劉向榮,樸春麗,米 佳,劉揚揚,王 璞
(1.長春中醫(yī)藥大學(xué),吉林 長春130117;2.長春燒傷醫(yī)院;3.吉林大學(xué)臨床醫(yī)學(xué)院2013屆)
?
內(nèi)質(zhì)網(wǎng)應(yīng)激在2型糖尿病發(fā)病機(jī)制中的研究進(jìn)展
劉向榮1,2,樸春麗1*,米佳1,劉揚揚1,王璞3
(1.長春中醫(yī)藥大學(xué),吉林 長春130117;2.長春燒傷醫(yī)院;3.吉林大學(xué)臨床醫(yī)學(xué)院2013屆)
糖尿病是由環(huán)境因素和遺傳因素共同作用而引起的一組以糖代謝紊亂、體液失衡為主要表現(xiàn)的臨床綜合征,有著極高的致殘率和死亡率[1-3]。糖尿病的患病人數(shù)正逐年增加,目前全世界約有糖尿病病人2億,預(yù)計十年后患病人數(shù)將增加1億,而新增加的患病人口約2/3-3/4集中在發(fā)展中國家。在糖尿病的患病人群中,2型糖尿病發(fā)病尤為廣泛,約占患病人數(shù)的90%,給人類健康造成了極大的危害,并且?guī)砹藝?yán)重的經(jīng)濟(jì)負(fù)擔(dān)。深入闡述及研究其疾病發(fā)生機(jī)制意義重大[4-6]。我們一般認(rèn)為:2型糖尿病的發(fā)生是以胰島素的抵抗和胰島Β細(xì)胞功能障礙為特征的。脂毒性,高血糖和炎癥反應(yīng)與這一疾病密切相關(guān)[7]。1995年Unger[8]等研究發(fā)現(xiàn)組織的慢性炎癥反應(yīng)是導(dǎo)致糖尿病發(fā)病的關(guān)鍵環(huán)節(jié)。血糖和脂質(zhì)升高,尤其是飽和脂肪酸的升高,是胰島素抵抗的特征性改變。在此基礎(chǔ)上2002年[9]Harding提出了2型糖尿病通過內(nèi)質(zhì)網(wǎng)應(yīng)激而發(fā)病,到2004年 science發(fā)表文章顯示內(nèi)質(zhì)網(wǎng)應(yīng)激(endoplasmic recticulum stress)是導(dǎo)致糖尿病、胰島素抵抗和肥胖發(fā)生的重要環(huán)節(jié),由此ERS成為治療糖尿病的一個新的并具有強(qiáng)大潛力的新靶點[10]。
1內(nèi)質(zhì)網(wǎng)和未折疊蛋白
內(nèi)質(zhì)網(wǎng)(endoplasmic reticulum,ER)是哺乳動物最重要的細(xì)胞器,是蛋白質(zhì)合成,折疊和轉(zhuǎn)運的重要場所,參與脂質(zhì)合成和維持鈣離子的儲存。它的主要功能是確保蛋白質(zhì)具有正常生理結(jié)構(gòu)和功能。當(dāng)未折疊或錯誤折疊的蛋白質(zhì)數(shù)量增加時,這些畸變蛋白就會被細(xì)胞漿內(nèi)的內(nèi)質(zhì)網(wǎng)相關(guān)降解酶所降解,然而,當(dāng)未折疊或者錯誤折疊的蛋白質(zhì)的數(shù)量超過內(nèi)質(zhì)網(wǎng)所能承受的能力,內(nèi)質(zhì)網(wǎng)自身的負(fù)擔(dān)加重,內(nèi)質(zhì)網(wǎng)穩(wěn)態(tài)被打破,產(chǎn)生一系列氧化應(yīng)激反應(yīng)。我們把這種內(nèi)質(zhì)網(wǎng)穩(wěn)態(tài)的改變稱為內(nèi)質(zhì)網(wǎng)應(yīng)激(endoplasmic reticulum stress,ERS),即各種原因?qū)е碌奈凑郫B或錯誤折疊蛋白質(zhì)在內(nèi)質(zhì)網(wǎng)的堆積[11]。Han Liu[12]等報道很多原因可以導(dǎo)致內(nèi)質(zhì)網(wǎng)應(yīng)激的發(fā)生,如代謝性因素(高血脂,高血糖),鈣離子的失衡,炎癥反應(yīng),氧化應(yīng)激等,內(nèi)質(zhì)網(wǎng)的穩(wěn)態(tài)一旦被打破,細(xì)胞凋亡隨即發(fā)生。內(nèi)質(zhì)網(wǎng)應(yīng)激初早期,細(xì)胞的內(nèi)質(zhì)網(wǎng)通過擴(kuò)張體積,提高蛋白質(zhì)折疊能力,調(diào)節(jié)蛋白質(zhì)轉(zhuǎn)錄和翻譯,清除未折疊蛋白質(zhì)和錯誤折疊蛋白質(zhì)等方式降低蛋白質(zhì)的合成,這一系列復(fù)雜的通路反應(yīng)即未折疊蛋白質(zhì)反應(yīng)(unfolded protein response,UPR)。UPR的最終目的是減輕內(nèi)質(zhì)網(wǎng)應(yīng)激與重建內(nèi)質(zhì)網(wǎng)穩(wěn)態(tài)。越來越多的研究表明,如果內(nèi)質(zhì)網(wǎng)應(yīng)激時間延長或超過自身處理能力時,內(nèi)質(zhì)網(wǎng)會啟動程序性細(xì)胞凋亡過程[13]。
內(nèi)質(zhì)網(wǎng)應(yīng)激的發(fā)生主要依賴于內(nèi)質(zhì)網(wǎng)膜上的3種跨膜蛋白,它們分別是肌醇依賴酶IRE1(inositol-requiring kinase-1)、存在α和Β兩種亞型,RNA依賴的蛋白激酶樣激酶PERK(PER-related endoplasmic reticulum eukaryotic initiation factor 2αkinase)、活化轉(zhuǎn)錄因子ATF6(activating transcription factor 6),內(nèi)質(zhì)網(wǎng)通過這3種蛋白感受未折疊或錯誤折疊蛋白質(zhì)信號并將此信號傳遞到細(xì)胞基質(zhì)。生理狀態(tài)下,這3種蛋白與內(nèi)質(zhì)網(wǎng)分子伴侶Bip(immunoglobulin binding protein)/Grp78(78-kDa glucose-regulated protein)穩(wěn)定結(jié)合。當(dāng)內(nèi)質(zhì)網(wǎng)腔內(nèi)未折疊或錯誤折疊蛋白質(zhì)發(fā)生堆積或鈣離子平衡發(fā)生紊亂時,Bip解離出來,作為分子伴侶與未折疊蛋白或者錯誤結(jié)合蛋白結(jié)合,最終一個由IRE-1,ATF6和PERK參與的信號轉(zhuǎn)導(dǎo)系統(tǒng)被激活[14]。
2UPR信號轉(zhuǎn)導(dǎo)機(jī)制
IRE-1是一種跨膜蛋白,它具有內(nèi)在激酶活性和核糖核酸酶活性,對未折疊和錯誤折疊的蛋白質(zhì)敏感,生理情況下,IRE-1α與Bip結(jié)合,然而應(yīng)激發(fā)生時,IRE-1α與Bip/Grp78分離,在Ser724點位上發(fā)生磷酸化及寡聚化反應(yīng)[15],從而激活I(lǐng)RE-1αRNA的活性,使其中的26個核苷酸從X盒結(jié)合蛋白1( X-box binding protein 1,XBP1)的 mRNA中解離出來,最終這種未剪切的mRNA(即XBP1u)轉(zhuǎn)變成XBP1片段,即XBP1s[16], XBP1s經(jīng)過翻譯后作為轉(zhuǎn)錄因子進(jìn)入細(xì)胞核,XBP1s的作用就是提高UPR基因、脂肪生成基因、脂質(zhì)代謝和炎癥基因的轉(zhuǎn)錄[17]。除此之外,在調(diào)節(jié)IRE-1依賴的核衰減mRNA(它可以分裂包括脂質(zhì)代謝基因的底物)的過程中,通過IRE-1核糖核酸內(nèi)切酶活性,IRE-1可以產(chǎn)生適應(yīng)性的信號或者死亡信號,從而誘導(dǎo)IRE-1依賴的mRNA的凋亡(regulated IRE-1 dependent decay of mRNA RIDD)[18]。 Ghosh等[19]研究發(fā)現(xiàn)IRE1α的RNA酶的變構(gòu)抑制可以保護(hù)在內(nèi)質(zhì)網(wǎng)應(yīng)激過程中胰島β細(xì)胞的活力與功能。β細(xì)胞XBP1基因突變小鼠可表現(xiàn)出高血糖與葡萄糖耐量異常表明IRE1α-XBP1信號通路對于β細(xì)胞至關(guān)重要[20]。
ATF6的細(xì)胞質(zhì)域和內(nèi)質(zhì)網(wǎng)域?qū)Φ鞍渍郫B的狀態(tài)極為敏感,當(dāng)感受到未折疊或錯誤折疊蛋白質(zhì)信號后,N端就會被剪切,與Βip解離,轉(zhuǎn)移至高爾基體,經(jīng)過1型蛋白酶(site-1 protease)S1P和2型蛋白酶(site-2 protease)S2P水解加工后,細(xì)胞質(zhì)的部分被釋放出來并且作為轉(zhuǎn)錄因子調(diào)控以XBP1為主的相關(guān)降解因子表達(dá),蛋白的折疊/成熟和分泌[21],它們是具有活性的轉(zhuǎn)錄因子,可以誘導(dǎo)CHOP基因的表達(dá), CHOP的過度累積可誘導(dǎo)細(xì)胞發(fā)生凋亡。
當(dāng)發(fā)生內(nèi)質(zhì)網(wǎng)應(yīng)激時,PERK與GRP78解離,發(fā)生自身二聚化和磷酸化,催化下游真核起始因子2(eukaryotic initiation factor 2,eIF2)的磷酸化,引起活化轉(zhuǎn)錄因子4(activating transcription factor4,ATF4) 的高表達(dá),ATF4可以上調(diào)氨基酸代謝以及增強(qiáng)子CCAAT結(jié)合蛋白同源蛋白(C/EBP homologous protein,CHOP) 的轉(zhuǎn)錄和DNA損傷誘導(dǎo)的基因34(GADD34)的表達(dá)[22]。PERK同時磷酸化和激活Nrf2(nuclear factor erythroid related factor 2)的表達(dá)。ATF6和PERK都是通過增加CHOP的基因表達(dá)而誘導(dǎo)細(xì)胞凋亡的。研究表明PERK在胰.島中存在高表達(dá)[23],當(dāng)與Bip發(fā)生解離后,PERK通過而激活?;罨腜ERK通過使下游eIF2α磷酸化下調(diào)蛋白質(zhì)合成過程,但是可以提高ATF4 mRNA的翻譯水平[24]。IRE1α-XBP1與PERK-eIF2α信號通路共同作用調(diào)節(jié)胰島素的分泌,再次說明UPR在胰島β細(xì)胞中發(fā)揮重要作用。ATF6和PERK通路都是通過CHOP的轉(zhuǎn)錄誘導(dǎo)細(xì)胞凋亡的。
以上3條是處理未折疊蛋白經(jīng)典的信號通路,通過這3條通路的協(xié)同作用,對堆積未折疊或錯誤蛋白質(zhì)進(jìn)行處理,從而維持細(xì)胞穩(wěn)態(tài),若損傷嚴(yán)重,穩(wěn)態(tài)不能及時恢復(fù),則會啟動細(xì)胞凋亡程序。
另有研究表明,除了Bip,IRE-1β本身也是UPR(Unfolded protein response)感受器,它不通過Bip,而直接干預(yù)未折疊蛋白的級聯(lián)反應(yīng);當(dāng)發(fā)生內(nèi)質(zhì)網(wǎng)應(yīng)激時,糖基化的ATF6就會極大的妥協(xié);而硫氧還原蛋白(TXNIP thioredoxin-interacting protein )則會通過二硫化物異構(gòu)酶(PDI protein disulfide isomerase)調(diào)節(jié)內(nèi)質(zhì)網(wǎng)應(yīng)激[25]。
3胰腺β細(xì)胞與內(nèi)質(zhì)網(wǎng)應(yīng)激
胰腺β細(xì)胞是體內(nèi)唯一有胰島素分泌功能的細(xì)胞,具有高度發(fā)達(dá)的內(nèi)質(zhì)網(wǎng),在β細(xì)胞中PERK、IRE1α和Bip均高表達(dá),因此,β細(xì)胞成為對內(nèi)質(zhì)網(wǎng)應(yīng)激最敏感的組織細(xì)胞之一。生理狀態(tài)下,胰島β細(xì)胞不斷地分泌胰島素,其內(nèi)含有大量成熟的高爾基體,胰島素的前體在內(nèi)質(zhì)網(wǎng)腔內(nèi)定位、剪切掉其標(biāo)志序列,從而形成胰島素原,β細(xì)胞內(nèi)質(zhì)網(wǎng)能高度敏感地控制胰島素原的折疊,胰島素原完成氧化折疊、成熟變構(gòu)并轉(zhuǎn)運至高爾基體,最終以分泌顆粒的形式出胞發(fā)揮功能[26]。在病理狀態(tài)下,當(dāng)進(jìn)入內(nèi)質(zhì)網(wǎng)腔內(nèi)的胰島素量超過內(nèi)質(zhì)網(wǎng)折疊能力、或者內(nèi)質(zhì)網(wǎng)的鈣耗竭時,內(nèi)質(zhì)網(wǎng)應(yīng)激就發(fā)生了。內(nèi)質(zhì)網(wǎng)應(yīng)激與胰島素抵抗、炎癥反應(yīng)、脂質(zhì)堆積、胰島素生物合成、β細(xì)胞的凋亡密切相關(guān),研究內(nèi)質(zhì)網(wǎng)穩(wěn)態(tài)改變的機(jī)制將會為2型糖尿病的預(yù)防和治療提供新的藥理學(xué)靶點。在2型糖尿病的發(fā)展過程中,胰島素抵抗可以由胰島β細(xì)胞分泌增加補(bǔ)充,然而,體內(nèi)的胰島素需求量最終會超越β細(xì)胞的分泌能力,由此就不可避免的加重內(nèi)質(zhì)網(wǎng)的負(fù)擔(dān),內(nèi)質(zhì)網(wǎng)中未折疊蛋白的增加最終啟動細(xì)胞凋亡[27,28]。
內(nèi)質(zhì)網(wǎng)應(yīng)激參與的胰島β細(xì)胞凋亡的信號通路,較經(jīng)典的主要包括:c-Jun氨基末端激酶(JNK)信號通路--未折疊或者是錯誤折疊蛋白的過度累積誘發(fā)內(nèi)質(zhì)網(wǎng)應(yīng)激,活化IRE1α,與腫瘤壞死因子受體相關(guān)因子2(TRAF2)及凋亡信號調(diào)節(jié)激酶(ASK1)結(jié)合,而通過IRE-1激活,Yamaguchi[29]等證明ASK1本身可以通過ASK-p38路徑促進(jìn)細(xì)胞凋亡,同時IRE-TRAF2-ASK1復(fù)合體,通過激活JNK,進(jìn)而激活線粒體依賴的細(xì)胞凋亡[30]。JNK被激活后可促進(jìn)胰島素受體底物絲氨酸的磷酸化,阻礙胰島素的信號轉(zhuǎn)導(dǎo),最終促使炎癥細(xì)胞的表達(dá),引起內(nèi)質(zhì)網(wǎng)的應(yīng)激,導(dǎo)致胰島素抵抗[50]。當(dāng)發(fā)生ERS時,JNK活化,JNK導(dǎo)致胰島素受體底物1發(fā)生絲氨酸磷酸化,IRS1的絲氨酸磷酸化使IRS1的酪氨酸磷酸化受到抑制,同時激活PI3K,使胰島素受體的信號轉(zhuǎn)導(dǎo)受抑制,細(xì)胞對胰島素的敏感性下降,導(dǎo)致IR[51];CHOP( C/EBP homologous protein-10)信號通路--CHOP屬于C/EBP轉(zhuǎn)錄因子家族成員,是內(nèi)質(zhì)網(wǎng)應(yīng)激特異的轉(zhuǎn)錄因子,正常情況下表達(dá)水平很低,內(nèi)質(zhì)網(wǎng)應(yīng)激發(fā)生時表達(dá)水平升高。研究發(fā)現(xiàn),內(nèi)質(zhì)網(wǎng)應(yīng)激可以介導(dǎo)游離脂肪酸(FFA)誘導(dǎo)的細(xì)胞凋亡,且隨著β細(xì)胞凋亡增加,CHOP基因表達(dá)增加[31];caspase 凋亡通路 內(nèi)質(zhì)網(wǎng)應(yīng)激情況下 ,由于Ca2+平衡紊亂而激活的鈣蛋白激酶可以直接剪切并激活 caspase -12[32]。近年來,隨著研究的深入,Mig6信號通路-mig6被確定為負(fù)反饋表皮生長因子調(diào)節(jié)信號,通過與表皮生長因子受體(epidemal growth factor receptor EGFR)結(jié)合,Mig6控制表皮生長因子受體信號通路的時間和空間連續(xù)性[33],Yi-ChunChen[34]等證實Mig6可以通過誘導(dǎo)Caspase3的表達(dá)促進(jìn)B細(xì)胞凋亡,持續(xù)大量的Mig6表達(dá)還會加重內(nèi)質(zhì)網(wǎng)應(yīng)激。
4脂肪細(xì)胞與內(nèi)質(zhì)網(wǎng)應(yīng)激
肥胖導(dǎo)致脂肪組織中慢性內(nèi)質(zhì)網(wǎng)應(yīng)激的發(fā)生。事實上,肥胖患者脂肪組織的肌醇需要酶IRE-1a和c-Jun氨基末端激酶(JNK)以及X盒結(jié)合蛋白1(XBP1s)表達(dá)均上調(diào)[35]。Gregor[36]等證實,因為胃部手術(shù)體重減輕的肥胖患者XBP1S和BIP及eIF2a和JNK的表達(dá)下調(diào)。而運動訓(xùn)練減少內(nèi)質(zhì)網(wǎng)應(yīng)激和胰島素抵抗在肥胖鼠白色脂肪組織中的發(fā)生[37]。飽和脂肪酸通過PERK依賴機(jī)制增加腫瘤壞死因子TNF-α和白細(xì)胞介素IL-6的表達(dá)[38]。這些因子的表達(dá)增加可以誘導(dǎo)內(nèi)質(zhì)網(wǎng)應(yīng)激的負(fù)反饋調(diào)節(jié),同時活化的PERK也可以調(diào)節(jié)脂肪組織的胰島素反應(yīng)[39]。除了飽和脂肪酸,暴露于脂多糖或葡萄糖的人體脂肪細(xì)胞增加激活轉(zhuǎn)錄因子ATF-6和IRE-1a依賴的伴侶表達(dá)[40],激活的IRE-1a可以活化JNK,這反過來可以磷酸化絲氨酸殘基上的胰島素受體底物,從而促進(jìn)胰島素抵抗的發(fā)生[41]。
內(nèi)質(zhì)網(wǎng)應(yīng)激的發(fā)生有諸多誘發(fā)因素:脂毒性,糖毒性,炎癥,胰島素原和淀粉樣蛋白的積累。其中脂毒性是胰腺β細(xì)胞發(fā)生內(nèi)質(zhì)網(wǎng)應(yīng)激的重要誘因,飽和脂肪酸(例如,棕櫚酸)激活UPR的PERK、IRE-1通路,從而分別誘導(dǎo)eIF2α的磷酸化和XBP的拼接;反之,不飽和脂肪酸(如油酸)則顯示出保護(hù)作用。錯誤折疊的胰島素原和人胰島淀粉樣多肽hIAPP(human islet amyloid polypeptide)的積累也引起內(nèi)質(zhì)網(wǎng)應(yīng)激,因此,參與細(xì)胞功能障礙和細(xì)胞凋亡[42]。來自于IL-23,24,33的炎癥細(xì)胞通過活化ATATS(signal transducers and activators of transcription)和NF-kB( nuclear factor-kB)誘導(dǎo)內(nèi)質(zhì)網(wǎng)應(yīng)激的發(fā)生[43]。相比之下,IL-22,抑制活性氧和亞硝酸鹽的累積,防止細(xì)胞因子誘導(dǎo)的內(nèi)質(zhì)網(wǎng)應(yīng)激或糖脂毒性,即IL-22下調(diào)促氧化基因的表達(dá),同時上調(diào)抗氧化基因的表達(dá)[44]。高血糖引起內(nèi)質(zhì)網(wǎng)應(yīng)激傳感器TXNIP表達(dá),它是另一個相關(guān)的促凋亡β細(xì)胞因子。同樣地,ASK1(apoptosis signal regulating kinase),被IRE-1激活后,促進(jìn)β細(xì)胞的破壞和凋亡。飽和脂肪酸通常具有細(xì)胞毒性,而不飽和脂肪酸一直內(nèi)質(zhì)網(wǎng)應(yīng)激的發(fā)生從而減少細(xì)胞凋亡[45]。
胰島素的合成開始于內(nèi)質(zhì)網(wǎng),胰島素原須在此正確折疊,有效運輸至高爾基體,經(jīng)過進(jìn)一步的加工過程,形成成熟的胰島素發(fā)揮作用。錯誤折疊的蛋白質(zhì)(例如,胰島素原)在內(nèi)質(zhì)網(wǎng)中蓄積通過PERK介導(dǎo)的eIF2磷酸化和轉(zhuǎn)錄誘導(dǎo)ATF4和凋亡基因CHOP的表達(dá)導(dǎo)致β細(xì)胞死亡[46]。由于胰島素原合成的不斷增加,錯誤折疊的胰島素原在胰腺β細(xì)胞內(nèi)質(zhì)網(wǎng)中積累,從而導(dǎo)致UPR通路的激活[47]。在90%的2型糖尿病患者中,錯誤折疊的人胰島淀粉樣多肽(hIAPP)不斷累積,形成胰島淀粉樣蛋白,激活UPR是參與β細(xì)胞功能障礙。值得注意的是,ER伴侶衰減使細(xì)胞表達(dá)hIAPP增加,從而進(jìn)一步加重內(nèi)質(zhì)網(wǎng)應(yīng)激[48]
胰島素抵抗是2型糖尿病發(fā)病危險因素之一,在疾病的臨床前期,胰島的β細(xì)胞通過提高β細(xì)胞的數(shù)量和胰島素的分泌量來對抗胰島素抵抗,當(dāng)這種平衡被打破,胰島素的相對不足就會隨之出現(xiàn),2型糖尿病隨之發(fā)生[49]。最近的研究結(jié)果表明,內(nèi)質(zhì)網(wǎng)中錯誤折疊的蛋白及隨后激活未折疊蛋白應(yīng)答信號在IR和T2DM發(fā)病機(jī)制中發(fā)揮重要作用,靶向蛋白質(zhì)折疊和UPR信號轉(zhuǎn)導(dǎo)可能是一個可行的用于治療2型糖尿病的治療方法。此外,一些對藥物代謝存在有利影響的治療2型糖尿病的臨床用藥,其作用機(jī)理可能來源于這些藥物調(diào)節(jié)內(nèi)質(zhì)網(wǎng)應(yīng)激和未折疊蛋白應(yīng)答信號的能力。然而,仍需要更多的研究來闡述內(nèi)質(zhì)網(wǎng)應(yīng)激,因為矛盾的是,參與UPR的一些關(guān)鍵蛋白的激活可能對T2DM的治療有益。因此,仍需不斷探索及闡明內(nèi)質(zhì)網(wǎng)應(yīng)激與胰島Β細(xì)胞功能損傷及凋亡的確切機(jī)制。
參考文獻(xiàn):
[1]Hossain P,Kawar B,EI Nahas M.Obesity and diabetes in the developing world-a growing challenge[J].N Engl J Med,2007,356,213.
[2]American Diabetes Association.Diagnosis and classification of diabetes mellitus[J].Diabetes Care,2007,30:S42.
[3]Hossain P,Kawar B,El Nahas M.Obesity and diabetes in the developing world-a growing challenge[J].N Engl J Med,2007,356:213.
[4]Yach D,Stuckler D,Brownell KD.Epidemiologic and economic consequences of the global epidemics of obesity and diabetes[J].Nat Med,2006,12:62.
[5]Kahn SE,Hull RL,Utzschneider KM.Mechanisms linking obesity to insulin resistance and type 2 diabetes[J].Nature,2006,444:840-846.
[6]Ferrannini E,Mari A.Beta cell function and its relation to insulin action in humans:a critical appraisal[J].Diabetologia,2004,47:943.
[7]Odegaard JI,Chawla A.Connecting type 1 and type 2 diabetes through innate immunity.Cold Spring Harb.Perspect[J].Med,2012,2:7724.
[8]Unger RH.Lipotoxicity in the pathogenesis of obesity-dependent NIDDM.Genetic and clinical implications[J].Diabetes,1995,44:863.
[9]Harding HP,Ron D.Endoplasmic reticulum stress and the development of diabetes:a review[J].Diabetes,2002,51(3):S455.
[10]Ozcan U,Cao Q,Yilmaz E,et al.Endoplasmic reticulum stress links obesity,insulin action,and type 2 diabetes[J].Science,2004,306(15):457.
[11]Alfadda AA,Sallam RM.Reactive oxygen species in health and disease.J.Biomed[J].Biotechnol,2012,93:84.
[12]Han L,Ming M.Edoplasmic reticulum stress is involved in the connection between inflammation and autophagy in type 2 diabetes[J].General and Comparative Endocrinology,2015,210:124.
[13]Ron D,Walter P.Signal integration in the endoplasmic reticulum unfolded protein response[J].Nat Rev Mol Cell Biol,2007,8:519.
[14]Ni M,Lee AS.ER chaperones in mammalian development and human diseases[J].FEBS Lett,2007,581:3641.
[15]Lee J,and Ozcan U.Unfolded protein response signaling and metabolic diseases[J].J Biol Chem,2014,289,1203.
[16]Hetz C,Martinon F,Rodriguez D,et al.The unfolded protein response:integrating stress signals through the stress sensor IRE1[J].Physiol Rev,2011,91(4):1219.
[17]Lee J.and Ozcan U.Unfolded protein response signaling and metabolic diseases[J].J Biol Chem,2014,289,1203.
[18]Maurel M.Getting RIDD of RNA: IRE1 in cell fate regulation[J].Trends Biochem.Sci,2014,39:245.
[19]Ghosh R,Wang L,Wang ES,et al.Allosteric inhibition of the IRE1αRNAase preserves cell viability and function during endoplasmic reticulum stress[J].Cell,2014,158:534.
[20]Lee AH,Heidtman K,Hotamisligil GS,et al.Dual and opposing roles of the unfolded protein response regulated by IRE1αand XBP1 in proinsulin processing and insulin secretion[J].Proc Natl Acad Sci USA,2011,108:8885.
[21]Sha H.Stressed out about obesity:IRE1a-XBP1in metabolic disorders.Trends Endocrinol[J].Metab,2011,22:374.
[22]Donnelly N,Gorman AM,Gupta S,et al.The eIF2 kinases:their structures and function[J].Cell Mol Life Sci,2013,70(19):3493.
[23]Yamaguchi K,Takeda K,Kadowaki H,et al.Involvement of ASK1-p38 pathway in the pathogenesis of diabetes triggered by pancreatic βcell exhaustion[J].Biochim Biophys Acta,2013,1830:3656.
[24]Teske BF,Wek SA,Bunpo P,et al.The eIF2 kinase PERK and the integrated stress response facilitate activation of ATF6 during endoplasmic reticulum stress[J].Mol Biol Cell,2011,22(22):4390.
[25]Laia Salvado,Xavier Palomer.Targeting endoplasmic reticulum stress in insulin resistance[J].Cell,2015,26:438.
[26]Liu,M.Proinsulin misfolding and diabetes:mutant INS gene-induced diabetes of youth.Trends Endocrinol[J].Metab,2010,21:652.
[27]Fonseca SG,Gromada J,Urano F.Endoplasmic reticulum stress and pancreatic β-cell death[J].Trends Endocrinol Meta,2011,22:266.
[28]Walter P,Ron DThe unfolded protein response: from stress pathway to homeostatic regulation[J].Science,2011,334:1081.
[29]Yamaguchi,K.Involvement of ASK1-p38 pathway in the pathogenesis of diabetes triggered by pancreatic ss cell exhaustion.Biochim[J].Biophys.Acta,2013,1830:3656.
[30]Wang X,Welsh N.Bcl-2 maintais the mitochondrial membrane potential,but fails to affect production of reactive oxygen species and endoplasmic reticulum stress,in sodium paomitate-induced β-cell death[J].Ups J Med Sci,2014,119:306.
[31]Laybutt DR,Preston AM,Akerfeldt MC,et al.Endoplasmic reticulum stress contributes to βcell apoptosis in type 2 diabetes[J].Diabetologia,2007,50:752.
[32]Zhou Y,Lee J,Reno CM,et al.Regulation of glucose homeostasis through a XBP-1-FoxO1 interaction[J].Nat Med,2011,17:356.
[33]吳曉聰,黃巧冰.內(nèi)質(zhì)網(wǎng)應(yīng)激與胰島素抵抗和糖尿病發(fā)生的關(guān)系[J].廣東醫(yī)藥,2011,32,6:812.
[34]Nakagawa T,Yuan J.Cross-talk bet ween two cysteine protease f amilies.Activation of caspase-12 by calpain in apoptosis[J].J CellBiol,2000,150 (4):887.
[35]Frosi Y,Anastasi S,Ballarò C,et al.A two-tiered mechanism of EGFR inhibition by RALT/MIG6 via kinase suppression and receptor degradation[J].J Cell Biol,2010,189:557.
[36]Yi-Chun Chen,E.Scott Colvin,Bernhard F,et al.Fuege Mitogen-Inducible Gene 6 Triggers Apoptosis and Exacerbates ER Stress-Induced-Cell Death[J].Mol Endocrinol,January,2013,27(1):162.
[37]Boden,G.Increase in endoplasmic reticulum stress-related proteins and genes in adipose tissue of obese,insulin-resistant individuals[J].Diabetes,2008,57,2438.
[38]Gregor MF.Endoplasmic reticulum stress is reduced in tissues of obese subjects after weight loss[J].Diabetes,2009,58:693.
[39]da Luz G.Endurance exercise training ameliorates insulin resistance and reticulum stress in adipose and hepatic tissue in obese rats[J].Eur J Appl Physiol,2011,111,2015.
[40]Jiao P.FFA-induced adipocyte inflammation and insulin resistance:involvement of ER stress and IKK beta pathways[J].Obesity,2011,19:483.
[41]Perkins ND.Integrating cell-signalling pathways with NFkappaB and IKK function[J].Nat Rev Mol Cell Biol,2007,8:49.
[42]Alhusaini,S.Lipopolysaccharide,high glucose and saturated fatty acids induce endoplasmic reticulum stress in cultured primary human adipocytes:Salicylate alleviates this stress.Biochem.Biophys[J].Res Commun,2010,397:472.
[43]Kawasaki N.Obesity-induced endoplasmic reticulum stress causes chronic inflammation in adipose tissue[J].Sci Rep,2012,2:799.
[44]Oslowski CM,Thioredoxin-interacting protein mediates ER stress-induced b cell death through initiation of the inflammasome[J].Cell Metab,2012,16,265.
[45]Hasnain SZ.Glycemic control in diabetes is restored by therapeutic manipulation of cytokines that regulate beta cell stress[J].Nat Med,2014,20:1417.
[46]Teodoro-Morrison T.GRP78 overproduction in pancreatic beta cells protects against high-fat-diet-induced diabetes in mice[J].Diabetologia,2013,56:1057.
[47]Sommerweiss,D.Oleate rescues INS-1E b-cells from palmitate-induced apoptosis by preventing activation of the unfolded protein response[J].Biochem Biophys Res Commun,2013,441:770.
[48]Liu M.Proinsulin misfolding and diabetes:mutant INS gene-induced diabetes of youth[J].Trends Endocrinol Metab,2010,21:652.
[49]Han J.ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death[J].Nat Cell Biol,2013,15:481.
[50]Cadavez L.Chaperones ameliorate beta cell dysfunction associated with human islet amyloid polypeptide over expression[J].PLoSONE,2014,9:e101797.
[51]Prentki M,Nolαn CJ.Islet betb cell failure in type 2 diabetes[J].J Clin Invest,2006.116:1802.
基金項目:國家自然科學(xué)基金項目(項目編號:81273686)
*通訊作者
文章編號:1007-4287(2016)07-1193-05
(收稿日期:2016-03-25)