管釗,吳明科,陳吳方,陳美麗,馬江鋒,姜岷
(南京工業(yè)大學(xué)生物與制藥工程學(xué)院材料化學(xué)工程國家重點(diǎn)實(shí)驗(yàn)室,江蘇南京210009)
摘要:利用大腸桿菌厭氧制備丁二酸過程中,采用氨水作為pH調(diào)節(jié)劑不僅可以中和酸性產(chǎn)物還可提供無機(jī)氮,被菌體利用,然而高濃度的積累會抑制菌體生長及代謝產(chǎn)酸的能力。為增強(qiáng)大腸桿菌對高濃度的耐受性,以(NH4)2HPO4為供體,通過在連續(xù)培養(yǎng)裝置中不斷提高(NH4)2HPO4濃度,以獲得可耐受的產(chǎn)丁二酸大腸桿菌。結(jié)果表明:突變株在脅迫下,搖瓶厭氧發(fā)酵72 h,細(xì)胞干質(zhì)量濃度(DCW)可達(dá)1.82 g/L,丁二酸產(chǎn)量為11.72 g/L,分別比出發(fā)菌株提高了1.6和4.6倍。進(jìn)一步地,在5 L發(fā)酵罐上考察其利用氨水調(diào)節(jié)pH生產(chǎn)丁二酸的能力,厭氧發(fā)酵90 h,丁二酸質(zhì)量濃度達(dá)到27.32 g/L,生產(chǎn)強(qiáng)度為0.30 g/(L·h),比出發(fā)菌株分別提高88.1%和87.5%。
關(guān)鍵詞:進(jìn)化代謝;耐銨;丁二酸;大腸桿菌
doi:10.3969/j.issn.1672-3678.2015.06.010
收稿日期:2015-03-19
基金項(xiàng)目:國家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃(973計(jì)劃)(2013CB733901);江蘇省高校優(yōu)勢學(xué)科建設(shè)工程
作者簡介:管釗(1989—),男,江蘇南通人,碩士研究生,研究方向:生物工程;姜岷(聯(lián)系人),教授,E-mail:jiangmin@njtech.edu.cn
中圖分類號:TQ921
文獻(xiàn)標(biāo)志碼:A
文章編號:1672-3678(2015)06-0055-06
Abstract:During the process of succinic acid production by Escherichia coli,ammonia was adopted as pH regulator, not only could neutralize organic acid but also as nitrogen source for growth. would seriously inhibit the growth and metabolic capability of the strain.To improve the tolerance of E. gradually which was provided from(NH4)2HPO4. was obtained. in flask,dry cell weight of the mutant reached 1.82 g/L and succinic acid concentration reached 11.72 g/L within 72 h fermentation,which was 1.6- and 4.6-fold compared with the parent strain respectively.Furthermore,the ability of the mutant using ammonia as pH regulator for succinic acid production was investigated in a 5-L fermentor.After 90 h fermentation,concentration and productivity of succinic acid reached 27.32 g/L and 0.30 g/(L·h),which were increased by 88.1% and 87.5% compared with the parent strain.
Keywords:metabolic evolution; ammonium-tolerant; succinic acid; Escherichia coli
Isolation of ammonium-tolerant mutant of Escherichia coli for succinic acid production by metabolic evolution
GUAN Zhao,WU Mingke,CHEN Wufang,CHEN Meili,MA Jiangfeng,JIANG Min
(State Key Laboratory of Materials-Oriented Chemical Engineering,College of Biotechnology
and Pharmaceutical Engineering,Nanjing Tech University,Nanjing 210009,China)
丁二酸(琥珀酸)作為一種重要的C4平臺化合物,是制備可降解生物材料的主要原料,被廣泛應(yīng)用于食品、農(nóng)業(yè)、醫(yī)藥等行業(yè),具有廣闊的市場前景。目前,丁二酸的生產(chǎn)方法主要有化學(xué)合成和生物合成法。與化學(xué)合成法相比,生物合成法具有對環(huán)境污染小、反應(yīng)條件溫和、能耗低等優(yōu)點(diǎn),因此受到越來越多研究人員的關(guān)注[2-3]。丁二酸生產(chǎn)的優(yōu)良菌株主要有產(chǎn)琥珀酸厭氧螺菌(Anaerobiospirillumsucciniciproducens)、產(chǎn)琥珀酸放線桿菌(Actinobacillussuccinogenes)、產(chǎn)琥珀酸曼氏桿菌(Mannheimiasucciniciproducens)及大腸桿菌(Escherichiacoli),其中大腸桿菌由于其遺傳背景清晰和營養(yǎng)成分需求簡單等特點(diǎn),已成為研究的熱點(diǎn)。
進(jìn)化代謝是一種適應(yīng)性進(jìn)化的方式[13],在馴化過程中,由于細(xì)菌具有傳代速度快、數(shù)量大等優(yōu)點(diǎn),因此適應(yīng)新環(huán)境的細(xì)菌能夠獲得生長優(yōu)勢,從而在新環(huán)境下生存,而不能適應(yīng)新環(huán)境的菌體,由于生長速度慢,很快被優(yōu)勢菌體所淘汰[14-15]。此方法目前主要適用于下面兩個(gè)方面的菌種選育,一是篩選能夠抵抗某種物質(zhì)或產(chǎn)物壓力的抗逆菌株,如改善大腸桿菌在丁二酸生產(chǎn)中Na+的抑制[16]。二是篩選能快速利用一些廉價(jià)生物質(zhì)的菌株,如改善菌株對生物質(zhì)的利用效率[17]。
1材料與方法
大腸桿菌EscherichiacoliBER208,由筆者所在實(shí)驗(yàn)室成員自主篩選并保存,其保藏編號為CCTCC M 2012351。
種子培養(yǎng)基(g/L):蛋白胨10,酵母粉5,NaCl 5,卡那霉素0.03,氯霉素0.025。
發(fā)酵培養(yǎng)基(g/L):一水合檸檬酸3.0,Na2HPO4·7H2O 3.0,KH2PO48.0,NH4Cl 0.2,(NH4)2SO40.75,MgSO4·7H2O 1.0,CaCl2·2H2O 0.01,CoCl2·6H2O 0.001 75,ZnSO4·7H2O 0.000 5,CuCl2·2H2O 0.000 25 mg/L,Na2MoO4·2H2O 0.000 5,MnSO4·H2O 0.002 5 mg/L,H3BO30.000 12,Al2(SO4)3·7H2O 0.001 77,F(xiàn)e(III)citrate 0.016 1,VB10.02,生物素0.002,卡那霉素0.03,氯霉素0.025。121 ℃高壓滅菌15 min。
厭氧搖瓶發(fā)酵培養(yǎng)基:30 mL發(fā)酵培養(yǎng)基,添加 16 g/L堿式MgCO3,30 g/L葡萄糖。
1)種子培養(yǎng)從保存在-80 ℃凍存管中的菌株中,按1%的接種量接入裝液量為5 mL的試管中,37 ℃、200 r/min過夜培養(yǎng),作為一級種子。將試管中的一級種子,以1%的接種量轉(zhuǎn)接到裝液量為100 mL的500 mL 三角瓶中,37 ℃、200 r/min 培養(yǎng)6 h,作為二級種子。
2)厭氧搖瓶發(fā)酵將二級種子按照10%的接種量接入到裝有30 mL發(fā)酵培養(yǎng)基的血清瓶中,通入無菌CO22 min以維持厭氧環(huán)境,37 ℃、200 r/min培養(yǎng)72 h。
3)發(fā)酵罐培養(yǎng)采用發(fā)酵培養(yǎng)基,在5 L發(fā)酵罐中進(jìn)行,裝液量為2 L,接種量為10%。通入100%無菌過濾CO2進(jìn)行厭氧發(fā)酵,通氣量為0.1 vvm(每分鐘通氣量與罐體實(shí)際料液體積的比值),溫度37 ℃,攪拌轉(zhuǎn)速150 r/min,用50%氨水控制pH為6.6。
1)葡萄糖的測定利用SBA240C型生物傳感分析儀(山東省科學(xué)院生物研究所)測定葡萄糖。
2)菌體密度測定Spectrumlap 752S型紫外-可見分光光度計(jì)(上海棱光技術(shù)有限公司),在波長600 nm處測定吸光值。細(xì)胞干質(zhì)量濃度(DCW)的計(jì)算是10 mL的發(fā)酵液,10 000 r/min離心10 min,蒸餾水洗滌菌體2次,烘干至恒質(zhì)量后稱質(zhì)量。每個(gè)OD600相當(dāng)于0.4 g/L DCW。
3)發(fā)酵液中有機(jī)酸的測定高效液相色譜法(HPLC)檢測,色譜分析儀為美國Dionex Ultimate 3000系列;色譜柱為Prevail Organic Acid,流動相為25 mmol/L KH2PO4,pH 2.5,流速1.0 mL/min,紫外檢測波長215 nm;進(jìn)樣量20 μL,控制柱溫為25 ℃。
2結(jié)果與討論
圖1 NH + 4濃度對菌株BER208生長和產(chǎn)酸性能的影響 Fig.1 Effects of NH + 4 concentration on cell growth and succinic acid production by E.coli BER208
圖2 進(jìn)化代謝連續(xù)培養(yǎng)過程 Fig.2 The operational process of adaptive evolution
表1 突變株與出發(fā)菌株產(chǎn)酸效果對比
圖3 突變株BER528遺傳穩(wěn)定性試驗(yàn) Fig.3 Succinic acid-producing stability of BER528 during generation
圖5 出發(fā)菌株BER208生長及產(chǎn)酸結(jié)果 Fig.5 Time course of cell growth and production of succinic acid in the anaerobic fermentation by E.coli BER208
圖6 突變株BER528生長及產(chǎn)酸結(jié)果 Fig.6 Time course of cell growth and production of succinic acid in the anaerobic fermentation by E. coli BER528
表2 出發(fā)菌株BER208與突變株BER528厭氧發(fā)酵產(chǎn)丁二酸結(jié)果對比
3結(jié)論
3)在5 L發(fā)酵罐中進(jìn)一步地考察突變株BER528利用氨水調(diào)節(jié)pH發(fā)酵性能,厭氧發(fā)酵90 h,DCW為1.22 g/L,丁二酸產(chǎn)量達(dá)到27.32 g/L,丁二酸的生產(chǎn)速率為0.30 g/(L·h)。丁二酸產(chǎn)量和生產(chǎn)速率分別比出發(fā)菌株提高88.2%和87.5%。
參考文獻(xiàn):
[1]Willke T,Vorlop K D.Industrial bioconversion of renewable resources as an alternative to conventional chemistry.Appl Microbiol Biotechnol,2004,66(2):131-142.
[2]Cukalovic A,Stevens C V.Feasibility of production methods for succinic acid derivatives:a marriage of renewable resources and chemical technology.Biofuels Bioprod Biorefin Biofpr,2008,2(6):505-529.
[3]Song H,Lee S Y.Production of succinic acid by bacterial fermentation.Enzyme Microb Technol,2006,39(3):352-361.
[4]Lee P C,Lee W G,Lee S Y,et al.Effects of medium components on the growth ofAnaerobiospirillumsucciniciproducensand succinic acid production.Process Biochem,1999,35(1/2):49-55.
[5]Fang X J,Zheng X Y,Xi Y L,et al.Enhancement of succinic acid production by osmotic-tolerant mutant strain ofActinobacillussuccinogenes.World J Microbiol Biotechnol,2011,27(12):3009-3013.
[6]Kim D Y,Yim S C,Lee P C,et al.Batch and continuous fermentation of succinic acid from wood hydrolysate byMannheimiasucciniciproducensMBEL55E.Enzyme Microb Technol,2004,35(6/7):648-653.
[7]Lin H,Bennett G N,San K Y.Fed-batch culture of a metabolically engineeredEscherichiacolistrain designed for high-level succinate production and yield under aerobic conditions.Biotechnol Bioeng,2005,90(6):775-779.
[8]Glassner D A,Elankovan P,Beacom D R.Purification process for succinic acid produced by fermentation.Appl Biochem Biotechnol,1995,51-52:73-82.
[10]Kronzucker H J,Britto D T,Davenport R J,et al.Ammonium toxicity and the real cost of transport.Trends Plant Sci,2001,6(8):335-337.
[12]Lebrihi A,Lamsaif A,Lefebvre G,et al.Effect of ammonium-ions on spiramycin biosynthesis in streptomyces-ambofaciens.Appl Microbiol Biotechnol,1992,37(3):382-387.
[13]Lee J W,Kim T Y,Jang Y S,et al.Systems metabolic engineering for chemicals and materials.Trends Biotechnol,2011,29(8):370-378..
[14]Charusanti P,Fonf N L,Nagarajan H,et al.Exploiting adaptive laboratory evolution ofStreptomycesclavuligerusfor antibiotic discovery and overproduction.PloS One,2012;7(3):e33727.
[15]Unrean P,Srienc F.Metabolic networks evolve towards states of maximum entropy production.Metab Eng 2011,13(6):666-673.
[16]張常青,茍冬梅,梅家軍,等.進(jìn)化代謝選育高滲透壓耐受型產(chǎn)丁二酸大腸桿菌.生物工程學(xué)報(bào),2012(11):1337-1345.
[17]Jiang M,Wan Q,Liu R M,et al.Succinic acid production from corn stalk hydrolysate in anE.colimutant generated by atmospheric and room-temperature plasmas and metabolic evolution strategies.J Ind Microbiol Biotechnol,2014,41(1):115-123.
[18]Vemuri G N,Eiteman M A,Altman E.Effects of growth mode and pyruvate carboxylase on succinic acid production by metabolically engineered strains ofEscherichiacoli.Appl Environ Microbiol,2002,68(4):1715-1727.
(責(zé)任編輯荀志金)