑AP5(100 mM)也降低了OFC區(qū)場(chǎng)電位的振幅,說(shuō)明OFC區(qū)場(chǎng)電位主要是由AMPA/kainate受體產(chǎn)生的,在活體NMDA受體的阻斷引起OFC區(qū)興奮性反應(yīng),可能是通過(guò)GABA能中間神經(jīng)元抑制錐體細(xì)胞的激活[40]。在嚙齒類與人類焦慮模型中表明通過(guò)阻斷Glu的受體或者是減少Glu神經(jīng)末梢的釋放從而降低Glu的激活后引起了抗焦慮作用。調(diào)節(jié)Glu突觸傳遞、影響亞細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)的藥物可以抗抑郁,情緒穩(wěn)定劑可減少邊緣皮層谷氨酸的釋放或降低其突觸后效應(yīng)。
5維生素D與抑郁癥
維生素D受體及1a-羥化酶存在于大腦、特別是下丘腦和黑質(zhì)多巴胺神經(jīng)元中,被認(rèn)為與神經(jīng)甾體功能相近。流行病學(xué)研究發(fā)現(xiàn)低水平的維生素D與抑郁癥發(fā)生相關(guān)[41],維生素D缺乏的雌性鼠與正常雄鼠配對(duì),其幼鼠出生后10周時(shí)檢測(cè)其腦內(nèi)基因表達(dá),產(chǎn)前維生素D缺乏引起很多生理學(xué)通路的功能異常如氧化磷酸化、氧化還原反應(yīng)、細(xì)胞骨架維持、鈣離子穩(wěn)態(tài)、翻譯后加工、突觸可塑性、神經(jīng)遞質(zhì)傳遞等,這些損害的突觸網(wǎng)絡(luò)可能是線粒體功能失調(diào)的結(jié)果,線粒體代謝受阻與多發(fā)性硬化和精神分裂有關(guān)[42]。維生素D能通過(guò)促進(jìn)膽堿乙酰轉(zhuǎn)移酶的基因表達(dá)來(lái)調(diào)節(jié)乙酰膽堿合成[43],能刺激酪氨酸羥化酶進(jìn)而影響兒茶酚胺合成,并影響與GABA能神經(jīng)傳遞相關(guān)基因的表達(dá)[44]。在大鼠海馬組織培養(yǎng)中,注射1,25-(OH)2D3后下調(diào)L-型電壓敏感性Ca2+通道的表達(dá)。維生素D能通過(guò)減少神經(jīng)元Ca2+流入,進(jìn)而發(fā)揮類似激素的腦保護(hù)作用。在未成年鼠大腦皮層,維生素D通過(guò)蛋白激酶通路調(diào)節(jié)L型Ca2+通道打開(kāi)[45]。神經(jīng)細(xì)胞上Ca2+內(nèi)流促進(jìn)谷氨酸、天冬氨酸釋放,刺激NMDA受體打開(kāi)Ca2+通道,神經(jīng)細(xì)胞去極化,更多的Ca2+流入,突觸囊泡與前膜融合,神經(jīng)遞質(zhì)釋放?;|(zhì)交感分子STIM1作為鈣庫(kù)操縱性鈣通道的感受器,通過(guò)調(diào)控鈣離子內(nèi)流,影響細(xì)胞的增殖、遷移、分化等生物學(xué)行為[46]。維生素D還能通過(guò)調(diào)節(jié)位于骨骼肌或者淋巴細(xì)胞上鈣庫(kù)操縱性通道,刺激Ca2+流入。維生素D抑制誘導(dǎo)性一氧化氮合酶的合成。缺氧時(shí),神經(jīng)元內(nèi)一氧化氮合酶被激活,產(chǎn)生大量一氧化氮(Nitric oxide,NO),高濃度的NO引起神經(jīng)毒性,導(dǎo)致神經(jīng)元死亡[47]。作為iNOS抑制劑,維生素D能間接降低此酶活性,保護(hù)腦免除過(guò)氧亞硝基離子介導(dǎo)的神經(jīng)損傷,在帕金森、阿爾茲海默癥及亨廷頓疾病中發(fā)揮神經(jīng)保護(hù)作用[48]。5-HT水平偏低與抑郁癥相關(guān),而維生素D缺乏也會(huì)導(dǎo)致抑郁癥,可能由于參與情緒加工及與精神性疾病相關(guān)的腦區(qū)有維生素D的受體分布,維生素D能通過(guò)其信號(hào)通路激活色氨酸羥化酶2基因轉(zhuǎn)錄調(diào)節(jié)5-HT合成[49],還會(huì)影響自身免疫和促炎癥細(xì)胞因子的產(chǎn)生,激活應(yīng)激反應(yīng),參與情緒調(diào)節(jié)。
6結(jié)語(yǔ)與展望
應(yīng)激引發(fā)抑郁癥的病因機(jī)制非常復(fù)雜,其生物學(xué)異常涉及機(jī)體多個(gè)系統(tǒng),要完全闡明還有待更深入的研究。應(yīng)激狀態(tài)下的機(jī)體發(fā)生一系列變化,炎癥反應(yīng)影響營(yíng)養(yǎng)物質(zhì)吸收,改變神經(jīng)遞質(zhì)代謝,下丘腦-垂體-腎上腺(HPA)軸活性增強(qiáng),神經(jīng)遞質(zhì)代謝失調(diào),從而引起神經(jīng)系統(tǒng)功能紊亂,個(gè)體出現(xiàn)抑郁癥狀,這些反過(guò)來(lái)又降低個(gè)體應(yīng)對(duì)心理和生理應(yīng)激的能力,使其更容易遭受應(yīng)激性生活事件,從而形成一種惡性循環(huán)。因而,對(duì)抑郁癥假說(shuō)的補(bǔ)充與完善,能為抑郁癥的病因?qū)W研究提供新的方向。
參考文獻(xiàn)
1Zald DH, McHugo M, Ray KL, et al. Meta-analytic connectivity modeling reveals differential functional connectivity of the medial and lateral orbitofrontal cortex[J]. Cerebral Cortex, 2014, 24(1): 232-248.
2McKlveen JM, Myers B, Herman JP. The Medial prefrontal cortex: coordinator of autonomic, neuroendocrine and behavioural responses to stress[J]. J Neuroendocri, 2015, 27(6): 446-456.
3Szatkowska I, Szymanska O, Marchewka A, et al. Dissociable contributions of the left and right posterior medialorbitofrontal cortex in motivational control of goal-directed behavior[J]. Neurobiol Learn Mem, 2011, 96(2): 385-391.
4Vrshek-Schallhorn S, Doane LD, Mineka S, et al. The cortisol awakening response predicts major depression: predictive stability over a 4-year follow-up and effect of depression history[J]. Psychol Med, 2013, 43(3): 483-493.
5Bockting CLH, Lok A, Visser I, et al. Lower cortisol levels predict recurrence in remitted patients with recurrent depression: a 5.5 year prospective study[J]. Psychiatry Res, 2012, 200(2-3): 281-287.
6Howren MB, Lamkin DM, Suls J. Associations of depression with C-reactive protein, IL-1, and IL-6: a meta-analysis[J]. Psychosom Med, 2009, 71(2): 171-186.
7Dubovsky SL, Thomas M. Beyond specificity: effects of serotonin and serotonergic treatments on psychobiological dysfunction[J]. J Psychosom Res, 1995, 39(4): 429-444.
8Milaneschi Y, Hoogendijk W, Lips P, et al. The association between low vitamin D and depressive disorders[J]. Mol Psychiatry, 2014, 19(4): 444-451.
9Hoover WB, Vertes RP. Projections of the medial orbital and ventral orbital cortex in the rat[J]. J Comp Neurol,2011, 519(18): 3766-3801.
10Marian GB, María C, Amaia B, et al. Orbitofrontal dysfunction predicts poor prognosis in chronic migraine with medication overuse[J]. J Headache Pain,2011, 12(4): 459-466.
11Jackowski AP, de Araujo GM, de Almeida AG, et al. The involvement of the orbitofrontal cortex in psychiatric disorders: an update of neuroimaging findings[J]. Rev Bras de psiquiatr, 2012, 34 (2): 207-212.
12Johanna S, Meisenzahl EM, Koutsouleris N, et al. Orbitofrontal volume reductions during emotion recognition in patients with major depression[J]. Psychiatry Neurosci, 2010, 35(5): 311-320.
13Drevets WC. Orbitofrontal cortex function and structure in depression[J]. Ann NY Acad Sci, 2008, 1121(1): 499-527.
14Radley JJ, Arias CM, Sawchenko PE. Regional differentiation of the medial prefrontal cortex in regulating adaptive responses to acute emotional stress[J]. J Neurosci, 2006, 26(50): 12967-12976.
15McKlveen JM, Myers B, Herman JP. The Medial prefrontal cortex: coordinator of autonomic, neuroendocrine and behavioural responses to stress[J]. J Neuroendocri, 2015, 27(6): 446-456.
16Radley JJ, Gosselink KL, Sawchenko PE. A discrete GABAergic relay mediates medial prefrontal cortical inhibition of the neuroendocrine stress response[J]. J Neurosci, 2009, 29(22): 7330-7340.
17Hermans EJ, Henckens M, Joels M, et al. Dynamic adaptation of large-scale brain networks in response to acute stressors[J]. Trends Neurosci, 2014, 37(6): 304-314.
18Picard M, McEwen BS. Mitochondria impact brain function and cognition[J]. Proc Natl Acad Sci USA, 2014, 111(1): 7-8.
19Du J, Wang Y, Hunter R, et al. Dynamic regulation of mitochondrial function by glucocorticoids[J]. Proc Natl Acad Sci USA, 2009, 106(9): 3543-3548.
20Chiba S, Numakawa T, Ninomiya M, et al. Chronic restraint stress causes anxiety-and depression-like behaviors, downregulates glucocorticoid receptor expression, and attenuates glutamate release induced by brain-derived neurotrophic factor in the prefrontal cortex[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2012, 39(1): 112-119.
21Charles L, Raison, Lucile C, et al. Cytokines sing the blues: inflammation and the pathogenesis of depression[J]. Trends Immunol, 2006, 27(1): 24-31.
22Howren MB, Lamkin DM, Suls J. Associations of depression with C-reactive protein, IL-1, and IL-6: a meta-analysis[J]. Psychosom Med, 2009, 71(2): 171-186.
23Donegan JJ, Girotti M, Weinberg MS, et al. A Novel role for brain interleukin-6: facilitation of cognitive flexibility in rat orbitofrontal cortex[J]. J Neurosci, 2014, 34(3): 953-962.
24Hoyo-Becerra C, Joerg FS, Drik MH. Insights from interferon-α-related depression for the pathogenesis of depression associated with inflammation[J]. Brain Behav Immu, 2014, 42(1): 222-231.
25Hashioka S, Miyaoka T, Wake R, et al. An Important target for anti-inflammatory and antidepressant activity[J]. Curr Drug Target,2013, 14(11): 13-22.
26Koo JW, Dunan RS. IL-1beta is an essential mediaor of the antineurogenic and anhedonic effects of stress[J]. Proc Natl Acad Sci USA, 2008, 105(2): 751-756.
27Agster KL, Mejias-Aponte CA, Clark BD, et al. Evidence for a regional specificity in the density and distribution of noradrenergic varicosities in rat cortex[J]. J Comp Neurol, 2013, 521(10): 2195-2207.
28Shanahan NA, Velez LP, Masten VL, et al. Essential Role for orbitofrontal serotonin 1B receptors in obsessive-compulsive disorder-Like behavior and serotonin reuptake inhibitor response in mice[J]. Biol Psychiat, 2011, 70(11): 1039-1048.
29Furr A, Lapiz-Bluhm MD, Morilak DA. 5-HT2A receptors in the orbitofrontal cortex facilitate reversal learning and contribute to the beneficial cognitive effects of chronic citalopram treatment in rats[J]. Int J Neuropsychoph, 2012, 15(9): 1295-1305.
30Birgitie RK, Cecilie LL, Pia W. Central serotonin depletion affects rat brain areas differently: A qualitative and quantitative comparison between different treatment schemes[J]. Neurosci Letter, 2006, 392(1-2): 129-134.
31Guillem K, Kravitz AV, Moorman DE, et al. Orbitofrontal and insular cortex: neural responses to cocaine- associated cues and cocaine self-administration[J]. Synapse, 2010, 64(1): 1-13.
32Robbins TW, Arnsten AF. The neuropsychopharmacology of fronto-executive function: monoaminergic modulation[J]. Annu Rev Neurosci, 2009, 32(1): 267-287.
33Tye KM, Mirzabekov JJ, Warden MR, et al. Dopamine neurons modulate neural encoding and expression of depression-related behaviour[J]. Nature, 2013, 493(7433): 537-541.
34Musazzi L, Milanese M, Farisello P, et al. Acute stress increases depolarization-evoked glutamate release in the rat prefrontal/frontal cortex: the dampening action of antidepressants[J]. Plos One, 2010, 5(1): 1-11.
35Yuen EY, Liu W, Karatsoreos IN, et al. Mechanisms for acute stress-induced enhancement of glutamatergic transmission and working memory[J]. Mol Psychiatry, 2011, 16(2): 156-170.
36Gourley SL, Kedves AT, Olausson P, et al. A history of corticosterone exposure regulates fear extinction and cortical NR2B, GluR2/3, and BDNF[J]. Neuropsychophar, 2009, 34(3): 707-716.
37Hill MN, McLaughlin RJ, Pan B, et al. Recruitment of prefrontal cortical endocannabinoid signaling by glucocorticoids contributes to termination of the stress response[J]. J Neurosci, 2011, 31(29): 10506-10515.
38Gilabert JJ, Castillo GE, Guirado R, et al. Chronic stress alters inhibitory networks in the medial prefrontal cortex of adult mice[J]. Brain Struct Funct, 2013, 218(6): 1591-1605.
39Joels M, Sarabdjitsingh RA, Karst H. Unraveling the time domains of corticosteroid hormone influences on brain activity: rapid, slow, and chronic modes[J]. Pharmacol Rev, 2012, 64(4): 901-938.
40Joanne W, RosannaK J, TanyaL S, et al. Characterization of electrically evoked field potentials in the medial prefrontal cortex and orbitofrontal cortex of the rat: Modulation by monoamines[J]. European Neuropsychopharma, 014, 2(4): 321-332.
41Anglin RES, Samaan Z, Walter SD, et al. Vitamin D deficiency and depression in adults: systematic review and meta-analysis[J]. Br J Psychiatry, 2013, 202(2): 100-107.
42Eyles D, Almeras L, Benech P, et al. Developmental vitamin D deciency alters the expression of genes encoding mitochondrial, cytoskeletal and synaptic proteins in the adult rat brain[J].J Steroid Bioche& Molecu Biolo, 2007, 103(3): 538-545.
43Garcion E, Wion-Barbot N, Montero-Menei CN, et al. New clues about vitamin D functions in the nervous system[J]. Trends Endocrinol Metab, 2002, 13(3): 100-105.
44Sanchez B, Relova JL, Gallego R, et al. 1,25-Dihydroxyvitamin D3 administration to 6-hydroxydopamine-lesioned rats increases glial cell line-derived neurotrophic factor and partially restores tyrosine hydroxylase expression in substantia nigra and striatum[J]. J Neurosci Res, 2009, 87(3): 723-732.
45Zanatta L, Goulart PB, Gon?alves R, et al. 1a,25-Dihydroxyvitamin D3 mechanism of action: Modulation of L-type calcium channels leading to calcium uptake and intermediate filament phosphorylation in cerebral cortex of young rats[J]. Biochim Biophys Acta, 2012, 182(3): 1708-1719.
46Kiviluoto S, Decuypere JP, De Smedt H, et al. STIM1 as a key regulator for Ca2+ homeostasis in skeletal-muscle development and function[J]. Skelet Muscle, 2011, 1(1): 1-16.
47Robin E, Derichard A, Vallet B, et al. Nitric oxide scavenging modulates mitochondrial dysfunction induced by hypoxia/reoxygenation[J]. Pharmacol Rep, 2011, 63(5): 1189-1194.
48Tuohimaa P, Keisala T, Minasyan A, et al. Vitamin D, nervous system and aging[J]. Psychoneuroendocrinology, 2009, 34(1): 278-286.
49Patrick RP, Ames BN. Vitamin D hormone regulates serotonin synthesis. Part 1: relevance for autism[J]. Faseb J, 2014, 28(14): 2398-2413.
Progress on the research about pathological mechanism of depression under the action of multiple factors*
An Feng-li
(School of Pharmacy, LanzhouUniversity, Gansu Lanzhou 730000)
*基金項(xiàng)目:中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金資助(編號(hào):862103)
作者簡(jiǎn)介:安鋒利,女,博士,主要從事神經(jīng)生物學(xué)研究,Email:xiaoan314@sohu.com。
(收稿日期:2016-4-11)